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Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are

autoimmune cholangiopathies characterized by limited treatment options. A more

accurate understanding of the several pathways involved in these diseases has fostered

the development of novel and promising targeted drugs. For PBC, the characterization

of the role of farnesoid X receptor (FXR) and perixosome-proliferator activated receptor

(PPAR) has paved the way to several clinical trials including different molecules with

choleretic and antinflammatory action. Conversely, different pathogenetic models have

been proposed in PSC such as the “leaky gut” hypothesis, a dysbiotic microbiota

or a defect in mechanisms protecting against bile acid toxicity. Along these theories,

new treatment approaches have been developed, ranging from drugs interfering with

trafficking of lymphocytes from the gut to the liver, fecal microbiota transplantation or

new biliary acids with possible immunomodulatory potential. Finally, for both diseases,

antifibrotic agents are under investigation. In this review, we will illustrate current

understanding of molecular mechanisms in PBC and PSC, focusing on actionable

biological pathways for which novel treatments are being developed.

Keywords: primary biliary cholangitis, primary sclerosing cholangitis, liver, FXR agonists, fibrates, microbiome,

gut-liver axis

INTRODUCTION

Autoimmune diseases of the biliary tract include primary biliary cholangitis (PBC) and primary
sclerosing cholangitis (PSC). PBC and PSC are rare diseases of unknown etiology, immune-
mediated pathogenesis and limited treatment options. Recently, there has been an increasing
attention toward these rare diseases and novel agents are under investigation in clinical trials.

This review outlines the most promising novel agents for the treatment of PBC and PSC,
adopting a target-driven approach: the biological target of each class of molecules is briefly
summarized in the context of the pathogenesis of the disease and then preclinical and clinical results
are presented (Figure 1 and Table 1).

FARNESOID X RECEPTOR AGONISTS

Hepatocytes generate bile acids, i.e., cholic acid and chenodeoxycholic acid, from cholesterol
through two pathways: most of the BAs are produced by the classical pathway, which involves

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://www.frontiersin.org/journals/medicine#editorial-board
https://doi.org/10.3389/fmed.2020.00117
http://crossmark.crossref.org/dialog/?doi=10.3389/fmed.2020.00117&domain=pdf&date_stamp=2020-04-07
https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles
https://creativecommons.org/licenses/by/4.0/
mailto:pietro.invernizzi@unimib.it
https://doi.org/10.3389/fmed.2020.00117
https://www.frontiersin.org/articles/10.3389/fmed.2020.00117/full
http://loop.frontiersin.org/people/753518/overview
http://loop.frontiersin.org/people/773768/overview
http://loop.frontiersin.org/people/942543/overview
http://loop.frontiersin.org/people/940782/overview
http://loop.frontiersin.org/people/920475/overview
http://loop.frontiersin.org/people/120975/overview


Gerussi et al. Novel Targets in Rare Cholangiopathies

FIGURE 1 | Therapeutical targets in autoimmune cholangiopathies. FGF-19, fibroblast growth factor 19; FGFR4, fibroblast growth factor receptor 4; FXR, farnesoid X

receptor; HCO−

3 , bicarbonate; norUDCA, norursodeoxycholic acid; PPAR, Peroxisome proliferator-activated receptor; ROS, reactive oxygen species; RXR, retinoid

x receptor.

the rate-limiting cholesterol 7alphahydroxylase (CYP7A1); the
cytochrome (CYP) P450 27 alpha hydroxylase (CYP27A1)
generates the remaining fractions. More recently, it has been
reported that bile acids can also be generated by gut microbiota:
these new bile acids are the phenylalanocholic acid, tyrosocholic
acid and leucocholic acid (1).

Bile acids can exert different activities by binding to nuclear
receptors, such as the farnesoid X receptor (FXR; NR1H4),
pregnane X receptor, vitamin D receptor and Takeda G-protein-
coupled receptor 5 (TGR5). FXR acts as transcription factor
binding to FXR response elements in the DNA; it can operate as
a monomer or together with retinoid X receptor (RXR; NR2B1)
(2). FXR is mainly expressed in the liver and the gut, but can
also be found in the kidney and adrenal gland, and its action
exerts effects on the metabolism of bile acids, carbohydrates
and lipids.

In the liver, FXR regulates bile acid synthesis, preventing
their toxic accumulation. The bile salt export pump (BSEP)
is expressed on the canalicular membranes of hepatocytes
and promotes biliary excretion of bile acids. Its expression is

dependent on FXR, while other transporters [e.g., multidrug
resistance-associated protein (MRP) 3 and MRP4] are
independent from FXR.

OSTα-OSTβ (SLC51A and SLC51B) is an heteromeric
transporter expressed mainly in the distal portions of the gut
and bile ducts, localized to the basolateral membrane of ileal
enterocytes and biliary epithelial cells, respectively. Its main
role is to transport bile acids across the membrane, but OSTα-
OSTβ is also involved in steroids transport (3–5). FXR controls
gene expression of OSTα-OSTβ, as proven by the marked
reduction in OSTα and OSTβ expression in the ileum of Fxr-/-
mice (6).

FXR induces the expression of the small heterodimer protein
(SHP), also known as NR0B2 nuclear receptor subfamily 0,
group B, member 2. SHP acts as transcription factor despite
lacking a DNA binding domain, and inhibits CYP7A1 thanks
to the recruitment of other proteins (mSin3A-Swi/Snf complex,
G9a methyltransferase, the corepressor subunit GPS2) (7–10).
CYP7A1 inhibition translates into a negative feedback inhibition
of bile acid synthesis (2).
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TABLE 1 | Novel pharmacological agents in autoimmune cholangiopathies.

Primary Biliary

Cholangitis

Primary Sclerosing

Cholangitis

FXR agonists

Bile acid

- Obeticholic acid ✓ ✓

Non bile acid

- Tropifexor ✓

- Cilofexor ✓ ✓

- EDP-503 ✓

FGF-19 agonists

- NGM-282 ✓ ✓

PPAR agonists

- PPAR-α/(γ)-

Bezafibrate/Fenofibrate

✓ ✓

- PPAR-α/δ - Elafibranor ✓ ✓

- PPAR-δ-Seladelpar ✓(*)

24-norursodeoxycholic (nor-UDCA) ✓

Antifibrotic agents

- Cenicriviroc ✓

- Setanaxib ✓

Immunological Agents

- Rituximab ✓

- Ustekimumab ✓

- Abatacept ✓

- Baricitinib ✓(**)

Gut-Liver axis

- Vedolizumab ✓

- Antibiotics

(Metronidazole, Vancomicin)

✓

- Timolumab ✓

- Fecal Microbial Transplantation ✓

(*)Trial closed for adverse event.

(**)Trial closed in august 2019.

FXR, farnesoid X receptor; FGF-19, fibroblast growth factor 19; PPAR, Peroxisome

proliferator-activated receptor; HCO−

3 , bicarbonate; norUDCA, norursodeoxycholic acid.

In pre-clinical setting, the activation of hepatic FXR is
beneficial in reducing hepatic fibrosis, since it prevents toxicity
due to accumulation of bile acids (11).

Among the FXR-agonists the main distinction is based on
whether they are steroidal (i.e., bile acids) or non-steroidal
agents. Limitations of steroidal agents are due to the intrinsic
lipophilicity of FXR ligand binding site, which reduces solubility
and bioavailability. Moreover, one of the most common side
effects of steroidal FXR agonists is pruritus, which depends on the
TGR5 agonistic properties (12). Nonetheless, also non-steroidal
agents have shown mild pruritogen action despite not binding
the TGR5 receptor. Interestingly, there is preliminary evidence
that support the concept that non-steroidal FXR-agonists might
have more anti-fibrotic effects (13).

Obeticholic acid (OCA) belongs to the class of steroidal FXR
agonists and is a semi-synthetic bile acid. Currently, OCA is
the only registered option for patients with PBC and incomplete
response after 12 months of treatment with UDCA or intolerant
to UDCA (14). The main side effect is itching, which is typically

mild and seldom requires treatment withdrawal. Another side
effect of OCA is the increase in low-density lipoprotein (LDL)
cholesterol; the long-term significance of this side effect on
cardiovascular risk is still unknown. OCA has been tested also
in patients with PSC (AESOP trial), however final results are
still waited.

Non-bile Acid FXR Agonists
Tropifexor has been evaluated in a double-blind, randomized,
placebo-controlled, phase 2 study in PBC, but only the interim
analysis is available. Interestingly, to avoid confounding due
to the possible FXR-mediated alkaline phosphatase (ALP) gene
induction, gamma glutamyl transpeptidase (GGT) reduction was
chosen instead of ALP reduction as primary endpoint of this trial.

The non-steroidal FXR agonist Cilofexor has been tested in
PSC in a randomized, double-blind, placebo-controlled phase
2 trial, and although the primary endpoint was safety, it can
be noticed that it significantly reduced ALP levels, especially
in the 100mg arm (15). A randomized, double-blind, placebo-
controlled phase 2 trial in PBC and a phase 3 trial in PSC are
currently undergoing.

EDP-305 is another non-steroidal FXR agonist being
evaluated in a randomized, double-blind, placebo-controlled
phase 2 trial in PBC. In murine models of fibrosis EDP-305
reduced the extent of fibrotic areas assessed by morphometric
quantification (16).

FIBROBLAST GROWTH FACTOR 19
AGONISTS

During cholestasis, high levels of bile acids favor fibroblast
growth factor 19 (FGF-19) expression. The increased
concentration of FGF-19 in the gut stimulates activation of
the FGFR4/betaklotho receptor in the liver. FGF19 then migrates
to the liver where reduces CYP7A1 gene expression (7, 17).
FGFR4 and betaklotho forms a cell surface receptor complex and
represent the effectors of the liver activity of FGF19. FGF19 is
also induced by FXR activation in the enterocytes.

Preclinical data have shown a higher risk of hepatocellular
carcinoma (HCC) in transgenic mice with ectopic expression
of FGF19 in the skeletal muscle of transgenic mice (18).
Furthermore, 15% of humanHCC cancers show co-amplification
of FGF19 and cyclin D1 on 11q13.3 (19).

A synthetic analog NGM282 was developed without
carcinogenic potential and its safety and efficacy is under
investigation in clinical trials. NGM282 has been tested in two
randomized, double-blind, placebo-controlled trials in PBC and
PSC, showing conflicting results. The PBC study lasted for 28
days while the design of the PSC study scheduled treatment for
12 weeks.

In PBC, NGM282 achieved a reduction of>15% of ALP levels
in 50% of patients treated compared to 7% of the placebo group.
Similar proportions were found between the 0.3mg and the 3mg
arms. Main side effect was non severe diarrhea (20).

Conversely, in the PSC study of NGM282, ALP levels did not
significantly drop in the 1 and 3mg arms compared to placebo
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(21). We do acknowledge that the clinical significance of ALP
in PBC and PSC is different, considering that PBC has a fairly
stable and slowly progressing disease course where ALP is a good
prognostic marker, compared to the erratic disease course of PSC,
where ALP levels can intermittently rise and fall due to episodic
cholangitis (22).

Interestingly, in both studies, NGM282 decreased the α-
Hydroxy-4-cholesten-3-one (C4) levels in treatment groups
confirming that this drug acts by directly inhibiting the de-novo
bile acid synthesis through the classical pathway.

PEROXISOME PROLIFERATOR-
ACTIVATED RECEPTORS AGONISTS

Peroxisome proliferator-activated receptors (PPARs) are nuclear
receptors of a family containing three isotypes: PPARα (NR1C1),
PPARβ/δ (NR1C2) and PPARγ (NR1C3). After engagement with
their ligand, PPARs form a heterodimer with the retinoid X
receptor, binding to specific DNA sequences in the regulatory
regions of target genes.

PPARα is highly expressed in tissues with marked fatty
acid oxidation activity, including liver, heart and skeletal
muscle, brown adipose tissue and kidney. Beyond its ability
to regulate fatty acid catabolism in different conditions of
food intake and starvation, animal models of atherosclerosis
and non-alcoholic steatohepatitis have shown that PPARα has
also anti-inflammatory properties. Moreover, PPARα agonism
determines inhibition of bile acids synthesis by acting on
CYP7A1 and cytochrome sterol 27-hydroxylase (CYP27A1).
There is also evidence that PPAR-α abrogates the uptake of bile
acids in hepatocytes through the inhibition of the basolateral
transporter sodium-taurocholate-cotransporting polypeptide
and up-regulates expression of human MDR3 gene favoring
canalicular export of phospholipids (23).

PPARβ/δ is expressed in hepatocytes, cholangiocytes, and
non-parenchymal cells (Kuppfer cells, hepatic stellate cells).
PPARδ is utilized by biliary epithelial cells to control bile
components transporters (24) and favors the timely removal of
apoptotic cells by Kuppfer cells, in order to prevent potential
autoimmune phenomena to arise (25). PPAR-γ expression is
mostly restricted to Kupffer cells (25). In cultured human biliary
epithelial cells from patients with PBC there is a down-regulation
of PPAR-γ and the activation of PPAR-γ is associated with
reduced inflammation (26). A PPAR-γ agonist reduced portal
inflammation in murine models of PBC (27).

Natural ligands of PPAR-α are derivatives of fatty acids
generated during lipolysis, lipogenesis or fatty acids catabolism.
Synthetic PPAR-α agonists belong to the group of fibrates,
derivatives of fibric acid: Gemfibrozil, Fenofibrate, Ciprofibrate
and Bezafibrate (Figure 2). They are typically used in treatment
of isolated hypertriglyceridemia or mixed dyslipidemia.
Fenofibrate is 10-fold more specific for the α- isoform compared
to the γ- one, while Bezafibrate is considered a pan-PPAR-agonist
due to its similar affinity for the three isoforms. Most of their
actions are derived from their PPARα agonism.

There is growing evidence of the therapeutic efficacy of
fibrates in PBC, while evidence is still limited for PSC.

Bezafibrate has been evaluated in a 24 months, double-blind,
randomized, placebo-controlled, phase 3 trial (BEZURSO trial),
at the dosage of 400mg per day in patients with incomplete
biochemical response after 12 months of UDCA. The rate of
ALP normalization was 67% in the treatment arm, compared
to the 2% in placebo group. In addition, Bezafibrate did not
worsen pruritus, which was even improved in a subset of
cases, which is in line with available literature (28). The results
from BEZURSO trial endorse the concept that fibrates reduce
the production of bile acids in hepatocytes since patients in
the 400mg arm experienced a 70% drop in C4 serum levels,
whereas patients in the placebo arm did not show any significant
change. Conversely, experience on Fenofibrate in PBC derive
from smaller cohorts (29–33). Both Bezafibrate and Fenofibrate
show side effects typical of their pharmacological class, namely
myalgias, transaminitis and increase in creatine kinase and
creatinine. The long-term safety of these agents during treatment
for cholestatic diseases is still to be ascertained. Since safety and
efficacy profile of Bezafibrate and Fenofibrate seems to be similar,
but Bezafibrate is supported by a randomized controlled trial, it
would be reasonable to choose Bezafibrate as the fibrate of choice
in PBC until new data are available.

There are now new molecules in the pipeline which show
more selective PPAR-δ activity. Seladelpar is a selective PPAR-δ
agonist (34), while Elafibranor is PPARα/δ.

Based on the safety information derived from two phase
2 trials (35), the potential efficacy of Seladelpar has been
evaluated in the ENHANCE trial, a 52-week, double-blind,
placebo-controlled, randomized, Phase 3 study. However, in
November 2019, the ENHANCE trial was put on hold
following the unexpected histological findings observed in the
Phase 2b study of Seladelpar in subjects with non-alcoholic
steatohepatitis (NASH). Atypical histological findings, including
interface hepatitis and biliary injury were found in the planned
interval biopsies.

Elafibranor has been recently evaluated in a multicenter
randomized double-blind placebo-controlled phase 2 Study
in PBC.

Literature supporting the use of fibrates in PSC is scanty.
At the time of writing, no randomized controlled trials have
been published, and retrospective case series come mostly from
Japan (36, 37).

A French-Spanish retrospective study showed a 40%
reduction in the levels of ALP after 12 weeks of treatment with
fibrates [either Fenofibrate (200 mg/day) or Bezafibrate
(400 mg/day)]. There were no major safety issues and
authors cautiously support further studies. To us, it is
conceivable to further investigate the potential benefit of
fibrates in PSC, based on their inherent anticholestatic and
anti-inflammatory properties.

24-NORURSODEOXYCHOLIC AND THE
BILIARY HCO−

3 UMBRELLA

The HCO−

3 umbrella hypothesis asserts that bicarbonate
(HCO−

3 ) ions, secreted by cholangiocytes and hepatocytes,
form a defensive barrier on the apical side of the hepatocytes
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FIGURE 2 | Chemical structure of most common fibrates.

(38). When this system is malfunctioning, glycine-conjugated
bile acids become able to cross the cholangiocyte membrane,
bypassing membrane transporters. This phenomenon leads to
cholangiocyte apoptosis and senescence (39). There is evidence
supporting the concept that in cholangiopathies like PBC and
PSC the biliary HCO−

3 umbrella is defective (40, 41).
The biliary HCO−

3 umbrella can be stabilized through 24-

norursodeoxycholic (nor-UDCA), mainly thank to its ability
of undergoing cholehepatic shunting. Nor-UDCA is relatively
resistant to N-acyl-amidation with taurine or glycine, so that
cholangiocytes can reabsorb it and it can be re-secreted into
bile after getting through periductular capillary plexus and
hepatocytes. The importance of this process is the ability
to cause a profound stimulus to bicarbonate secretion from
cholangiocytes, strengthening the impaired HCO−

3 umbrella
of cholangiopathies.

Mdr2-/- mice are typically considered a surrogate in vivo
model of PSC (42). The lack of Mdr2-encoded membrane
protein, which is a canalicular transporter deputed to
transport phospholipids from hepatocytes to the bile, causes a
cholangiocyte injury, due to bile acid toxicity from increased
concentration of free non-micellar bile acids. In this model
nor-UDCA increases the hydrophilicity of bile acids, stimulates
bile flow and induces biliary transporters and detoxification
enzymes (43).

A double-blind, randomized, placebo-controlled, phase 2
study evaluating nor-UDCA in patients with PSC has shown
promising results in terms of safety of the molecule and
reduction of serum alkaline phosphatase after 12 weeks of
treatment (44). This trial assessed three different treatment
regimens (nor-UDCA 500, 1,000 mg/day, and 1,500 mg/day)
compared to a four arm with placebo. All doses showed
a significant reduction in ALP levels, in a dose-dependent
manner, and similar results were achieved for transaminases and
gamma-glutamyl transferase levels. Pruritus did not occur more
frequently in the treatment arms, and nor-UDCA showed a good
safety profile.

A phase 3 clinical study is currently ongoing.

IMMUNOLOGICAL TARGETS

PBC and PSC are both included in the group of autoimmune
diseases of the biliary tract; however, while PBC is much closer
to a typical autoimmune condition, PSC is a complex disease
with aspects also typical of fibrotic and preneoplastic conditions.
Aside from the classificatory debate, the immune system takes
part of many pathogenetic processes of both PBC and PSC.
Nevertheless, many strategies targeting immune cells have failed
so far (45–53). Biological agents, like Rituximab (54, 55),
Ustekinumab (56), and Abatacept (57) were studied in PBC,
based on preclinical promising data (rituximab and abatacept)
or stimulated by results from genome-wide association studies
(ustekinumab), but conflicting results have been produced and
these molecules are not part of the therapeutic armamentarium.

Among the novel agents under investigation, there is
Baricitinib, a small molecule which is a reversible inhibitor of
Janus kinase (JAK) 1 and 2. In mammals, different receptors
are bound by members of the JAK family (JAK 1-3). The
receptor-ligand binding determines a cascade of activation and
modifications leading to the generation of docking sites for the
SH2 domain of the cytoplasmic transcription factors termed
signal transducers and activators of transcription (STATs).
Several downstream signals are regulated by JAK and STAT
proteins, comprising interleukins (ILs), interferons (IFNs), and
the switch toward T helper (Th) 1, 2, or 17 of naïve T cells is finely
regulated by a JAK-mediated signaling (58). Baricitinib is already
included in the available registered drugs for the treatment of
rheumatoid arthritis (59), and was supposed to be evaluated in
a randomized double-blind, placebo-controlled, phase 2, study in
patients with PBC and partial response to UDCA. Unexpectedly,
in August 2019 Lilly, the company that developed the molecule,
decided to terminate the trial.

ANTIFIBROTIC AGENTS

Inflammation, cholestasis and fibrosis are tightly connected
to determine the vicious cycle toward cirrhosis (60).
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Cholangiopathies show a biliary-type of fibrosis which usually
spreads from the portal tract to the lobule (61). None of the
registered therapies for PBC are inherently antifibrotic, but
halt progression of the fibrotic process through antagonism of
inflammation and/or cholestasis. However, specific antifibrotic
therapies are urgently needed to potentially achieve fibrosis
reversal, considered that a not negligible proportion of patients
do progress despite effective treatment (62).

A novel agent located at the crossroad between inflammation
and fibrosis is Cenicriviroc. Cenicriviroc targets C-C motif
chemokine receptor (CCR) types 2 and 5, which are typically
expressed by monocytes, Kupffer cells and hepatic stellate cells.
There is mounting evidence that, upon liver injury, CCR2 and
CCR5 together with their ligands favor macrophage recruitment
infiltration and stellate cells activation (63, 64). In Bile-duct
ligated and Mdr2-/- mice Cenicriviroc, together with another
agent (all-trans retinoic acid), reduced bile acids, plasma liver
enzymes and histological markers of necrosis and fibrosis (65).
A randomized, double-blind, multinational, phase 2b enrolling
patients with Non-alcoholic fatty liver steatohepatitis (NASH)
revealed the antifibrotic capacity of Cenicriviroc, which halted
fibrosis progression more frequently than placebo, without
improving NASH-related liver inflammation (66). Cenicriviroc
is currently under evaluation in PSC.

Setanaxib is another promising antifibrotic agent
characterized by a completely novel molecular target and
potentially representing a first-in-class molecule for the
treatment of PBC and PSC. The main targets of Setanaxib
are NADPH oxidase (NOX) proteins (67), which are enzymes
over-induced in conditions of chronic stress, like chronic
inflammatory and fibrosing diseases (68, 69). Activation of
stellate cells to myofibroblasts is promoted by NOX1, NOX2,
and NOX4 isoforms (70, 71).

In bile-duct ligation and NASH murine models, Setanaxib
reduced histological markers of fibrosis throughNOX-inhibition.
Setanaxib has been recently evaluated in a multicenter,
randomized, double-blind, placebo-controlled, phase 2 study in
patients with PBC and incomplete response to UDCA. The
primary endpoint was reduction in the levels of GGT, which
is considered a more accurate marker of oxidative stress in the
liver (72).

MODULATION OF THE MICROBIOTA AND
GUT-LIVER AXIS

While PBC is classically limited to the small bile ducts of the
liver, PSC also involves large ducts and is often associated with
inflammatory bowel disease (IBD) (53). The involvement of the
distal part of the biliary tree and the frequent co-existence of IBD
have suggested that PSC may derive from the disruption of some
physiological process in the gut. The focus has been put onto two
players: the microbiota and the gut-liver axis.

There is a rising interest in the study of microbiota changes
in pathological conditions (73–76). Dysbiosis, i.e., the abnormal
composition of gut microbiota, has been described in patients
across several diseases, included cirrhosis (77), PBC (78),

and PSC (79). Dysbiosis in the gut can also involve viral
and fungal species, as recently proved in IBD (80) and PSC
(81). Germ-free Mdr2-/- mice show increased hepatitis and
cholestatic injury compared to conventionally-housed Mdr2-/-
mice (82). Nevertheless, it is still under debate whether dysbiosis
has a causal relationship with these pathological findings
in humans.

From a therapeutic point of view, modulation of microbiota in
PSC represents a fascinating option, since some data suggest that
the progression of the disease might be due to a vicious cycle of
inflammation and fibrosis driven by translocation of pathobionts
from the gut to the liver (83). It is likely that tackling this
process could be of benefit, and there is some clinical evidence to
support this concept. The use of antibiotics (e.g.,Metronidazole,
Vancomycin) in patients with PSC can reduce blood markers of
liver injury and cholestasis, despite data on long-term benefit are
lacking (84–86).

Recently, the provoking concept that non-communicable
diseases (i.e., those not caused by infectious microbes) might be
communicable via the transfer of microbiota has been proposed
(87). This challenging theory is supported by several line of
experimental data showing that if a dysbiotic microbiota is
transferred from diseased animals to healthy mice the latter will
develop the disease (88). Conversely, there is also evidence that
Fecal Microbial Transplantation (FMT) may be of benefit for
many diseases (89, 90), in addition to the established indication
for recurrent Clostridium Difficile infection (91). Indeed, a
seminal open-label study has shown the capacity of FMT to
augment microbiota diversity in patients with PSC. In a subset of
individuals FMT improved biochemical markers of cholestasis;
however the small number of individuals included in this pilot
study (i.e., 10 patients) obviously prevents solid conclusions on
efficacy (92).

Regarding gut-liver axis, the anatomical link between gut
and liver translates also in an intimate interconnection at the
molecular level, with several substances flowing to the liver
through the portal vein system. When intestinal permeability
is higher than normal, bacterial byproducts reaching the liver
are potential drivers of inflammation and fibrogenesis. Two
main barriers control this process: the epithelial barrier and
the gut-vascular barrier (93). Under physiological conditions,
mucosal addressin cell adhesion molecule (MAdCAM)-1 is
expressed on gut endothelium and is not expressed in the
liver, avoiding recruitment of T cells in the liver (94). In
PSC there is evidence of aberrant expression of MAdCAM-1
in the liver (95). Despite theoretically promising, the use of
Vedolizumab, which antagonize MAdCAM-1 and its receptor
α4β7 and it is approved for IBD treatment, did not show
efficacy in patients with PSC and IBD (a phase 3 trial was
retired in 2018). A retrospective study on Vedolizumab in
patients with PSC and IBD also failed to reveal a positive
signal (96).

The increased expression of MAdCAM-1 in the liver is mainly
due to the activation of vascular adhesion protein (VAP)-1,
which is an enzyme involved in amine oxidation. Intrahepatic
and circulating levels of VAP-1 are increased in patients with
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PSC compared to non-PSC individuals, and a single-arm, open-
label, multi-center trial evaluating the efficacy of an anti-VAP-1
molecule, Timolumab, is currently ongoing (97).

CONCLUSIONS

Many novel drugs are currently under investigation for PBC and
PSC. The potential future availability of many novel agents opens
the challenge for the identification of the right candidate for each
specific drug or combination of drugs based on the mechanism
of action and safety profile.

It is key the improvement of risk stratification strategies
for this purpose (98), which will require deep, longitudinal
phenotyping of individuals by means of multi-omics analysis
including the exposome, along with the microbiome, genome,
metabolome, among the others (99–104). Then, we need to
implement algorithms to proficiently integrate these big data
to cluster patients across different phenotypes and trajectories
of the disease (105, 106); for this, the collaboration with data
science professionals and experts in artificial intelligence will be
fundamental (107, 108). The last part of this process will be to
put in practice clinical trials with different, multimodal treatment
strategies (109).
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