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ORIGINAL ARTICLE

Genetic Risk Scores for Complex Disease Traits 
in Youth
Tian Xie , MSc; Bin Wang, PhD; Ilja M. Nolte, PhD; Peter J. van der Most , PhD; Albertine J. Oldehinkel, PhD;  
Catharina A. Hartman, PhD; Harold Snieder , PhD

BACKGROUND: For most disease-related traits the magnitude of the contribution of genetic factors in adolescents remains 
unclear.

METHODS: Twenty continuous traits related to anthropometry, cardiovascular and renal function, metabolism, and inflammation 
were selected from the ongoing prospective Tracking Adolescents’ Individual Lives Survey cohort in the Netherlands with 
measurements of up to 5 waves from age 11 to 22 years (n=1354, 47.6% males) and all traits available at the third wave 
(mean age [SD]=16.22 [0.66]). For each trait, unweighted and weighted genetic risk scores (GRSs) were generated based 
on significantly associated single nucleotide polymorphisms identified from literature. The variance explained by the GRSs in 
adolescents were estimated by linear regression after adjustment for covariates.

RESULTS: Except for ALT (alanine transaminase), all GRSs were significantly associated with their traits. The trait variance 
explained by the GRSs was highest for lipoprotein[a] (39.59%) and varied between 0.09% (ALT) and 18.49% (LDL [low-
density lipoprotein]) for the other traits. For most traits, the variances explained in adolescents were comparable with or 
slightly smaller than those in adults. Significant increases of trait levels (except ALT) and increased risks for overweight/
obesity (odds ratio, 6.41 [95% CI, 2.95–15.56]) and hypertension (odds ratio, 2.86 [95% CI, 1.39–6.17]) were found in 
individuals in the top GRS decile compared with those at the bottom decile.

CONCLUSIONS: Variances explained by adult-based GRSs for disease-related traits in adolescents, although still relatively 
modest, were comparable with or slightly smaller than in adults offering promise for improved risk prediction at early ages.
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Recently, an increasing number of genetic vari-
ants—mostly single nucleotide polymorphisms 
(SNPs)—have been identified to be associated 

with human traits through meta-analyses of genome-
wide association studies (meta-GWASs).1,2 To evalu-
ate the overall contribution of these identified genetic 
variants, genetic risk scores (GRSs) were constructed 
for many disease-related traits and were found to 
often explain a significant portion of the trait varia-
tion.3 As more SNPs continue to be discovered, such 
GRSs provide possibilities to predict complex disease 

risk at the individual level and have potential applica-
tion in disease prevention.

For example, many studies on blood pressure and 
body mass index (BMI) have shown that increased lev-
els in youth track into adulthood and are associated with 
immediate and long-term health risks.4–7 Applying GRSs 
at an early age to identify individuals at high genetic risk 
for hypertension and obesity might, therefore, aid in early 
prevention. As most SNPs were identified from meta-
GWAS in adults, the question whether these adult-based 
GRSs can be applied in youth needs to be answered. A 
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longitudinal twin study on blood pressure showed that 
novel genetic effects emerged between ages 14 and 
18 years and explained a significant part of the variation 
in blood pressure.8 Another study found that 5 loci had 
different effects on BMI during adolescence and young 
adulthood (16–25 years) compared with middle-age 
adults.9 These results support age-dependent genetic 
effects and suggest that GRSs derived from adults may 
not have the same effect in youth. Thus, there is the need 
to investigate to what extent adult-based GRSs can pre-
dict disease-related traits in youth.

However, so far only a few traits and diseases were 
explored, and the contributions of GRSs in adolescents 
for other traits remain unclear.10–12 Furthermore, as the 
list of identified genetic markers has recently expanded 
dramatically, the effect of updated GRSs using the latest 
GWAS findings requires evaluation in adolescents.

Therefore, the aim of the current study was to 
assess and evaluate the variance explained by adult-
based GRSs on a wide variety of disease-related traits 
in adolescents from the Netherlands. We used 20 con-
tinuous traits from the Tracking Adolescents’ Individual 
Lives Survey (TRAILS) cohort, related to anthropom-
etry, cardiovascular and renal function, metabolism 
and inflammation. For each trait, we generated GRSs 
based on significantly associated SNPs identified from 
literature. Then we assessed how much of the pheno-
typic variance could be explained by these GRSs in 
adolescents and compared it with the phenotypic vari-
ance explained in adult populations. We also compared 
the trait levels and risks of hypertension and obesity 

between individuals in each of the upper 9 deciles with 
those in the bottom decile of the GRSs distribution. 
Furthermore, we replicated findings of some major 
traits such as BMI and blood pressure in the TRAILS 
clinical cohort.

METHODS
The research was conducted in TRAILS, an ongoing prospec-
tive population-based cohort which assesses physical and 
psychosocial health from preadolescence to adulthood in the 
Netherlands.13,14 Because of the personal nature of the data, 
the data set is not online available. Requests to access the 
data may be submitted by means of a publication plan form for 
external users, which is available at https://www.trails.nl/en/
hoofdmenu/data/data-use.

The traits of interest and the literature from which SNPs 
were identified are presented in Table 1. All SNPs and their 
effect sizes for constructing GRS can be found in Table I 
through XXI in the Data Supplement. Full descriptions of trait 
and SNP selection, participants and traits measurements, 
genotyping and imputation, and statistical analyses are avail-
able in the Supplementary Methods.

All procedures were approved by the Dutch Central 
Committee on Research Involving Human Subjects. Written 
informed consent, including specific consent to undertake 
genetic analyses, was obtained from participants and their par-
ents or custodians.

RESULTS
Participants and Traits Description
Table 2 shows the descriptive statistics of age and the 
quantitative traits we selected in the TRAILS cohort at 
the third wave (for all waves see Table XXII in the Data 
Supplement). A total of 1354 participants whose GWAS 
data were available were included in the analyses, 644 
(47.6%) of whom being males. The mean ages (in years) 
of the 5 waves (T1–T5) were 11.1, 13.5, 16.2, 19.2, and 
22.4, respectively. In total 20 traits, related to anthropom-
etry, cardiovascular and renal function, metabolism and 
inflammation were selected.

SNPs Selection
Figure 1 shows the process and results of SNP selec-
tion for the 20 traits of interest. We selected 17 articles 
as sources of SNPs for the 20 traits, of which 13 used 
GWAS data, 2 used exome-centric chips, and 2 used 
a combination of GWAS and gene-centric data. From 
these articles, we identified 8183 SNP-phenotype asso-
ciations. For 35 associations, SNPs were missing in the 
TRAILS genotyped or imputed data, but we could suc-
cessfully find proxies for 10 of them. Eighty-one asso-
ciations were removed because SNPs were in linkage 
disequilibrium (LD) with another selected SNP. Finally, 
8077 SNP-phenotype combinations were included for 

Nonstandard Abbreviations and Acronyms

ALP	 alkaline phosphatase
ALT	 alanine transaminase
BMI	 body mass index
CRP	 C-reactive protein
FI	 fasting insulin
GGT	 γ-glutamyl transferase
GRS	 genetic risk score
HDL	 high-density lipoprotein
LD	 linkage disequilibrium
LDL	 low-density lipoprotein
Lp(a)	 lipoprotein(a)
meta-GWASs	� meta-analyses of genome-wide 

association studies
SBP	 systolic blood pressure
SNP	 single nucleotide polymorphism
TRAILS	� Tracking Adolescents’ Individual 

Lives Survey
uGRS	 unweighted genetic risk score
wGRS	 weighted genetic risk score
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constructing GRSs of the 20 traits (Figure  1; Table I 
through XXI in the Data Supplement).

GRS Analysis
Table 3 shows the results of weighted GRS analysis at 
the third wave (for results of unweighted genetic risk 
score [uGRS] see Table XXIII in the Data Supplement, 
for all waves see Table XXIV in the Data Supplement). 
The number of SNPs included in the GRSs ranged from 
4 (for ALT [alanine transaminase]) to 3290 (for height). 
Except for the GRSs for ALT, all GRSs were significantly 
associated with their traits and explained a significant 
part of the phenotypic variance. The variance explained 
by the GRSs for the traits varied greatly: the weighted 
GRS incorporating 49 SNPs for Lp(a) (lipoprotein[a]) 
explained 39.59% of its variance, while the weighted 
genetic risk score (wGRS) for ALT only explained 0.10% 
and was not significant. Apart from Lp(a), GRSs for 
height, HDL (high-density lipoprotein), LDL (low-density 

lipoprotein), and total cholesterol had relatively large con-
tributions to their traits (above 10%). For blood pressure, 
the variance explained by the wGRS is 2.15% for sys-
tolic blood pressure (SBP) and 4.48% for diastolic blood 
pressure. For anthropometric traits that had repeated 
measurements (Figure 2, Table XXIV in the Data Supple-
ment), we found increases in variance explained by the 
GRSs for height with older age (eg, from 9.34% at 14 
years of age to 12.03% at the age of 16 for the uGRS), 
but the differences were not significant. The variances 
explained remained similar for BMI from 11 to 22 years 
(between 5.79% and 6.55% for wGRS) and for waist-to-
hip ratio (BMI adjusted) from 16 to 22 years (between 
1.38% and 1.95% for wGRS).

The variance explained by GRSs increased when using 
the wGRSs compared with the uGRSs for most traits (Table 
XXIII and Figure I in the Data Supplement), with the big-
gest increase for LDL. The uGRS for LDL explained 8.88% 
of the variance compared with 18.49% by the wGRS, an 
increase of almost 10%. For the traits that needed correction 

Table 1.  Details on the Transformations, Covariates, and Exclusions Used for Genetic Risk Score Analysis of 
the 20 Selected Traits in TRAILS

Trait Transform Covariates Reference
TRAILS 

Correction

Anthropometry

  Height INR Sex, age Yengo et al15 Yes

  BMI INR Sex, age Yengo et al15 Yes

  WHRadjBMI INR Sex, age, age2, BMI Pulit et al16 Yes

Cardiovascular and renal function

  HR  Sex, age, age2, BMI Eppinga and van den Berg et al17,18  

  SBP  Sex, age, age2, BMI Evangelou et al19 Yes

  DBP  Sex, age, age2, BMI Evangelou et al19 Yes

  eGFR ln Sex, age Wuttke et al20 Yes

Metabolism

  HbA1c*  Sex, age, age2 Wheeler et al21 Yes

  ALT Log10 Sex, age Chambers et al22  

  FG†  Sex, age Dupuis and Scott et al23,24 Yes

  FGadjBMI†  Sex, age, BMI Scott and Manning et al24,25 Yes

  FI† ln Sex, age Scott et al24 Yes

  FIadjBMI† ln Sex, age, BMI Scott et al24 Yes

  HDL INR Sex, age, age2 Willer, Surakka, and Liu et al26–28  

  LDL INR Sex, age, age2 Willer, Surakka, and Liu et al26–28  

  TC INR Sex, age, age2 Willer, Surakka, and Liu et al26–28  

  TG ln, INR Sex, age, age2 Willer, Surakka, and Liu et al26–28  

  Lp(a) INR Sex, age Mack et al29  

Inflammation

  CRP ln Sex, age Ligthart et al30 Yes

  IgE Log10 Sex, age Granada et al31  

ALT indicates alanine transaminase; BMI, body mass index; CRP, C-reactive protein; DBP, diastolic blood pressure; eGFR, estimated glomerular 
filtration rate; FG, fasting glucose; FGadjBMI, fasting glucose (BMI adjusted); FI, fasting insulin; FIadjBMI, fasting insulin (BMI adjusted); HbA1c, 
glycated hemoglobin; HDL, high-density lipoprotein; HR, heart rate; IgE, immunoglobulin E; INR, inverse normal of residuals; LDL, low-density 
lipoprotein; Lp(a), lipoprotein(a); SBP, systolic blood pressure; TC, total cholesterol; TG, triglycerides; and WHRadjBMI, waist-to-hip ratio (BMI adjusted).

*Excluding individuals with diagnosed diabetes mellitus or high fasting glucose (≥7 mmol/L).
†Excluding individuals with diagnosed diabetes mellitus or high fasting glucose (≥7 mmol/L) or nonfasting.
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for the TRAILS result, wGRSs using corrected effect sizes 
explained slightly less variance (range: 0.01%–0.43%) than 
wGRSs using uncorrected effect sizes from the literature as 
expected (Table XXV in the Data Supplement).

For 17 traits, variances explained in adolescents were 
compared with variance explained in adults that were 
extracted from literature (Figure  3, Table  3, and Table 

XXVI in the Data Supplement). Generally, variances 
explained in adolescents were similar or slightly less 
than those in adults, with the biggest difference for CRP 
(C-reactive protein). The variance explained for CRP was 
3.69% in adolescents compared with 11% in adults.

For all traits except ALT, significant increases of trait 
levels were found in individuals at the top wGRS decile 
compared with those at the bottom decile (Table 3). For 
instance, individuals at the top decile of the wGRS for 
SBP had on average a 6.30 mm Hg higher SBP (95% CI, 
3.54–9.07 mm Hg) than those at the bottom decile. For 
most traits levels of trait increased along with increases 
in the GRS decile (Figure II in the Data Supplement). 
Furthermore, over 6-fold higher risk of overweight/obe-
sity (odds ratio, 6.41 [95% CI, 2.95–15.56]) and around 
3-fold higher risk of hypertension (odds ratio, 2.86 [95% 
CI, 1.39–6.17]) were observed between top and bottom 
deciles of the GRS (Figure 4).

Replication in TRAILS Clinical Cohort
From TRAILS clinical cohort, 341 participants (69.2% 
males) with available DNA were included in replication 

Table 2.  Descriptive Statistics of Age and the 20 Quantitative Traits at the Third Wave (16 y) in the TRAILS Cohort

Trait, unit Total (n=1354)* Male (n=644)* Female (n=710)*

Age, y 16.22 (0.66) 16.21 (0.64) 16.23 (0.68)

Anthropometry

  Height, cm 174.58 (8.87) 180.27 (7.65) 169.29 (6.27)

  Body mass index, kg/m2 20.75 (19.13–22.55) 20.27 (18.75–21.92) 21.25 (19.54–23.11)

  Waist-to-hip ratio 0.83 (0.79–0.87) 0.83 (0.80–0.87) 0.83 (0.78–0.86)

Cardiovascular and renal function

  Heart rate, bpm 68.03 (11.98) 66.40 (12.12) 69.54 (11.67)

  Systolic blood pressure, mm Hg 118.29 (12.53) 122.33 (12.60) 114.57 (11.26)

  Diastolic blood pressure, mm Hg 61.09 (6.95) 60.40 (7.06) 61.72 (6.79)

 � Estimated glomerular filtration rate,†  
mL/min per 1.73 m2

97.65 (89.28–107.41) 95.63 (86.91–105.73) 99.56 (91.41–108.32)

Metabolism

  HbA1c, % 5.17 (0.45) 5.23 (0.47) 5.13 (0.42)

  Alanine transaminase, U/I 14.00 (12.00–18.00) 16.00 (13.00–20.00) 13.00 (11.00–16.00)

  Fasting glucose, mmol/L 4.54 (0.42) 4.61 (0.45) 4.47 (0.38)

  Fasting insulin, mU/I 12.00 (9.10–16.00) 11.05 (8.50–15.00) 12.00 (9.50–16.00)

  High-density lipoprotein, mmol/L 1.40 (1.20–1.60) 1.40 (1.20–1.60) 1.50 (1.30–1.70)

  Low-density lipoprotein, mmol/L 2.20 (1.80–2.60) 2.10 (1.70–2.50) 2.40 (2.00–2.79)

  Total cholesterol, mmol/L 3.70 (3.30–4.23) 3.50 (3.10–4.00) 4.00 (3.50–4.40)

  Triglycerides, mmol/L 0.69 (0.52–0.93) 0.64 (0.49–0.90) 0.72 (0.55–0.96)

  Lipoprotein(a), mg/L 69.50 (30.25–220.50) 60.00 (25.00–175.00) 81.00 (35.00–260.00)

Inflammation

  C-reactive protein, mg/L 0.40 (0.20–1.00) 0.30 (0.20–0.80) 0.50 (0.20–1.40)

  Immunoglobulin E, kU/I 67.05 (22.23–213.00) 67.20 (22.70–225.00) 66.30 (21.90–205.00)

HbA1c indicates glycated hemoglobin; and SCr, serum creatinine.
*Descriptives are either mean (SD) or median (interquartile range) depending on the distribution of the variable.
†eGFR=41.3×(height/SCr), SCr in mg/dL.

Figure 1. Flowchart showing the process and results of 
single nucleotide polymorphism (SNP) selection of the 20 
traits of interest.
LD indicates linkage disequilibrium; and TRAILS, Tracking 
Adolescents’ Individual Lives Survey.
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analyses for height, BMI, waist-to-hip ratio (BMI 
adjusted), heart rate, SBP, diastolic blood pressure, gly-
cated hemoglobin; %. Generally, GRSs also explained 
significant proportions of phenotypic variance in TRAILS 
clinical cohort (Table XXVII in the Data Supplement).

Additional Analyses for BMI and Blood 
Pressure
Fifteen SNPs were identified in meta-GWAS of child-
hood BMI and 2 SNPs for SBP in children or adoles-
cents.32,33 For childhood BMI, 6 SNPs showed significant 
associations with BMI at 11 years in TRAILS (P<0.05), 
and 14 SNPs had directionally consistent effects with 
those reported by meta-GWASs (Table XXVIII in the 
Data Supplement). For childhood SBP, the 2 SNPs were 
not significantly associated with SBP in TRAILS, but they 

had the same direction of effect as those in the meta-
GWAS (Table XXVIII in the Data Supplement). Compar-
ing with the uGRSs only including SNPs identified in 
adults, the uGRSs combining SNPs identified in adults 
and in children/adolescents explained slightly more vari-
ance of SBP and BMI at 11 years and 14 years (eg, 
SBP, R2=1.69% compared with 1.67%; Table XXIX in 
the Data Supplement).

DISCUSSION
In this study, we investigated in 1354 Dutch adolescents 
how much of the variance of 20 complex disease traits 
could be explained by adult-based GRSs. Our results 
showed that almost all adult-based GRSs were signifi-
cantly associated with their respective traits in adoles-
cents. The trait variance explained by the GRSs varied 

Table 3.  The Result of Genetic Risk Scores Analyses at the Third Wave (16 y)

Trait N in TRAILS
Number of 

SNPs

Variance Explained (wGRS)  
in TRAILS Adolescents

Variance Explained  
in Adults (%)*

Difference of Traits Between  
Top and Bottom wGRS decile†R2 (%) P Value

Anthropometry

  Height 1292 3290 13.68 1.41×10−71 19.70 10.82 (9.32 to 12.32)‡

  BMI 1289 941 6.47 3.59×10−21 5.00 2.21 (1.46 to 2.97)‡

  WHRadjBMI 1285 462 1.38 9.26×10−6 3.90 0.03 (0.02 to 0.05)‡

Cardiovascular and renal function

  HR 1280 80 1.46 9.39×10−6 2.50 6.50 (3.66 to 9.35)‡

  SBP 1280 970 2.15 5.22×10−9 5.70 6.30 (3.54 to 9.07)‡

  DBP 1280 962 4.48 1.14×10−14 5.32 5.61 (3.93 to 7.28)‡

  eGFR 1074 253 5.04 4.28×10−14 7.01 10.85 (7.40 to 14.31)‡

Metabolism

  HbA1C 1074 43 2.83 1.62×10−8 4.19 0.29 (0.18 to 0.40)‡

  ALT 1082 4 0.10 2.86×10−1 0.10 0.01 (−0.03 to 0.06)

  FG 978 31 3.67 1.01×10−9 3.28 0.25 (0.15 to 0.36)‡

  FGadjBMI 968 19 0.95 2.06×10−3  0.25 (0.15 to 0.36)‡

  FI 969 12 1.45 1.37×10−4 1.20 0.28 (0.15 to 0.40)‡

  FIadjBMI 959 12 0.69 5.70×10−3  0.23 (0.11 to 0.34)‡

  HDL 1082 247 11.49 1.70×10−32 12.80 0.36 (0.28 to 0.43)‡

  LDL 1082 194 18.49 2.38×10−52 19.50 1.04 (0.89 to 1.20)‡

  TC 1082 234 12.95 3.50×10−38 18.80 0.94 (0.77 to 1.12)‡

  TG 1082 190 6.56 4.63×10−18 9.30 0.47 (0.36 to 0.58)‡

  Lp(a) 1079 49 39.59 4.94×10−123 36.00 39.76 (35.78 to 43.75)‡

Inflammation

  CRP 1078 77 3.69 8.90×10−11 11.00 0.82 (0.51 to 1.14)‡

  IgE 1060 7 2.06 2.52×10−6  0.36 (0.18 to 0.54)‡

ALT indicates alanine transaminase; BMI, body mass index; CRP, C-reactive protein; DBP, diastolic blood pressure; eGFR, estimated glomerular filtration rate; FG, fasting 
glucose; FGadjBMI, fasting glucose (BMI adjusted); FI, fasting insulin; FIadjBMI, fasting insulin (BMI adjusted); HbA1C, glycated hemoglobin; HDL, high-density lipoprotein; 
HR, heart rate; IgE, immunoglobulin E; LDL, low-density lipoprotein; Lp(a), lipoprotein(a); SBP, systolic blood pressure; SNP, single nucleotide polymorphism; TC, total 
cholesterol; TG, triglycerides; TRAILS, Tracking Adolescents’ Individual Lives Survey; wGRS, weighted genetic risk score; and WHRadjBMI, waist-to-hip ratio (BMI adjusted).

*These results were extracted from the literature.
†The transformations and unit of phenotypes: height (cm), BMI (Kg/m2), HR (bpm), SBP (mm Hg), DBP (mm Hg), eGFR (mL/min per 1.73 m2), HbA1C (%), ALT (U/I, 

log10 transformation), FG (mmol/L), FGadjBMI (mmol/L), FI (mmol/L, ln transformation), FIadjBMI (mmol/L, ln transformation), HDL (mmol/L), LDL (mmol/L), TC 
(mmol/L), TG (mmol/L, ln transformation), Lp(a) (mg/L), CRP (mg/L, ln transformation), IgE (kU/L, log10 transformation). 

‡P<0.001.
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from 0.09% to 39.59%, with weighted GRSs gener-
ally explaining a larger proportion of variance than the 
unweighted GRSs. For most traits, the variance explained 
in adolescents was comparable with or slightly less than 
in adults. Significant increases of trait levels (except ALT) 
and increased risks for overweight/obesity and hyper-
tension were found in individuals in the top wGRS decile 
compared with those at the bottom decile.

Among metabolism traits, the variance explained by 
GRSs varied greatly, which may be caused by the dif-
ferences in trait heritabilities and genetic architecture. 
For example, the wGRS for ALT explained 0.01% of 
variance which was not significant, while the wGRS 
for Lp(a) explained nearly 40%. The small variance 
explained for ALT is likely due to moderate heritability 
(22%–40% estimated from twin-family studies) and the 
GRS including only 4 SNPs as many ALT-associated 
SNPs may not yet have been identified due to insuffi-
cient power of the discovery GWAS.34,35 For some other 
liver enzymes, such as ALP (alkaline phosphatase) and 
GGT (γ-glutamyl transferase), more SNPs were iden-
tified in the original GWAS, but these traits were not 
measured in TRAILS.22 On the contrary, Lp(a) is highly 
heritable (≈90%), with 48 identified SNPs located in the 
LPA gene region and only one SNP in another gene 
(APOE), indicating that this trait is not (very) polygenic 
in its architecture.29,36,37 For lipid traits (HDL, LDL, total 
cholesterol, and triglycerides), we selected SNPs from 

both genome-wide and exome-centric association stud-
ies including some rare variants (minor allele frequency 
<1%). We found that the GRSs excluding rare variants 
explained slightly less variance of the lipid traits than 
the GRSs including rare variants, which indicates that 
even these rare variants with low imputation quality in 
TRAILS contribute to lipid trait variance (Table XXX and 
XXXI in the Data Supplement). For repeatedly measured 
traits, no significant change was found between differ-
ent waves. This is probably due to insufficient power of 
our sample or relatively stable influences of genetic fac-
tors during this age period (11–22 years).

The associations between adult-based GRSs and 
their respective traits in adolescents suggest that many 
of SNPs identified in adults also have effects in adoles-
cents. Similar findings were reported before for GRSs 
based on blood pressure and BMI loci.10,12 Another study 
found a genetic correlation of 0.73 between childhood 
and adult BMI as calculated by LD score regression, 
indicating large but not perfect genetic overlap between 
childhood and adult BMI.32 These results indicate the 
potential of applying adult-based GRSs to disease-
related traits for prediction at an early age. Besides, addi-
tional analyses for BMI and blood pressure suggested 
that combining SNPs identified in adults and in children/
adolescents can increase the predictive ability of GRS. If 
more SNPs will be identified in future GWASs of children 
or adolescents, GRSs of these traits will likely explain 

Figure 2. Variance explained by 
unweighted genetic risk scores 
(uGRSs) and weighted genetic risk 
scores (wGRSs) for anthropometric 
traits at different ages.
BMI indicates body mass index; and 
WHRadjBMI, waist-to-hip ratio (BMI 
adjusted).
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more variance of their traits. In addition, Evangelou et al19 
discovered that the wGRS for blood pressure was asso-
ciated with increased risk of cardiovascular events during 
adulthood. Our study showed that the adult-based GRSs 
for blood pressure and BMI could also predict hyperten-
sion and overweight/obesity, respectively, during adoles-
cence. Therefore, GRSs for blood pressure and BMI may 
have the potential to guide preventative measures for 
hypertension and obesity in youth. For example, lifestyle 
interventions such as diet and physical activity could be 
targeted in individuals who are identified at high genetic 
risk already in early life.

Furthermore, we found that the effects of adult-based 
GRSs are similar or slightly smaller in adolescents com-
pared with adults. The similarities of effects between 
adolescents and adults suggest that for some traits the 

influence of genetic factors may remain relatively stable 
from adolescence to adulthood. One reason for the small 
differences of effects between adolescents and adults 
may be age-dependent genetic effects (different genes 
may play a role or the magnitude of effects of the same 
genes on the phenotypes may change over time). For 
instance, variance explained for SBP was less in ado-
lescents than in adults (2.15% versus 5.70%).19 Other 
studies on blood pressure confirmed that not all individ-
ual SNPs identified in adults were significantly associ-
ated with BP in adolescents and that adult-based GRSs 
explained less variance in adolescents.12,33 Another rea-
son may be lack of stability of phenotypes for some traits. 
Levels of some traits during adolescence may be quite 
different from levels in adulthood as adolescence is a 
period of rapid anthropometric change. The growth rate 

Figure 3. The comparison between variances explained in adolescents and in adults. At the red dashed line, the variances 
explained in adolescents and adults are the same.
Seventeen traits are shown: height, body mass index (BMI), waist-to-hip ratio ([BMI adjusted] WHR adjBMI), heart rate (HR), systolic blood 
pressure (SBP), diastolic blood pressure (DBP), estimated glomerular filtration rate (eGFR), glycated hemoglobin (HbA1c), ALT (alanine 
transaminase), fasting glucose (FG), fasting insulin (FI), HDL (high-density lipoprotein), LDL (low-density lipoprotein), total cholesterol (TC), 
triglycerides (TG), Lp(a) (lipoprotein[a]) , CRP (C-reactive protein). For some traits, our results were not completely comparable with those 
from literature as different methods compared with ours were used for some traits to estimate variance explained in adults. In the literature, the 
method that included all single nucleotide polymorphisms (SNPs) into a linear regression model, adjusted for covariates and calculated the 
adjusted R2 was used for WHRadjBMI, SBP, DBP, HbA1c, FI, HDL, LDL, TC, and TG. The formula ([2×MAF(1−MAF)b2]/var) was used for 
eGFR and CRP. In addition, for some traits not exactly the same SNPs as ours were included to evaluate variance explained in adults. Some 
traits included a few more SNPs than ours (SBP, DBP, eGFR, HbA1c, FI), while some traits included a few less (WHRadjBMI, HR, HDL, LDL, 
TC, TG, Lp[a]). See Table XXVI in the Data Supplement for more details.
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varies between individuals as indicated by the less than 
perfect tracking (eg, the correlation between height at 
11 and 22 years old was only 0.414) indicating that dur-
ing adolescence individuals may be at different stages 
of development (Table XXXII in the Data Supplement). 
Finally, we observed a much smaller explained variance 
for CRP in adolescents compared to adults. However, 
the original meta-GWAS in adults applied the formula 
2*MAF(1-MAF)b2/var to estimate variance explained 
rather than performing an out-of-sample prediction in an 
independent validation cohort, which may have caused an 
overestimate of their explained CRP variance in adults.30 
For some traits, our results were not completely compa-
rable with those from literature, as they used different 
methods or included not exactly the same SNPs as we 
did to estimate variance explained in adults (Table XXVI 
in the Data Supplement). Nonetheless, the comparisons 
indicate that for most traits genetic markers identified in 
GWASs of adults may explain similar or slightly less vari-
ance in adolescents than in adults.

One statistical issue is that in spite of testing GRSs 
for 20 different traits, we have chosen not to apply a 
multiple testing correction in our study, because our aim 
was to replicate significant results from previous studies. 
We simply provided exact P values of GRSs for all traits 
in Table 3. However, it is important to point out that the 
GRSs for most traits would remain significant even if we 
used a corrected significance threshold of 0.0025 for 

20 independent tests. Therefore, the interpretation of the 
results would not change if we would have adjusted for 
multiple testing.

A limitation of our study is that we included only 
known genome-wide significant SNPs in our GRSs, 
instead of using approaches which include all available 
SNPs like a polygenic risk score or LDpred. Polygenic 
risk score is similar to GRS but includes larger number 
of independent SNPs by using more lenient significance 
thresholds.38 LDpred includes all SNPs below a certain 
significance threshold and accounts for LD among SNPs 
to reduce loss of information.39 Conducting polygenic 
risk score or LDpred requires GWAS summary statistics 
that were not available for all 20 traits we investigated, 
so we chose to use the GRS approach, which only needs 
a list of significant SNPs as published in the literature. 
As such, our results are conservative; polygenic scores 
generated by polygenic risk score or LDpred are likely to 
explain more variance. In addition, we selected only SNPs 
identified from European ancestry and applied GRSs in 
adolescents of the same ancestry. Our results may not be 
applicable to adolescents from other ethnicities.

Despite these limitations, our research contributes to 
the understanding of genetic influence on 20 traits during 
a specific life period. To our knowledge, we are the first 
to evaluate the variance explained by adult-based GRSs 
for a wide range of disease-related traits in one homo-
geneous adolescent cohort. Even with a relatively small 

Figure 4. Odds ratios of overweight/
obesity and hypertension comparing 
each of the upper nine genetic risk 
score (GRS) deciles with the lowest 
decile.
Deciles of weighted genetic risk score 
(wGRS) for body mass index (BMI) was 
used for overweight/obesity, and deciles 
of wGRS for systolic blood pressure 
(SBP) was used for hypertension (as 
most cases of hypertension resulted from 
high SBP).
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sample size, we detected associations between adult-
based GRSs and 19 traits in adolescents. In addition, 
as we had repeated measurements for some traits such 
as height, BMI, and waist-to-hip ratio, we could observe 
the contributions of known SNPs to these traits at differ-
ent ages during the critical time period from childhood 
to early adulthood. Further, we calculated GRSs using 
the latest GWAS findings, so we could evaluate the value 
of applying updated adult-based GRSs in adolescence. 
With the help of larger GWAS studies, more GWASs in 
children or adolescents and improved approaches for 
calculating genetic predictors, genetic risk prediction is 
likely to further gain accuracy. As genetic predictors can 
be calculated for many diseases simultaneously from 
birth onwards, genetic risk prediction provides opportuni-
ties to identify high-risk strata for many diseases at an 
early age, which is especially important for diseases with 
known effective interventions.

In conclusion, we demonstrated that almost all adult-
based GRSs for 20 continuous disease trait were 
significantly associated with their respective traits in 
adolescents. Overall, these adult-based GRSs explained 
a small to moderate part of phenotypic variance in ado-
lescents and their effects appeared comparable with or 
slightly smaller than in adults. Larger GWAS studies and 
improved approaches to calculating genetic predictors 
in combination with efforts to integrate genetic, envi-
ronmental, clinical, and molecular risk factors may offer 
promise for improvement of disease prevention.
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