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ABSTRACT
Purpose: For individuals receiving maintenance dialysis, estimating accurate resting energy
expenditure (REE) is essential for achieving energy balance, and preventing protein-energy wast-
ing. Dialysis-specific, predictive energy equations (PEEs) offer a practical way to calculate REE.
Three PEEs have been formulated via similar methods in different demographic samples; the
Maintenance Haemodialysis Equation (MHDE REE), Vilar et al. Equation (Vilar REE) and the
Fernandes et al. Equation (Cuppari REE). We compared them in a US cohort and assessed preci-
sion relative to measured REE (mREE) from indirect calorimetry. Because of expected imprecision
at the extremes of the weight distribution, we also assessed the PEEs stratified by body mass
index (BMI) subgroups.
Methods: This analysis comprised of 113 individuals from the Rutgers Nutrition and Kidney
Database. Estimated REE (eREE) was calculated for each PEE, and agreement with mREE was set
at > 50% of values within the limits of ±10%. Reliability and accuracy were determined using
intraclass correlation (ICC) and a Bland Altman plot, which analysed the percentage difference
of eREE form mREE.
Results: Participants were 58.4% male and 81.4% African American. Mean age was
55.8 ±12.2 years, and the median BMI was 28.9 (IQR ¼ 25.3� 34.4) kg/m2. The MHDE REE
achieved 58.4% of values within ±10% from mREE; Cuppari REE achieved 47.8% and Vilar REE
achieved 46.0% agreement. Reliability was good for the MHDE REE (ICC ¼ 0.826) and Cuppari
REE (ICC ¼ 0.801), and moderate for the Vilar REE (ICC ¼ 0.642) (p< .001 for all). The equations
performed poorly at the lowest and highest BMI categories.
Conclusion: Dialysis-specific energy equations showed variable accuracy. When categorized by
BMI, the equations performed poorly at the extremes, where individuals are most vulnerable.
Innovation is needed to understand these variances and correct the imprecision in PEEs for clin-
ical practice.

KEY MESSAGES

� Potentially impacting over millions of patients worldwide, our long-term goal is to under-
stand energy expenditure (EE) across the spectrum of CKD (stages 1–5) in adults and children
being treated with dialysis or transplantation, with the intent of providing tools for the health
professional that will improve the delivery of quality care.

� Our research has identified and focussed on disease-specific factors which account for 60%
of the variance in predicting EE in patients on MHD, but significant gaps remain.

� Thus, our central hypotheses are that (1) there are unique disease-specific determinants of EE
and (2) prediction of EE for individuals diagnosed with CKD can be vastly improved with a
model that combines these factors with more sophisticated approaches.
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Introduction

According to the United States Renal Data System,
almost 750,000 people in the US are diagnosed with
stage 5 chronic kidney disease (CKD) on dialysis, which
was a 91% increase since January 2000 [1]. Renal
replacement therapy is a lifesaving treatment for these

individuals, with 63% receiving maintenance haemodi-

alysis (MHD) [1,2]. Despite ongoing improvements in

survival, only 57% of those receiving MHD in 2011

were still alive three years after their first treatment [1].

The reasons for such high mortality are multifactorial.

The leading cause is cardiovascular disease [3] followed
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by complications of diabetes [4]. As CKD progresses,
compounded proinflammatory conditions, low protein,
and energy intake, and reduced physical activity con-
tribute to poor nutritional status and muscle catabolism
[5–10]. This process can lead to protein-energy wasting
(PEW), a condition unique to renal disease, further con-
tributing to adverse health sequelae [5–10].

Establishing a person’s accurate energy expenditure
is essential in setting nutritional goals, assessing if
energy balance is achieved, aiding in determining an
appropriate dose of dialysis, and is particularly import-
ant for those individuals at risk of PEW [7–13]. Indirect
calorimetry (IC), which measures the exchange of
inspired and expired gas to infer levels of cellular
metabolism, is considered the gold standard for estab-
lishing an individual’s energy requirements [14].
However, conducting IC in the clinical setting is diffi-
cult as it increases the patient burden, and is hence
infrequently used [15]. Studies have established that
population-based predictive energy equations (PEEs),
such as the Harris-Benedict Equation (HBE) [16] or
Mifflin St Jeor (MJE) [17] are largely inaccurate in esti-
mating resting energy expenditure (REE) of individuals
requiring MHD as they fail to account for the differen-
ces in clinical characteristics [18–20].

In recent years, four dialysis-specific PEEs [21–24]
have been developed in patient cohorts receiving
MHD [21–24]. The equations developed by Vilar et al
(Vilar REE) [23] and Fernandes et al (Cuppari REE) [21]
use standard demographic and clinical measurements
(age, height, weight, sex) to build their predictive
algorithms [21,23]. The Maintenance Haemodialysis
Equation (MHDE-REE) [22,24], first formulated by
Byham-Gray et al in 2014 (and further refined in 2018),
includes disease and inflammatory factors such as
serum creatinine (SCr), C-reactive protein (CRP), and
haemoglobin A1c (A1C) [22,24]. All of these PEEs were
developed and tested in geographically different pop-
ulations (England, USA and Brazil) comprising widely
diverse racial and ethnic groups, where the critical
determinants of estimated REE (eREE) such as average
age, height, and weight varied. The Vilar et al. cohort
was predominantly Caucasian [23], The Fernandes
et al. cohort was Brazilian Hispanic [21], and the
Byham-Gray et al. cohort was ostensibly African
American [22,24]. The equations perform well in the
populations for which they were developed, but few
validation studies have compared them in groups that
diverge from the development sample [21,25–27]. In
2019, Fernandes et al. compared the MHDE REE (SCr
version), the Vilar REE, and the Cuppari REE in the
Brazilian cohort used to create the Cuppari REE [21].

This study showed that the domiciliary PEE performed
best (82.4% accurate between 80-120% of mREE) [21].
The MHDE REE and Vilar REE performed with less pre-
cision [21].

This study further explores the performance of the
new PEEs in different populations by comparing the
MHDE REE, Cuppari REE, and Vilar REE in a cohort of
US patients receiving MHD. We hypothesised that the
equations perform best in the samples from which
they are derived. Furthermore, previous studies have
established that BMI status may play a role in the pre-
cision of equations for specific individuals [23,26].
Adiposity, and the consequent rise in BMI, blunts the
anticipated increase in REE due to disproportional
changes in FFM to FM [23]. While FFM is the most pre-
cise parameter to use in PEEs, it is difficult to obtain
accurately within the clinical setting. As such, weight
is commonly used in PEEs secondary to its accessibil-
ity, and thereby introduces a level of error within the
predictive modelling. Therefore, we have also analysed
the performance of each equation within categories of
BMI to better understand for whom the equations
may perform best and worst.

Methods

Participants

This study was a secondary analysis of previously col-
lected data mined from the Rutgers Nutrition & Kidney
Database (RNKD) (Institutional Review Board protocol:
2020001656; approved as of 11/18/2020). The RNKD
includes data from four existing studies 22 undertaken
between 2012 and 2018. The studies all took place in
the Northeastern/Midwestern regions of the United
States. Sampling for enrolment was conducted on a
convenience basis. Inclusion criteria comprised of adult
men and women � 18years with stage 5 CKD receiving
MHD 3 times weekly for a minimum of 3months. All
participants for this study had the data necessary to
calculate all PEEs and a value for measured REE (mREE),
the criterion standard. Exclusion criteria included con-
temporary infection or non-healing wounds, surgery
within 30days of enrolment, cardiovascular events
within 30days of enrolment, non-prescription drug
usage, or quotidian dietary supplementation (where
either impact metabolism), pre-existing cancer, heart
failure, or hepatic disease [22].

Data collection

All of the parent studies implemented similar data col-
lection protocols. Demographic data were collected
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from individuals and medical records, and clinical/
anthropometric data were collected on a non-dialysis
day. Body weight was measured in pounds or kilo-
grams. Height was assessed, without shoes, using a
stadiometer. IC was conducted using a metabolic cart
(Cosmed Quark RMRVR , Rome, Italy). Participants were
asked to refrain from vigorous physical activity and
fast for 12 h before IC. If a 12 h fast was not achiev-
able, a minimum fast of 4 h was requested. Fasting
was implemented to minimise the effects of fluid
accumulation on both weight and body composition.
IC took place in the morning, in a comfortable room.
Patients were recumbent, still, and awake for a min-
imum of twenty minutes. A plastic canopy was placed
over the participant’s head to capture inspired and
expired gas. The measurement was conducted for at
least twenty minutes, and an abbreviated 5min was
documented at steady-state, with a variation coeffi-
cient of <10% [28]. Data utilised in this study included
mREE, age, race, ethnicity, sex, dialysis vintage, weight,
height, BMI, and clinical measurements (CRP, albumin).

Measurement of estimated resting energy
expenditure

The variables necessary to generate values for each
equation (MDHE-REE, Vilar REE, Cuppari REE) were age,
sex, weight, height (Vilar only), and CRP (MHDE only).
Where the original authors provided multiple equa-
tions, the best clinical equation documented by study
investigators was chosen. REE values were then calcu-
lated according to the appropriate equation (Table 1).

Graphical and statistical analyses

A power analysis was completed in the original study
that developed the MHDE [22]. We were able to show
that n¼ 60 was sufficient to generate the equation
and n¼ 95 was sufficient to validate the equation. As
this study utilised the same dataset, with complete
variables for N¼ 113, no further sample size analysis
was undertaken. Additionally, findings achieved

statistical significance demonstrating that the sample
size was adequate.

All statistical analyses were undertaken on
Statistical Package for Social Sciences (SPSS, IBM Corp.,
version 27, Armonk, NY). Normality was established by
visual inspection of histograms, box and whisker, and
q-q plots. The values were expressed as mean and
standard deviation (SD), median, 25th and 75th per-
centiles, and minimum and maximum values.
Intraclass correlation coefficient (ICC) was used to
assess the reliability of each equation to replicate
mREE. ICC estimates were calculated using a single
rater, absolute agreement, 2-way mixed-effects model
[29]. An alpha priori level was set at 0.05.

A modified version of the Bland-Altman plot
assessed the level of agreement between mREE and
eREE [30]. Bland-Altman analysis determines the agree-
ment between two methods of measurement by
graphically examining the model residuals taken by
the two comparison methods (Y-axis) and the mean of
the two measures (X-axis; assumed to be the “true”
measure when the true measure is unknown) . For this
study, the relationship between eREE and mREE was
examined. The plots were generated by comparing
residual (eREE-mREE) expressed as a percentage of
mREE ((eREE-mREE)/mREE fY-axisg), which allowed
measurement of variations in agreement along the
total distribution of mREE values (X-axis). In contrast to
the typical Bland-Altman approach, the limits of agree-
ment were set at ±10% from zero difference from
mREE, as established in the nutrition literature regard-
ing validation of predictive energy equations [31] and
applied by Byham-Gray et al. [22,24] and Morrow et al.
[26] for individuals receiving MHD in particular
[22,24,26,31]. Modified Bland-Altman plots were gener-
ated for each equation using the total sample, then
the percentage of values falling within ±10% from
zero difference was calculated. If 50% or more of the
measurements fell within the ±10% band of confi-
dence, then eREE was deemed to show overall agree-
ment with mREE. Thereafter, the analysis was repeated
for each PEE with the sample stratified by BMI

Table 1. Variables and Equations required to calculate MDHE REE, Vilar REE and Cuppari REE for women and men.
Equation Variables required Female Equation Male Equation

MHDE REE Age, weight, CRP, sex REE¼ 820.47�(5.19�Age) þ (9.67�weight)
þ (2.71�CRP)

REE¼ 1027.8 � (5.19�Age) þ (9.67�weight)
þ (2.71�CRP)

Vilar REE Age, weight, height, sex REE¼� 2.497 � Age � Factorage þ 0.011 �
Height2.023 þ83.537 �
Weight0.6291þ 68.1711 � Factorfemale

REE¼� 2.497 � Age � Factorage þ 0.011 �
Height2.023 þ83.537 �
Weight0.6291þ 68.1711 � Factormale

Cuppari REE Age, weight, sex REE¼ 957.02 – (8.08 � Age) þ (11.07�
body weight)

REE¼ 957.02 � (8.08 � Age) þ (11.07� body
weight) þ 136.4

CRP: C-reactive protein; REE: resting energy expenditure.
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subgroups. Individuals with a BMI less than 24.9 kg/
m2, 25–29.9 kg/m2, or �30 kg/m2 were categorised as
underweight/normal weight, overweight, or obese.

Results

This study sample (N¼ 113) was 58.4% male, 76.1%
non-Hispanic, and 81.4% African American (Table 2).
The individuals’ ages ranged between 21.5 and
80.7 years, with a mean age of 55.8 ± 12.2 years.

The median BMI of individuals was 28.9 (IQR ¼
25.3–34.4) kg/m2, with 23.9% categorised as under-
weight or normal weight, 36.3% categorised as over-
weight, and 39.8% categorised as obese (Tables 2 and
3). Median CRP was within normal limits, although
68.1% (n¼ 77) of participants reported CRP levels
above 2.0mg/L, indicating low-grade systemic inflam-
mation and a higher risk for chronic disease [32].

Measured and predicted energy requirements

The median mREE was 1448.6 kcal/day and ranged
from 880.6 to 2448.1 kcal (Table 3). Median mREE for
women (1327.7 kcal/day) and those 65 years and
above (1336.4 kcal/day) was lower than for men
(1588.8 kcal/day) and for younger individuals
(1509.0 kcal/day). The MHDE REE had the lowest aver-
age prediction of energy requirements, with a median
eREE of 1485.8 kcal/day.

Levels of agreement

The highest level of agreement was between mREE
and the MHDE REE, with 58.4% of values falling within
the limits of acceptability (Table 4). Neither of the
other equations met the 50% threshold for acceptable
values. ICC estimates indicated good reliability for the

Table 2. Frequency of clinical and demographic characteris-
tics of individuals in the Rutgers Nutrition and Kidney
Database (N¼ 113).
Variable n %

Sex
Male 66 58.4
Female 47 41.6

Ethnicity
Non-Hispanic 86 76.1
Hispanic 10 8.8
Unknown 17 15.0

Race
African American 92 81.4
White 21 18.6

BMI
Underweight/Normal weight (< 24.9 kg/m2) 27 23.9
Overweight (25–29.9 kg/m2) 41 36.3
Obese (� 30 kg/m2) 45 39.8

BMI: body mass index; kg/m2: kilograms per metre squared.

Table 3. Demographic and clinical characteristics among individuals in the Rutgers Nutrition and Kidney
Database (N¼ 113).
Variable n Mean± SD Median (25–75th percentiles) Minimum–maximum

Age (years) 55.8 ± 12.2 55.8 (48.4� 63.7) 21.5� 80.7
Weight (kg) 86.5 ± 21.0 84.4 (71.8� 98.8) 47.1� 150.8
Height (cm) 169.4 ± 10.1 170.9 (162.0� 177.0) 143.9� 193.6
BMI (kg/m2) 30.1 ± 6.8 28.9 (25.3� 34.4) 18.7� 50.8
CRP (mg/L) 10.5 ± 14.9 5.4 (1.3� 12.0) 0.1� 93.0
Albumin (g/dL) 4.2 ± 0.4 4.2 (3.9� 4.5) 3.1� 5.4
Dialysis Vintage (months) 61.1 ± 69.6 42.0 (21.0� 84.0) 3.5� 411.0
mREE (kcal) 1521.8 ± 334.4 1448.6 (1296.7� 1684.3) 880.6� 2448.1

Male 66 1660.8 ± 331.2 1588.8 (1427.3� 1859.7) 880.6� 2448.1
Female 47 1326.5 ± 225.1 1327.7 (1127.0� 1478.7) 995.0� 1873.6
<65 years 87 1581.8 ± 335.8 1509.0 (1337.1� 1829.7) 1028.2� 2448.1
�65 years 26 1320.9 ± 242.2 1296.6 (1091.6� 1543.1) 880.6� 1688.6

MHDE-CRP REE (kcal) 1516.5 ± 284.4 1485.8 (1334.4� 1701.8) 882.4� 2340.8
Male 66 1652.9 ± 244.8 1606.3 (1484.4� 1756.8) 1241.6� 2340.9
Female 47 1325.0 ± 219.2 1316.0 (1192.3� 1419.5) 882.4� 1969.0
<65 years 87 1575.5 ± 276.6 1508.9 (1394.0� 1733.7) 1057.4� 2340.8
�65 years 26 1319.1 ± 215.5 1336.4 (1146.6� 1490.8) 882.4� 1727.4

Vilar REE (kcal) 1728.0 ± 271.5 1692.5 (1558.1� 1922.0) 1038.4� 2417.4
Male 66 1827.6 ± 238.9 1801.4 (1639.7� 2011.2) 1326.4� 2417.4
Female 47 1588.2 ± 254.2 1502.8 (1407.2� 1703.4) 1038.4� 2246.5
<65 years 87 1805.1 ± 242.1 1746.2 (1627.8� 2000.9) 1308.3� 2417.4
�65 years 26 1407.1 ± 196.9 1495.7 (1337.3� 1800.2) 1038.4� 1772.8

Cuppari REE (kcal) 1543.1 ± 300.0 1510.0 (1351.0� 1712.1) 863.8� 2522.3
Male 66 1653.0 ± 279.5 1594.2 (1446.8� 1793.5) 1149.0� 2522.3
Female 47 1388.6 ± 258.8 1368.2 (1217.9� 1519.1) 863.8� 2124.9
<65 years 87 1617.1 ± 286.3 1551.5 (1429.9� 1782.8) 1010.7� 2522.3
�65 years 26 1295.5 ± 195.8 1304.1 (1148.6� 1455.4) 863.8� 1587.9

BMI: body mass index; cm: centimetres; CRP: C-reactive protein; g/dL: grams per decilitre; IQR: interquartile range; kcal: kilocalories;
kg: kilograms; kg/m2: kilograms per metre squared; Max: maximum; Min: minimum; MHDE-CRP REE: maintenance haemodialysis C-
reactive protein equation for resting energy expenditure; mREE: measured resting energy expenditure; REE: resting energy expend-
iture; SD: standard deviation.
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MHDE REE and the Cuppari REE, and moderate reliabil-
ity for the Vilar REE. Visual inspection of the modified
Bland-Altman plots indicates that eREE values ±10%
from mREE are evenly distributed for the MHDE REE
(Figure 1) and Cuppari REE (Figure 2) and that the
Vilar REE tends to overestimate in greater than 50% of
individuals (Figure 3).

Variability of agreement in different categories
of BMI

For participants with a BMI categorised as obese, the
MHDE REE and Cuppari REE demonstrated equal levels
of accuracy (57.8% within limits) (Table 5). The Vilar
REE predicted 51.1% of estimates within acceptable
limits, and those estimates outside of the acceptable

Table 4. Levels of agreement in resting energy expenditure as derived by indirect calorimetry, compared to three predictive
energy equations for individuals receiving maintenance haemodialysis (N¼ 113).
Equation Within± 10% of mREE n (%) <10% of mREE n (%) > 10% of mREE n (%) Intraclass Correlation R p Value

MHDE REE 66 (58.4) 25 (22.1) 22 (19.5) 0.826 <.001
Vilar REE 52 (46.0) 0 (0.0) 61 (53.0) 0.642 <.001
Cuppari REE 54 (47.8) 22 (19.5) 37 (32.7) 0.801 <.001

MHDE REE: maintenance haemodialysis C-reactive protein equation for resting energy expenditure; mREE: measured resting energy expenditure; REE: rest-
ing energy expenditure.

Figure 1. Modified Bland Altman Plot of the percentage difference between The MHDE REE and mREE. The black line represents
zero difference from mREE. The upper red line represents 10% difference from mREE. The lower red line represents �10% differ-
ence from mREE.

Figure 2. Modified Bland Altman Plot of the percentage difference between The Cuppari REE and mREE. The black line represents
zero difference from mREE. The upper red line represents 10% difference from mREE. The lower red line represents �10% differ-
ence from mREE.
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limit of ±10% tended to overestimate REE (22.2%,
31.1%, and 48.9%, respectively) (Figure 4(a–c)).

For participants with a BMI categorised as over-
weight, accuracy was greater for the MHDE REE
(63.4% within limits) and the Cuppari REE (56.1%
within limits) than when the entire study sample was
analysed (Table 6), and accuracy was reduced for the
Vilar REE (26.8% within limits). Again all of the PEEs
tended to overestimate eREE where values did not fall
within acceptable limits (29.3%, 31.7%, and 73.2%,
respectively) (Figure 5(a–c) and Table 6).

For individuals with a BMI defined as normal or
underweight, accuracy did not meet the 50% threshold
for agreement for the MHDE REE (40.7% within limits)
and the Cuppari REE (29.6% within limits) (Table 7).
Additionally, both the MHDE REE and the Cuppari REE
tended to underestimate eREE relative to mREE (40.7%
and 44.4%, respectively) (Figure 6(a–c) and Table 7). The
Vilar REE performed best with 66.7% of estimates within
the limits of acceptability in normal and underweight
individuals. In this category, none of the equations dem-
onstrated good reliability as measured by ICC.

Discussion

We compared mREE derived from IC to the outputs of
three PEEs: the MHDE REE, the Vilar REE, and the

Cuppari REE. We found that only the MHDE produced
eREE values within the limits of agreement (>50% of
values ±10% of zero difference) in this sample of
individuals.

We also analysed the levels of agreement between
mREE and the PEEs when the dataset was categorised
by BMI status to explore the performance of the
models in different weight categories. This analysis
showed that none of the equations perform well in
every category. Of particular concern, the Cuppari
REE and MHDE REE tended to underestimate REE
for the normal weight and underweight category,
including the individuals most at risk for protein-
energy wasting.

Previous studies (Vilar et al., Byham Gray et al.,
Fernandes et al.) [21,23–25] have demonstrated that
MHD-specific equations estimate REE accurately for
>50% of the individuals within their own specific
cohorts, although limits of agreement vary, with sub-
sequent impacts on the levels of precision found. This
study applied consistent limits of agreement (±10%)
to all the PEEs and found that only the MHDE esti-
mated REE accurately for greater than 50% of individ-
uals. We utilised the same cohort as that used to
generate the MHDE, with the likely outcome that spe-
cific traits of the domicile cohort account for the
superior performance of the MHDE in our study.

Figure 3. Modified Bland Altman Plot of the Percentage Difference between The VIlar REE and mREE. The black line represents
zero difference from mREE. The upper red line represents 10% difference from mREE. The lower red line represents �10% differ-
ence from mREE.

Table 5. Levels of agreement in resting energy expenditure as derived by indirect calorimetry, compared to three predictive
energy equations for individuals with a BMI over 30 kg/m2 receiving maintenance haemodialysis (n¼ 45).
Equation Within ±10% of mREE n (%) <10% of mREE n (%) >10% of mREE n (%) Intraclass correlation R p Value

MHDE REE 26 (57.8) 9 (20.0) 10 (22.2) 0.853 <.001
Vilar REE 23 (51.1) 0 (0.0) 22 (48.9) 0.669 <.001
Cuppari REE 26 (57.8) 5 (11.1) 14 (31.1) 0.826 <.001

MHDE REE: maintenance haemodialysis C-reactive protein equation for resting energy expenditure; mREE: measured resting energy expenditure; REE: rest-
ing energy expenditure.
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Hung et al. [27] and Oliviera et al. [25] validated
the Vilar REE in an English cohort using bioimpedance
analysis (BIA) and found that the Vilar REE predicted
higher energy expenditure than PEEs for the general
population and correlated more closely with REE pre-
dicted via BIA using the Cunningham and Katch-Mc-
Ardle equations [25,27]. Although BIA provides a more
objective estimate of REE, it is not considered the cri-
terion measure, as is IC. Of note, the Vilar REE per-
formed well in these investigations using English
study groups similar to the original Vilar cohort
[25,27]. Morrow et al. [26] assessed the MHDE REE (SCr
version) and the Vilar REE in a small US cohort using a
handheld IC device (which also is not a criterion meas-
ure of REE) [26]. Morrow and colleagues found that
the MHDE REE performed well (52.5% agreement), but
the Vilar REE did not [26]. In the Morrow et al. study,
the Texas-based cohort shared similar characteristics

to our study group, including key variables such as
age (56.7 years), racial mix (85% African American),
and mean BMI (29.7) [26]. Fernandes et al. [21] dem-
onstrated that their own equation (the Cuppari REE)
provided greater than 80% accuracy within a Brazilian
cohort with similar characteristics to their original
study group [21]. The authors also assessed the MHDE
REE and Vilar REE performance in the Brazilian cohort
and found low to moderate accuracy [21]. At face
value, the level of precision for the Cuppari REE
appears almost twice as high in the Brazilian study,
however, the investigators used broader bands of
agreement (±20%) versus our own (±10%) [21]. Our
findings are consistent with the existing literature,
demonstrating that the three MHD PEEs perform best
in samples with similar characteristics to the cohorts
in which the equations were constructed. Moreover,
using linear methods, the current equations do not

Figure 4. (a–c) Obese. Percentage Difference Between Three Different MHD PEE’s and mREE in people receiving MHD Categorised
as Obese. The black lines represent zero difference from mREE. The upper red lines represent 10% difference from mREE. The
lower red lines represent �10% difference from mREE.

Table 6. Levels of agreement in resting energy expenditure as derived by indirect calorimetry, compared to three predictive
energy equations for individuals with a BMI between 25 and 30 kg/m2 receiving maintenance haemodialysis (n¼ 41).
Equation Within ± 10% of mREE n (%) <10% of mREE n (%) >10% of mREE n (%) Intraclass correlation R p Value

MHDE-CRP 26 (63.4) 3 (7.3) 12 (29.3) 0.771 <.001
Vilar REE 11 (26.8) 0 (0.0) 30 (73.2) 0.391 <.001
Cuppari REE 23 (56.1) 5 (12.2) 13 (31.7) 0.635 <.001

MHDE-CRP REE: maintenance haemodialysis C-reactive protein equation for resting energy expenditure; mREE: measured resting energy expenditure; REE:
resting energy expenditure.
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perform well in groups of people with different char-
acteristics, and a more innovative statistical approach
should be considered.

Exploring the impact of common variables on
predictive performance

Looking at the equations themselves, individual varia-
bles may explain divergent performance; e.g. the
application of age and sex. As reported by all four
studies that constructed PEEs [21–24], age was a
strong negative predictor of REE, and was therefore
used by each author in equation building [21–24].
However, study groups differed in average age, which
resulted in differing correlation coefficients between
the studies (r ranged from �0.33 [21] to �0.46 [24]),
and resulted in different age coefficients within each

model [21–24]. The MHDE REE and Cuppari REE, with
younger cohorts, applied a linear age adjustment for
all participants. With an older cohort, the Vilar REE
applied age as a factor only to those older than
65 years. When the Vilar equation was then used to
calculate eREE in our younger study population, the
average age adjustment to eREE was considerably
lower. Divergent calorie adjustments were also allo-
cated between men and women. In every equation,
the assumed metabolic difference was applied as a
single value for the standard woman and man. Thus,
women using the Vilar equation expend only 68.1 kcal
less than men, compared to 207.3 kcal assumed by
the MHDE. More sophisticated statistical methods
are required to explore the interactions of such varia-
bles before they can be generally applied to all
individuals.

Figure 5. (a–c) Overweight. Percentage Difference Between Three Different MHD PEE’s and mREE in people receiving MHD
Categorised as Overweight. The black lines represent zero difference from mREE. The upper red lines represent 10% difference
from mREE. The lower red lines represent �10% difference from mREE.

Table 7. Levels of agreement in resting energy expenditure as derived by indirect calorimetry, compared to three predictive
energy equations for individuals with a BMI below 25 kg/m2 receiving maintenance haemodialysis (n¼ 27).
Equation Within± 10% of mREE n (%) <10% of mREE n (%) > 10% of mREE n (%) Intraclass correlation R p Value

MHDE-CRP 11 (40.7) 11 (40.7) 5 (18.5) 0.522 .002
Vilar REE 18 (66.7) 0 (0.0) 9 (33.3) 0.517 <.001
Cuppari REE 8 (29.6) 12 (44.4) 7 (25.9) 0.522 .002

MHDE-CRP REE: maintenance haemodialysis C-reactive protein equation for resting energy expenditure; mREE: measured resting energy expenditure; REE:
resting energy expenditure.
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Assessing the importance of clinical
variables: CRP

In attempting to explain variance in mREE better, the
MHDE REE includes increased metabolic expenditure
for clinical factors such as inflammation (CRP), diabetes
status (A1c), and muscle catabolism (SCr) [22]. Our
study used the MHDE CRP version, which may have
increased precision in this study group where inflam-
mation was largely elevated. Other studies predicting
REE in patients receiving MHD have found conflicting
results for the impact of inflammation. For example,
Byham-Gray et al. [22,24] and Fernandes et al. [21]
identified CRP to be positively correlated with REE
[21,22,24]. Vilar et al. [23] and Hung et al. [27] did not
identify a correlation, despite having similar levels of
CRP to our study group [23,27]. This points to how
other differences in study group characteristics inter-
act with the relative frequency of underlying comor-
bidities and disease severity and how this may be
captured in future equations. More fundamentally, it

requires markers such as CRP to be routinely meas-
ured in the clinic.

Precision and BMI status

This is the first known study to analyse the output of
all PEEs by BMI category, which provided some distin-
guishing insights. Morrow et al. [26] observed that
overestimation of REE was more likely at the lower
end of the distribution of REE values, and underesti-
mation was more likely at the higher end [24]. Our
study confirmed Morrow’s findings in relation to abso-
lute energy expenditure (Figures 1 and 2) but not
when the data were stratified by BMI. The MHDE REE
and the Cuppari REE performed adequately for individ-
uals who were overweight or obese but performed
poorly for individuals who were underweight or nor-
mal weight. Both equations tended to underestimate
the REE of patients in the lower BMI category and
overestimate the REE of patients who were overweight

Figure 6. (a–c) Underweight. Percentage Difference Between Cuppari REE and mREE in people receiving MHD Categorised as
Normal Weight or Underweight. The black lines represent zero difference from mREE. The upper red lines represent 10% difference
from mREE. The lower red lines represent �10% difference from mREE. The blue oval highlights those individuals for whom REE
is underestimated by more than 10% from mREE.
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or obese. BMI differences provide a further example of
the limitations in the generalisability of cohort charac-
teristics and equation methodologies. Weight is used
as the predominant predictor of REE, as FFM is rarely
available in the clinic [21–24]. Height is also an inde-
pendent variable, despite much collinearity [21–23].
Therefore, the intersection of weight and height in a
particular cohort will affect the parameters and per-
formance of the models. Equations generated from a
sample of people who are predominantly obese will
perform best when predicting the REE of other people
with obesity and vice versa. The MHDE REE, generated
from a sample with a BMI around 30 kg/m2, performed
well for individuals with a similar BMI but poorly for
individuals who were underweight or normal weight.
This group includes vulnerable people, such as those
with protein-energy wasting or other catabolic compli-
cations, which has important implications for the clin-
ical decision-making process.

Other methodological differences

Other methodological differences may account for
predictive variation in the three PEEs. The individuals
used to develop Fernandes et al.’s equation completed
a 12-h overnight fast before IC measurement was
made [21]. In the Byham-Gray et al. cohort, a 12-h
fasting was requested, but, if not feasible, a 4-h fast
was accepted [24]. In the Vilar et al. cohort, fasting
was limited to 2 h [23]. Additionally, equations were
formulated within different mixtures of patients receiv-
ing MHD and/or PD [21,23,24]. These differences may
have contributed to altered metabolic activity
and mREE.

Fernandes et al. used FFM in one of their equations
to assess if this variable was better than body weight;
however, no improvement in precision was found [21].
Obtaining accurate weight, muscle mass, and fluid sta-
tus remain a constant challenge in this population.

Limitations of the study

This study used a non-random, convenience sample
recruited in a narrow geographic area. Participants
were mostly male, African American, and younger
than the national average of individuals receiving
MHD. The original study imposed strict criteria, which
excluded sicker individuals and the sample size was
small. These factors limit the generalisability of the
results. IC and anthropometric measurements were
conducted on a non-dialysis day. This suggests that
weight would vary from post-dialysis weight,

depending on the individual’s fluid intake and residual
ability to void, and may impact BMI status. Finally,
although the level of 50% agreement within 10% of
zero difference has been established as the criterion
methodology for comparing eREE to mREE , it may be
argued that a disease-specific PEE should perform
with greater precision within the particular population
for which it is designed.

Implications for practice and research

The application of PEEs in the clinical setting allows
for rapid calculation of energy requirements to pro-
mote optimal nutritional balance and care. This study
indicates that clinicians should selectively and cau-
tiously apply PEEs, especially where patients exhibit
unique characteristics. If the patient is underweight,
unintentionally losing weight, has a diagnosis of PEW
or requires precise individualised care, such as nutri-
tion support, it may be more appropriate to assess the
patient using IC.

The authors of the research reviewed in this study
have made significant improvements in predicting
energy expenditure in patients receiving MHD, but
challenges and gaps remain. For example, the RNKD
database was limited to ambulatory patients who
were African American, younger, and healthier. The
recruitment of larger cohorts that better represent
national and international patients’ demographic and
clinical diversity is required before equations can be
fully validated and improved. Notwithstanding, advan-
ces in technology and computational capabilities now
allow researchers to better unravel the complex rela-
tionships of key anthropometric and clinical variables.
The widespread availability of technology means that
more complex algorithms can be applied to clinical
practice via smartphones or tablets. The next step
from this study is to quantify the interactions between
variables that contribute to the poor performance of
PEEs in vulnerable subgroups and tailor energy predic-
tions to the individual patient.

Conclusion

Establishing accurate energy expenditure in patients
receiving MHD is essential to setting nutritional goals,
assessing energy balance, and supporting health sta-
tus and dialysis tolerance. This is especially important
for those at high risk of catabolism and protein-energy
wasting. Disease-specific PEEs, using simple variables
and linear regression techniques, predict REE with fair
accuracy when applied to people with similar
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characteristics as the development cohort. They do
not perform well when applied to populations with
differing characteristics or individuals with outlying
characteristics that indicate an increased health risk.
With technological advances becoming increasingly
available and inexpensive, these findings highlight the
need for greater individualisation in the estimation of
REE, either via the development of more sophisticated
equations or the direct application of IC for the most
vulnerable patients.
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