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Abstract

COVID-19 patients display a wide range of disease severity, ranging from asymptomatic to

critical symptoms with high mortality risk. Our ability to understand the interaction of SARS-

CoV-2 infected cells within the lung, and of protective or dysfunctional immune responses to

the virus, is critical to effectively treat these patients. Currently, our understanding of cell-cell

interactions across different disease states, and how such interactions may drive patho-

genic outcomes, is incomplete. Here, we developed a generalizable and scalable workflow

for identifying cells that are differentially interacting across COVID-19 patients with distinct

disease outcomes and use this to examine eight public single-cell RNA-seq datasets (six

from peripheral blood mononuclear cells, one from bronchoalveolar lavage and one from

nasopharyngeal), with a total of 211 individual samples. By characterizing the cell-cell inter-

action patterns across epithelial and immune cells in lung tissues for patients with varying

disease severity, we illustrate diverse communication patterns across individuals, and dis-

cover heterogeneous communication patterns among moderate and severe patients. We

further illustrate patterns derived from cell-cell interactions are potential signatures for dis-

criminating between moderate and severe patients. Overall, this workflow can be general-

ized and scaled to combine multiple scRNA-seq datasets to uncover cell-cell interactions.

Author summary

Despite the availability of several studies of single-cell transcriptomics profiles from differ-

ent geographic locations, our knowledge of cell-cell interactions across distinct disease

states and how such interactions may drive pathogenic outcomes remains limited. Moti-

vated by the need to gain insights into health and disease and to address challenges associ-

ated with the compilation and exploration of multiple large-scale data, we developed a

generalizable and scalable workflow for identifying cells that are differentially interacting

across COVID-19 patients with distinct disease outcomes. Our workflow shows how to

characterize cellular communication patterns for patients with varying disease severity
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and thus aids in the understanding of disease progression. We show the scalability and

interpretability of our approach by combining around half million of cells from eight

COVID-19 scRNA-seq experiments to demonstrate that individuals have heterogeneous

communication patterns. Such patterns are potential signatures to discriminate between

moderate and severe patients. Overall, this workflow can be generalized and scaled to

combine multiple scRNA-seq datasets to uncover cell-cell interactions in complex

diseases.

Introduction

Single-cell technologies have grown in popularity as a new and powerful technique for profil-

ing transcriptomes at the single cell level. The growing availability of single-cell RNA-seq

(scRNA-seq) datasets has led to an exponential increase in the development of computational

tools that can effectively use scRNA-seq data to address biological research questions [1–3].

Together, these technologies and tools have enabled ultra-high-resolution studies of cell het-

erogeneity, developmental dynamics, and cellular communication across diverse biological

systems, which are being used to better understand the underlying mechanisms of complex

diseases [4,5]. In particular, scRNA-seq has enabled modelling of cellular communication by

estimating cell-type specific ligand-receptor patterns in complex tissues and relating such

information to disease mechanisms such as disease progression in viral infections [6–8].

The COVID-19 pandemic caused by the SARS-CoV-2 virus has affected the global popula-

tion in the last year. The majority of SARS-CoV-2 mechanistic studies have focused on the

respiratory system, as SARS-CoV-2 is spread via airborne transmission [9] and Angiotensin-

converting enzyme 2 (ACE2) which serves as the primary SARS-CoV-2 receptor is expressed

in human airways [10–12]. It is well understood that SARS-CoV-2 infection causes a wide

range of symptoms, with patients being asymptomatic, exhibiting mild symptoms, or develop-

ing severe disease with an increased risk of death [13,14]. A number of studies have suggested

that the disease outcome may be determined by a combination of direct viral effects on patient

tissues [15], protective antiviral immunity [16], and exaggerated antiviral or inflammatory

immune responses that cause tissue damage [17,18]. However, it remains unclear why some

patients have mild symptoms while others die from the illness.

In this specific context, there has been a growing collection of data and studies aimed at

identifying disease progression markers by examining different tissues [19–26]. Most of these

efforts have employed multiple omics technologies for an association analysis to identify differ-

entially expressed genes, proteins or metabolites [23,24,27]. Furthermore, to define the cellular

transcriptional responses involved in COVID-19 severity, single-cell RNA-seq has been per-

formed on patient samples, including peripheral blood mononuclear cells (PBMCs) and

bronchoalveolar lavage. These studies further reinforce the notion that excessive inflammation

correlates with negative disease outcome [22,26]. To date, most studies focus on cell identifica-

tion and cellular profiling within the cell types [28]. The current literature has not closely stud-

ied the cellular communication among immune cell types, or between epithelial and immune

cell types, and how such communication affects disease progression.

Individual cells communicate with one another to modulate gene expression by neighbor-

ing cells, determine their spatial and temporal location within a tissue or organism, and trans-

mit signals of damage or infection by external agents. Computational approaches have

recently been developed to identify potential cell-cell interactions (CCIs) based on the expres-

sion of known ligand-receptor pairs in scRNA-seq data. However, current approaches are
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non-scalable, and unable to incorporate the increasing number and size of scRNA-seq datasets

available. Such limitations are particularly evident in recent studies of scRNA-seq data from

COVID-19 patients. While scRNAseq studies have generally focused on identifying peripheral

blood mononuclear cells (PBMCs) and their expression profiles, the activation and subsequent

response of PBMCs to infection is initiated through CCIs between lung epithelial cells and

those of the immune system [29,30]. Determining how this initial interaction impacts subse-

quent downstream effects on PBMC activation is essential for unraveling the differential clini-

cal response among COVID-19 patients [31]. This limitation is due, in part, to the lack of a

scalable workflow for scientists to systematically harness the power of single-cell analysis to

infer cell-cell interactions [7,32,33], which has the potential to inform disease mechanisms.

Here, we present a generalizable workflow and an interactive resource for exploring cell-

cell interactions using a large collection of single-cell COVID-19 data sets to evaluate the

molecular patterns associated with disease severity. We show how our generalizable workflow

can analyze cell-cell communication networks from patients with varying disease severity and

identify critical cell types and cell-cell communication channels that indicate healthy network

communication. The effective integration of six different PBMC studies representing over 150

individuals with approximately half a million cells enables us to examine cellular communica-

tion between immune and epithelial cells and exemplifies the scalability of our workflow. Rec-

ognizing the importance of cell-cell communication networks within the infected lung, our

workflow allows us to investigate an unexplored phenomenon in COVID-19 by studying the

cellular communication between epithelial and immune cells and developing a model to dis-

criminate disease severity.

Results

Generalizable workflow to identify and measure cell-cell communication in

individuals

We develop a generalizable workflow based on statistical learning strategies that allows us to

visualize, identify and characterize cell-cell interaction patterns (Fig 1A). The workflow begins

with joint classification using scClassify [28] based on single or multiple reference datasets (see

Material and Methods) to refine cell type annotations. The choice of reference dataset(s)

depends on the availability of high quality and well annotated data for a given tissue. Next, to

partition cell heterogeneity, unsupervised clustering is performed on each annotated cell type

to further define subgroups of cells with the potential to identify cellular subtypes associated

with different disease progression. Cluster merging [34] is used here to prevent overclustering.

Finally, we calculate a cell-cell interaction score/measure for each individual COVID-19 sam-

ple between different cellular subtypes. Applying this workflow to single-cell data with multi-

ple individuals will generate a large matrix for each individual sample with columns

representing cell types and rows representing ligand-receptor pairs (Fig 1A). Each ligand-

receptor pair is further grouped into different pathways to facilitate interpretation. Details of

this workflow are described in the Material and Methods section.

We first examined two publicly available single-cell RNA-seq datasets from COVID-19

patients with different degrees of severity, using samples from nasopharyngeal (NS, [19,20]) or

bronchoalveolar lavage fluid (BALF, Liao et al., 2020), detailed in Fig 1B. We re-annotated the

cells using four healthy human lung scRNA-seq datasets [12,35,36] including 189,967 cells and

44 cell types. For the Chua dataset with 5 healthy controls, 14 moderate and 13 severe samples

(S1A and S1B), scClassify is able to identify additional cell types and provide further refine-

ment as illustrated in Fig 1C. For example, the original “outliers epithelial” cluster was refined

to “ciliated cells”, and “secretory” cells to “goblet” cells. By accounting for such refinement, the
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Fig 1. Integration and annotation of single-cell COVID-19 data. Schematic of the data analytic workflow. A. Summary of curated single-cell RNA-seq from

COVID-19 studies from different tissues that are publicly available. B. tSNE plot illustrating cell types from all samples in the Chua dataset based on the

reannotation using a modified version of the joint classification from scClassify built from four large reference datasets of human lungs. C. tSNE plot of the

integrated matrix generated from scMerge illustrating cell types from all six PBMC datasets [21–26] curated for this study based on the reannotation using a

modified version of the joint classification from scClassify built from Wilk dataset, colored by cell type (left panel) and dataset (right panel).

https://doi.org/10.1371/journal.pcbi.1010495.g001
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new annotation recapitulates 78% of the original published analysis. The classified cell types

are clearly identified by known markers (S1C), and further clustering of the Chua dataset gen-

erates 50 subclusters. Similar reannotation is applied to the Liao dataset (S2A and S2B Fig)

resulting in 15 cell types and 52 subclusters.

Cell-cell interactions are significantly different in patients with COVID-19

compared to healthy individuals

To provide insight into how these identified cell-types interact and how such cell-cell interac-

tions (CCIs) contribute to disease severity, we calculate the CCI scores that represent the com-

munication probabilities among all pairs of subclusters across all ligand-receptor pairs, using

CellChat (see Material and Methods for details) [7]. Our group-specific CCI scores (CCIgroup)

aggregate the scores across all different pathways between each major cell type pair for differ-

ent disease severity groups, represented as a network graph with thicker edges indicating

stronger cell-cell interaction.

Our results highlight that different patterns of cell-cell interactions occur between healthy

controls and COVID-19 patients in BALF samples. We observed that most cell-cell interac-

tions in healthy samples are between basal, ciliated, and goblet cells of the lung epithelium,

with dendritic cells providing immune surveillance (S3A Fig). As disease severity increases,

cell-cell interactions become dominated by interactions between the lung epithelium and

proinflammatory players within the immune compartment (S3A–S3C and S4A–S4E Figs).

Overall, we observe significantly less communication (fewer edges in S3A Fig) in healthy indi-

viduals compared to moderate (S3B Fig) and severe patients (S3C Fig).

Scalable workflow to combined datasets across 6 data sets with 167

individuals

Next, we illustrate the scalability of our workflow by applying our workflow to all six PBMC

datasets with 490,118 cells in total [21–26]. We unify the cell type annotation using the Wilk

dataset (with 44,721 cells and 20 cell types) as a reference (Figs 1D and S5). Despite the distinct

cell type compositions observed in the six studies, Fig 1D shows that cells with the same anno-

tation were well integrated using the data integration approach scMerge [37] enabling us to

examine the interaction between the various cells types.

While similar cell types exist in the six studies, a detailed look at the compositional differ-

ences across all these individuals demonstrate clear differences and these are likely the result of

different sampling or cell isolation procedures (S5 Fig). Thus, cell type composition alone

from single-cell experiments may not provide sufficient discriminative power to distinguish

between patients with different disease severity. This, along with the varying cell-cell interac-

tion patterns across disease groups supports the further examination of the association

between cell-cell interaction with disease outcomes and progression using a workflow capable

of integrating multiple datasets.

Increased cell-cell interaction with neutrophils in severe COVID-19

patients in both PBMC and lung tissues

We began by examining the combined PBMC data where the CCI scores are calculated using

the scMerge corrected matrix to adjust for the dataset effect (Figs 2 and S6). Fig 2A and 2B

depict two networks that represent the cell-cell interactions of PBMC data for moderate and

severe patients, respectively. Each node represents a major cell type, and the edges reflect

aggregated total CCI (tCCI) interaction signals where only the top 10% of tCCI signals are
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shown (see Material and Methods). It should be noted that in some studies [21] neutrophils

are generally excluded during purification, and thus the cell type composition of neutrophils

varies greatly across the six PBMC datasets (S5 Fig). Incorporating data integration in our

workflow facilitates the examination of neutrophil-related cell type interaction. As expected,

the network of differences reveals a considerable increase in significant neutrophil-related

interaction in severe patients compared to moderate patients (Fig 2C).

Similar neutrophil-related interactions are also observed in the upper airway. In our exami-

nation of the Chua and Liao datasets S2C and S3D Figs show that the interaction is higher

between monocyte/macrophage towards neutrophils in severe patients, consistent with previ-

ous findings [38]. Together, these data provide validation that our workflow can confirm

known mechanisms and highlight new biology for further investigation.

Monocyte/Macrophage and neutrophil interaction in severe patients are

dominated by CXCL, IL1 and other inflammation pathways

Focusing on individual pathways from the Chua dataset, Fig 3A illustrates that all pathways

can be broadly grouped into six large clusters. In particular, two of these pathway-clusters

(pathway-cluster 2 marked by orange and pathway-cluster 4 marked by pink) are dominated

by inflammatory pathways and these have significantly higher interaction between monocytes

and neutrophils in severe patients compared to moderate (Fig 3A and 3B). This is consistent

with findings that in the healthy immune response to SARS-CoV-2 infection, alveolar macro-

phages recognize and phagocytize apoptotic cells; however, under a dysfunctional immune

response, excessive activation and accumulation of monocytes/macrophages and neutrophils

leads to the overproduction of inflammatory cytokines which then damages the lung and other

organs [39,40].

To further delineate differences between moderate and severe patients observed in Fig 2C

(shown by thick red edges between monocytes and neutrophils), we investigated which sub-

populations of monocytes actively interact with neutrophils (S7A and S7B Fig). The two

inflammatory pathway-clusters mentioned above show that different cellular subtypes of

Fig 2. Comparison of cell-cell interactions in COVID-19 patients in PBMC of varying severities. A—B. Network representing the group specific cell-cell

interaction (CCIgroup) considering different disease severity as groups in the six PBMC datasets from (A) moderate patients and (B) severe patients. The nodes

represent major cell types and the edges represent aggregated tCCI interaction signals across individuals from the same group. Thicker and darker edges

indicate stronger cell-cell interaction signals. Only the edges with top 10% tCCI signals are illustrated in the network. C. Network representing the difference of

cell-cell interaction between severe and moderate patients. The nodes represent cell types and an edge measures the difference in cell-cell interaction. A red

edge indicates an interaction higher in severe patients and a blue edge indicates an interaction higher in moderate patients.

https://doi.org/10.1371/journal.pcbi.1010495.g002
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monocytes in severe patients have significantly higher interaction scores in different pathways

(Fig 3B). More specifically, we found that in severe patients, cellular subtype “monocyte 1”

interacts with neutrophils through IL1, and CCL pathways, whereas interactions in moderate

patients are dominated instead by TNF. S6C and S6D Fig shows that “monocyte 1” is marked

by genes IL1B, IL1RN, IL8, TNFRSF1B and CCL4 and characterized by gene ontology terms

“regulation of inflammatory response” as well as “regulation of apoptotic signaling pathways”.

The cellular subtype “monocyte 2” (marked by highly expressed IFI27), interacts primarily

with neutrophils through pathways ANNEXIN and GALECTIN, which could suggest a role

for this cluster in phagocytizing dying neutrophils. The cellular subtype “monocyte 3” express-

ing IFIT2, IFIT3, CCL8, CXCL10, and CXCL11 shows strong signatures of type 1 interferon

cell-cell signaling (Figs 3B and S6C), suggesting equal support for antiviral immunity in mod-

erate and severe patients. Alternatively, proinflammatory signaling via CXCL interactions is

mainly through cellular subtype “monocyte 4”, which highly expresses CCL2, CXCL1, CXCL2

and CXCL5 (Figs 3B and S6C).

Fig 3. Monocyte and neutrophil interaction in COVID-19 patients. A. Heatmap of the pathway-specific cell-cell interaction (pCCI) contribution in

monocytes as ligands and neutrophils as receptors in the Chua dataset, where the rows indicate the signaling pathways and columns indicate the samples. The

signaling pathways are clustered into 6 groups. B. Dot plot indicating the cell-cell interaction contribution (pathway-cluster cell-cell interaction) in monocyte

subgroups as ligands and neutrophils as receptors of the pathway-cluster 2 (upper panel) and pathway-cluster 4 (lower panel) as defined in (A). The columns

indicate the 5 cellular subtypes of monocytes as ligands and the rows indicate the signaling pathways. A larger dot represents a higher level of cell-cell

interaction. C. Bar plot indicating the log-ratio of cell-cell interaction contributions between two time points (y-axis) for longitudinal samples of 4 patients (2

moderate: BIH-CoV-12, BIH-CoV-15; 2 severe: BIH-CoV-06, BIH-CoV-07) in monocytes as ligands and neutrophils as receptors. The x-axis represents the

signaling pathways. D. Heatmap of the cell-cell interaction contribution in monocytes as ligands and neutrophils as receptors for two patients (C143 and C146)

in the Liao dataset that have more than 20 neutrophils, where the rows indicate the signaling pathways and columns indicate the samples. The signaling

pathways are highlighted by the 6 signaling pathway clusters from (A).

https://doi.org/10.1371/journal.pcbi.1010495.g003

PLOS COMPUTATIONAL BIOLOGY Scalable workflow for characterization of cell-cell communication in COVID-19 patients

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010495 October 5, 2022 7 / 19

https://doi.org/10.1371/journal.pcbi.1010495.g003
https://doi.org/10.1371/journal.pcbi.1010495


Similar patterns are observed in the monocyte-neutrophil interaction in BALF [20] tissues

where patient samples with neutrophils have higher interaction signaling from monocytes

through pathways CXCL, IL1, GALECTIN, ANNEXIN, and CCL (Fig 3D) demonstrating the

consistency of our cell-cell interaction results across nasopharyngeal and bronchoalveolar

lavage fluid samples. The impact of CXCL and IL1 are also found among the four sets of longi-

tudinal samples in the Chua dataset under different disease progression, suggesting an increase

in interactions of signaling pathways CXCL, IL1 over time (Fig 3C). Interestingly, ANNEXIN

is downregulated across sampling time since the onset of symptoms in severe patients, but is

upregulated in moderate patients (Fig 3C).

Interaction from goblet cells to immune cells are heterogeneous in

moderate and severe patients

Goblet cells are found to express high levels of genes associated with innate and antiviral

immune functions indicating that the nasal epithelial cells interacting with immune cells may

play an important role in reducing early viral load and this is also consistent with recent litera-

ture [41]. We observe heterogeneous interaction patterns from goblet cells to immune cells

across patients and pathways (Fig 4A). We observe one subgroup of severe patients (n = 3;

including one deceased patient) showing clear differences in cell-cell interaction within the

pathway-cluster 1 compared to moderate patients. In particular, they show a lack of interaction

in the collection of pathways which includes immune signaling and costimulation pathways

such as CD40, CD80/CD86, CD23 and inflammatory pathways IL6, IFN-II, and Th2 cytokines

IL-4/IL10 (Fig 4A). Another subgroup of severe patients (n = 6) show clusters with a small sub-

group of moderate patients that has low cell-cell interaction for antigen presentation

(MHC-II), signaling pathways PTN and NPR2, and this subgroup is also lacking the Th2 cyto-

kine IL-4 and the B cell activating factor BAFF (Fig 4A). Together, these results point to cohort

heterogeneity within severe patients implicating immune co-stimulation or T cell polarizing

pathways may contribute to disease severity in a particular context.

We also found differences in goblet cell interactions among COVID-19 patients at different

stages of disease onset. Focusing on a specific cellular subtype of epithelial cells (goblet 5), we

observe a number of increased activities in moderate patients in the ANNEXIN pathway at the

late stage compared to the early stage in the moderate patients. This is most evident between

cellular subtypes “goblet 5” and “monocyte 5”. This epithelial to immune cell interaction

within the ANNEXIN pathway also shows an increase in patients under moderate conditions

(Fig 4B). Annexin plays a role in phagocytic uptake of dying cells, can drive neutrophil detach-

ment and apoptosis, and plays a predominant role in immune resolution [42]. Remarkably,

glucocorticoids, which are effective at treating COVID-19 patients, act at least in part via upre-

gulating Annexin I [43], suggesting that natural moderate symptoms for COVID-19 may be

linked to effective endogenous immune management, or that patients that respond to gluco-

corticoid drugs elevate Annexin cell communication pathways that then limit further inflam-

mation, and this response is detectable in our single-cell analysis. We have developed and

provide an interactive resource (http://shiny.maths.usyd.edu.au/CovidCellInteraction/) to

enable further investigation of cell-cell interaction at different resolutions from aggregated

interaction between two major cell types to expression values for specific ligand-receptor pairs.

Cell-cell interaction patterns have the potential to discriminate between

moderate and severe patients

Finally, we found that information from cell-cell interactions provides a discriminating signal

for patients with different disease progression. Fig 4C shows the principal components of the
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cell-cell interaction matrix for the Chua dataset with samples from healthy controls, moderate

and severe patients highlighted. Linear discriminant analysis (LDA) shows that based on accu-

racy, ligand-receptor features selected from interaction from epithelial (ciliated and goblet)

cells to immune cells (LOOCV = 0.8) have a higher discriminating power than using cell type

proportion (LOOCV = 0.4) or ligand and receptor gene expression alone (LOOCV = 0.6).

Examples of top selected pathways are THBS, BMP and EGF from pathway-cluster 1, and

MHC-II and COMPLEMENT from pathway-cluster 2 (pathway-cluster defined in Fig 4A).

This result is consistent regardless of the statistical machine learning methods employed (S1

Table). The accuracy rate of leave-one-out cross-validation (LOOCV) based on the first three

PCs using k nearest neighbor classification (k = 3) is 84.4%, highlighting the ability of cell-cell

interaction features to predict the degree of severity of patients. By repeating our workflow on

the three PBMC datasets, we further demonstrate that using CCI features can achieve higher

LOOCV accuracy rate than using cell type composition as features. Despite the limited

Fig 4. Goblet and immune cell interaction in COVID-19 patients. A. Heatmap of the pathway-specific cell-cell interaction contribution in goblets as ligands

and immune cells (macrophages, monocytes and T cells) as receptors in the Chua dataset, where the rows indicate the signaling pathways and columns indicate

the samples. The signaling pathways are clustered into 6 groups. B. Bar plot indicates the log-ratio of cell-cell interaction contributions between two time points

(y-axis) for longitude samples of 4 patients (2 moderate: BIH-CoV-12, BIH-CoV-15; 2 severe: BIH-CoV-06, BIH-CoV-07) in goblets as ligands and immune

cells (macrophages, monocytes and T cells) as receptors. The x-axis represents the signaling pathways. C. PCA for samples using the selected pathway-specific

cell-cell interaction features, colored by disease severity (Healthy, Moderate, Severe, Convalescence): the Chua dataset (top left panel), the Wilk dataset (bottom

left panel), the Arunachalam dataset (top right panel) and the Zhang dataset (bottom right panel) with the corresponding LOOCV accuracy rate for four

datasets presented in S1 Table.

https://doi.org/10.1371/journal.pcbi.1010495.g004
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samples, repeating our workflow on a smaller dataset within BALF tissues in the Liao dataset

demonstrates similar findings that cell-cell communication patterns between goblet cells to

immune cells has potential discriminating power.

Discussion

A better understanding of virus and host cell interaction at the cellular level is an important

component in understanding infectious disease progression and is critical for developing a

treatment for the disease. In this paper, we provide a comprehensive workflow to integrate and

examine multiple COVID-19 single-cell RNA-seq datasets to identify differential cell-cell

interaction (CCI) pathways with respect to disease. Our results in upper airway tissues show

strong intra-epithelial communication in the healthy lung, whereas the immune system then

dominates communication pathways during COVID-19. We then discover that despite a

higher cell-cell interaction (tCCI score) in severe patients compared to moderate patients

between immune and neutrophil cells, the CCI scores between epithelial and immune cells are

heterogeneous among severe patients, with a subpopulation illustrating lower CCI score when

compared to moderate patients. Furthermore, features extracted from cell-cell interactions are

potential signatures for discriminating between moderate and severe patients. These findings

were achieved by developing a comprehensive workflow to integrate and examine multiple

COVID-19 single-cell RNA-seq datasets to identify differential CCI pathways with respect to

disease. Our comprehensive workflow enables scalable data integration and analysis through

three important advances: (i) The “reverse” use of cell type identification to facilitate semi-

supervised merging enables large scale data integration; (ii) Using multiple studies to increase

the sample size to adds power to the analysis of patient single-cell data in a scalable way that

enables the prediction of patient outcomes; (iii) Considering differential CCIs as features in a

supervised learning framework to discriminate patient outcome.

In most multi-omics profiling in patients with COVID-19, strong acute inflammatory

responses are commonly found in most of the cell types as expected. Since the airway epithe-

lium is the primary site of infection for SARS-CoV-2 causing disease, investigating how epithe-

lial cells interact with immune cells differentially leads to a better understanding of the initial

host reaction to viral infection. Therefore, examining cell-cell communication offers an analyt-

ical approach to characterize specific cell type interaction and identify potential immune

response drivers that results in different degrees of disease severity.

The importance of using a workflow that accounts for cohort heterogeneity in examining

severe and moderate patients is clearly illustrated when we examine the interaction pattern

between ligands in epithelial cells and various receptors in immune cells. This is different to

the approach taken by Chua and colleagues [19], where a higher overall/aggregate interaction

between epithelial and immune cells was identified in severe patients. Here, when we examine

the cell-cell interaction relationships at the individual sample level, we observe clear cohort

heterogeneity among severe patients, and furthermore, are also able to discover a subgroup of

the moderate patients with higher interaction between epithelial and immune cells.

In this study, we focus on the cell communication within COVID-19 patients via ligand-

receptor signaling. Several methods have been developed recently to infer such cell-cell inter-

action from scRNA-seq data, such as CellPhoneDB, SingleCellSignalR, NicheNet, NATMI and

CellChat [7,32,33,44,45]. Most of these methods aim to identify the significant ligand and

receptor gene pairs between two cell populations with the most recent method CellChat [7]

that accounts for additional signaling factors. In addition, CellChat systematically categorizes

the ligand-receptor pairs based on their signaling pathways, providing a comprehensive inter-

pretation of cell-cell communication from single-cell RNA-seq. There are also other types of
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cell communication like physical cell interaction that can be further investigated. Technology

to sequence physically interacting cells like PIC-seq has been used to investigate epithelial–

immune interaction and infectious disease in mice [46]. Application of such technology in

COVID-19 research will potentially allow characterization of differential physical intercellular

interaction at high resolution.

Our analysis suggests the heterogeneity of cell-cell interaction patterns within patients,

even if they have similar symptoms. One key variability is the sampling time since the onset of

symptoms, as this may not fully capture the true underlying disease progression within each

individual. Other potential factors that lead to the variability include age, gender, comorbidi-

ties and viral load. Currently, with the limited number of samples from patients with similar

clinical characteristics, accounting for these uncertainties in modelling is challenging. Towards

the future, as more large single-cell profiling resources in COVID-19 become publicly avail-

able, integrative analysis and meta-analysis of these studies by incorporating patient diversity

to our workflow will provide a more comprehensive characterization of cell-cell interaction

patterns in COVID-19 patients. Nevertheless, using the current databases our workflow sup-

ports that cell-cell interactions provide more meaningful predictions of disease progression

(Fig 4C).

In summary, our novel workflow enables integrative analysis of five different COVID-19

scRNA-seq data sets with a total of 415,856 cells and 85 samples. This generalizable workflow

was built on the latest single-cell analytical methods and enables the identification of differen-

tial cell-cell interaction across disease progression. We discover clear cohort heterogeneity

among the severe patients in the interaction between epithelial and immune cells, with signa-

tures that can be linked with patient outcome. Together, we provide a validated workflow for

integration and analysis of diverse single-cell sequencing data to pinpoint communication net-

works that control disease outcome.

Material and methods

Computational workflow

Step 1—Cell type annotation. For a given dataset, we perform a cell type identification

using the scClassify framework [28]. Specifically, to identify the cell types from the Chua data-

set and the Liao dataset, we performed a modified version of the joint classification from

scClassify that incorporates the concept of iterative supervised learning. The initial model is

built from four reference datasets including annotated cell information from healthy human

lungs [12,35,36]. The final cell type labels were determined by the majority vote from individ-

ual classification labels using each single reference. An additional scClassify model based on

the assigned cells was then built to predict the cells that are classified as “intermediate” or

“unassigned” in the previous step. To identify cell types from the PBMC datasets, we used the

Wilk dataset as a reference [21] to build the model and use it to predict the cell types for the

Zhang dataset and the Arunachalam dataset.

Step 2—Unsupervised clustering for subpopulation identification. We performed

unsupervised clustering on each classified cell type to identify the cellular subtypes in the Chua

dataset and the Liao dataset. For each cell type, we first calculate the deviance across cells

within each sample based on a multinomial null model where each gene has a constant rate

across cells. Genes with biological variations will have large deviance, indicating the null

model is fitted poorly. The deviance is calculated using the function devianceFeatureSelection

implemented in the R package scry (version 1.0.0) [37]. Next, we select features that are among

the top 1000 largest deviances in more than 50% of the samples. We then performed negative

binomial generalized principal component analysis (GLM-PCA) on the UMI matrix with the
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selected features (number of components is set to 30) [47]. A shared nearest neighbor graph is

then built based on the GLM-PCA low-dimensional space and used as an input for Louvain

clustering to identify subclusters, considering each of them as a refined cellular subtype.

To prevent over clustering, we follow a similar workflow described in clusterExperiment to col-

lapse the identified subclusters [34]. Hierarchical clustering is first performed on the aggregated

average expression of each subcluster to construct a cluster hierarchy, and then from the bottom

to top, the clusters of the same branches are merged if less than 10 genes are differentially

expressed (log fold change> 1, FDR< 0.01). Note that we identified some cellular subtypes

(ionocytes and squamous) that are inconsistently annotated between the original Chua dataset

and scClassify (classified as goblet cells). In this instance, based on marker expression, we manu-

ally reannotated these two cell types using the original annotation for the downstream analysis.

Step 3—Calculating cell-cell interaction (CCI). For a given individual sample and a pair

of subclusters (i.e. cellular subtypes) obtained in Step 2, we calculate the aggregated ligand-

receptor interaction score based on CellChat [7]. This represents the communication probabil-

ities among all pairs of subclusters across all ligand-receptor pairs. The CellChat algorithm

aims to identify the significant ligand-receptor gene pairs between two cell populations while

accounting for important signaling factors, including the expression of soluble agonists, antag-

onists, and stimulatory and inhibitory membrane-bound co-receptors. Finally, ligand-receptor

pairs are classified into different functionally related signaling pathways. The communication

probability of a signaling pathway is defined as the sum of the probabilities of its ligand-recep-

tor pairs.

The implementation is available as R code stored at the GitHub, https://github.com/

SydneyBioX/COVID_CCI_analysis and as a web shiny application at http://shiny.maths.usyd.

edu.au/CovidCellInteraction/.

Statistical formulation

The output of the cell-cell interaction analysis can be considered as a three-dimensional array

representing the cell-cell interaction (CCI) score. Let xcpk denote the cell-cell interaction (CCI)

score generated from the computational workflow for a pair of cellular subtypes c, where c2C
(defined below as a set consisting of all pairs of cellular subtypes), signaling pathway p with

p = 1,. . .,P, and individual sample k with k = 1,. . .,K, with xcpk2[0, 1]. Each signaling pathway

contains one or multiple ligand receptor pairs, curated by CellChat [7]. In general, an individ-

ual sample k represents the sample from one individual collected at a specific time point.

For N major cell types, we denote them by the sets M1, M2,. . .,MN and within a given major

cell type Mi consisting of ni cellular subtypes mi1;mi2; . . . ;mini
we can write Mi = {miu|

u = 1,. . ., ni}. We can represent a pair of cellular subtypes as c = (miu, mjv), where i, j = 1,. . .,N;

u = 1,..,ni and v = 1,. . .,nj. Here, we consider miu as the sender cellular subtype within major

cell type Mi and mjv as the receiver cellular subtype from major cell type Mj. The collection of

all pairs of cellular subtypes is written as C = {(miu, mjv)|i, j = 1,. . .,N; u = 1,. . .,ni; v = 1,. . .,nj}.
We further denote CMi;Mj

as a subset of C containing only pairs of cellular subtypes from major

cell type Mi to Mj which is represented as CMi ;Mj
¼ fðmiu;mjvÞjmiu 2 Mi;mjv 2 Mjg.

For a given sample k, the following measures of interest are explored:

• Subtype cell-cell interaction (sCCI) between a pair of cellular subtypes c for an individual

sample k is calculated as sCCI ðc; kÞ ¼
P

pxcpk. This measure totals the cell-cell interaction

score across all pathways. Calculating this score for each pair of cellular subtypes and each

individual sample is the same as totaling the array X across the pathways resulting in a |C|×K
two-dimensional matrix.
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• Pathway specific cell-cell interaction (pCCI) from the major cell type Mi to the major cell

type Mj for a pathway p and an individual sample k is pCCI ðMi;Mj; p; kÞ ¼
P

c2CMi ;Mj
xcpk

where CMi ;Mj
is defined as above. This is a measure that sums the cell-cell interaction scores

across all cellular subtypes between any two major cell types. For each pair of (Mi, Mj), calcu-

lating this statistic for each pathway p and individual sample k results in a P×K matrix (see

Fig 3A).

• Total CCI (tCCI) from major cell type Mi to major cell type Mj for an individual sample k is

defined as tCCIðMi;Mj; kÞ ¼
P

c2CMi ;Mj

P
pxcpk ¼

P
c2CMi ;Mj

sCCIðc; kÞ; where CMi ;Mj
is defined

as above. This is a measure that sums the cell-cell interaction scores across all cellular sub-

types between two major cell types and across all pathways. For each individual sample k,

calculating the tCCI statistic for each pair of (Mi, Mj) will result in a N×N matrix that can be

visualized as a heatmap or network graph.

• Suppose P represents a set of pathways belonging to the same cluster termed as a pathway-

cluster (see Clustering in Material and Methods). The pathway-cluster cell-cell interaction

for an individual sample k between a pair of cellular subtypes c is defined as

psCCI c;P; kð Þ ¼ 1

jPj

P
p2Pxcpk.

Association analysis for CCI

We calculate a group specific cell-cell interaction (CCIgroup) between two cellular subtypes

where groups represent any treatment of interest. Here it refers to control and disease progres-

sion such as moderate and severe patients. Let Kgroup denote a set of individual samples under

the same condition of interest, where jKgroupj indicates the size of the set. For example, the total

number of samples having moderate response to COVID-19 in the dataset (see Fig 2A and

2B). The CCIgroup from the major cell types Mi to the major cell types Mj can be calculated by

CCIgroup Mi;Mj;Kgroup

� �
¼ 1

jKgroup j

P
k2Kgroup

sðtCCIðMi;Mj; kÞÞ; where s yð Þ ¼ ðy� minðyÞÞ
ðmaxðyÞ� minðyÞÞ is a

scaling function to scale between individual samples. In practice, the differential CCI from Mi

to Mj between moderate (CCImoderate) and severe (CCIsevere) patients can be calculated by

CCIsevere−CCImoderate measuring the differential patterns of the cell-cell interaction across dif-

ferent disease severity (see Fig 2C).

The pathway-cluster cell-cell interaction (used in Fig 3B) for a group of individuals k
between a pair of cellular subtypes c is simply the sums of psCCI across individual with a

group k and can be written as 1

jKgroup jjPj

P
k2Kgroup

P
p2Pxcpk ¼

1

jKgroup j

P
k2Kgroup

psCCIðc;P; kÞ. For a

pair of cellular subtypes c, calculating this statistic results in a jPj � jKgroupjmatrix.

Statistical analysis of longitudinal data

Suppose we have multiple samples collected from the same individual at different time points,

say kearly and klate then the cell-cell interaction across disease progression is the log-ratio of

cell-cell interaction (illustrated in Fig 3C) between these two time points for a given pair of cell

types (sender cell type Mi, receiver cell types Mj within a pathway p is

sij ¼ logðpCCIðMi;Mj; klateÞ=ðpCCIðMi;Mj; kearlyÞ þ cÞÞ, where c is a constant to regularize the

ratio in the case when pCCI(Mi, Mj, kearly) equal to zero. We set c = 0.1d, where d is the smallest

non-zero value of pCCI(Mi, Mj, kearly). For pCCI(Mi, Mj, klate) = 0, sij is set to zero. A positive

value of sij indicates the pathway is upregulated at the late stage, while a negative value indi-

cates the pathway is downregulated.
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Clustering

We group various pathways based on the similarity of intercellular communication patterns

using hierarchical clustering with Euclidean distance and ward.D2 agglomerative method

implemented in the function hclust in R.

Data and preprocessing

[A] Chua dataset—The raw count matrix and metadata containing patient information are

downloaded from FigShare: https://doi.org/10.6084/m9.figshare.12436517 [19]. This dataset

includes 19 patients with critical or moderate disease as well as 5 healthy controls.

[B] Liao dataset—The raw count matrices of single-cell RNA-seq data from bronchoalveo-

lar lavage fluid was downloaded from the National Center for Biotechnology Information

(NCBI) Gene Expression Omnibus (GEO) under the accession number GSE145926. This data-

set has 3 healthy controls, 3 moderate patients and 6 severe patients [20].

[C] Wilk dataset—The raw count matrices of single-cell RNA-seq data from PBMC with

metadata were downloaded from the COVID-19 Cell Atlas: https://www.covid19cellatlas.org/

#wilk20 [21]. This dataset contains 6 healthy controls, 3 moderate patients and 4 severe

patients.

[D] Arunachalam dataset—The raw count matrices of single-cell RNA-seq data from

PBMC and the clinical information were downloaded from GEO under accession number

GSE155673. This dataset has 5 healthy controls, 3 moderate patients and 4 severe patients [23].

The cells with more than 20% mitochondrial proportion and UMI count greater than 50,000

are removed from the downstream analysis.

[E] Zhang dataset—The raw sequence files of single-cell RNA-seq data from PBMC are

downloaded from the Genome Sequence Archive of the Beijing Institute of Genomics (BIG)

Data Center, BIG, Chinese Academy of Science using the accession code HRA000150 [22].

Cell Ranger (v3.0.2) with human reference version GRCh38 were used to generate the raw

count matrices. The dataset includes 5 healthy controls, 7 moderate patients and 4 severe

patients. Only the cells retained from the original study are used.

Processing: For each dataset, we performed size factor standardization and log transforma-

tion on the raw count expression matrices using the logNormCount function in the R package

scater (version 1.16.2) and generated log transformed gene expression matrices for analysis.

PBMC data integration

We integrated the six PBMC datasets using a modified version of scMerge [37]. Here, cell

types annotated by scClassify are used as an input to scMerge to construct pseudo-bulk expres-

sion profiles. The resulting profiles are used to identify mutual nearest subgroups as pseudo-

replicates and to estimate parameters of the scMerge model.

Machine learning for discrimination

To select the cell-cell interaction features that discriminate across samples under different con-

ditions, we performed a Kruskal-Wallis rank sum test on pathway-specific cell-cell interaction

(pCCI) to select the pathways that are significantly different across samples from healthy con-

trols, moderate patients and severe patients. Feature selection is based on pCCI features with

an adjusted p-value less than 0.1 for the Chua dataset, less than 0.2 for the Wilk and Zhang

datasets and less than 0.4 for the Arunachalam dataset, we termed these selected features as

“Top CCI”. For the Chua dataset, we also selected the top pCCI from the cell-cell interaction

between the two major epithelial cell types (Goblet and Ciliated) and the immune cell types (B
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cells, dendritic cells, macrophages, monocytes and T cells), termed as “Epi-Immune CCI”. We

further considered cell type proportion as another type of feature. The classification model to

predict the samples’ condition is built with linear discriminant analysis (LDA) and random

forest (RF) on the selected features (Top CCI, Epi-Immune CCI, and cell type proportion) as

well as k nearest neighbor classification (with k = 1, 3) using the first 3 principal components

of the pCCI matrix. The classification performance was determined by leave-one-out cross-

validation.

Gene ontology analysis

Differential gene expressions were identified using moderated t-statistics implemented in the

R package limma (version 3.44.3). The gene set over-representation analysis for the significant

DE genes (top 100 genes selected) with biological process (BP) gene ontology is measured

using the “enrichGO” function in the R package clusterProfiler (version 3.16.0) [48]. Signifi-

cant GO terms are defined by q-value < 0.1.

Interactive graphics implementation

To facilitate the interpretation of the complex data set, we have created an online interactive

tool which allows researchers to explore different parts of the data. The first tab of the tool con-

tains four columns. The first column allows the user to select two groups (or individual samples)

to compare and it displays the associated cell-cell interaction network. The second column

shows the difference between the two selected groups (or samples) in a heatmap and network

form. Selecting a cell type pair from the heatmap dissects the interaction into individual path-

ways and sub-cell types, displayed in the third column. Selecting a pathway on this heatmap fur-

ther dissects the activity into individual ligand-receptor pairs, displayed in the fourth column.

The second tab of the tool allows the user to select a gene and its mean expression is shown for

each cell type and sample. The user can also select a ligand cell type and a receptor cell type and

the activity of all pathways between these cell types and involving the selected gene are shown.

Supporting information

S1 Fig. (A) tSNE plots with the Chua dataset, colored by the disease condition (left panel),

and individual sample (right panel). (B) Cell type composition of each individual sample in the

Chua dataset. (C) Boxplots of marker expression for each reannotated cell type.

(DOCX)

S2 Fig. (A) tSNE plot of scRNA-seq data from BALF (the Liao dataset), colored by the reanno-

tation from scClassify. (B) Cell type composition of each sample in the Liao dataset. (C) Heat-

map indicating the difference of group specific cell-cell interaction between different cell types

in severe patients and moderate patients in the Liao dataset. Red color indicates a higher inter-

action in severe patients and blue color indicates a higher interaction in moderate patients.

Rows indicate the sender cell types and columns indicate the receiver cell types.

(DOCX)

S3 Fig. Comparison of cell-cell interactions in COVID-19 patients of varying severities.

(A-C) Network representing the group specific cell-cell interaction (CCIgroup) considering dif-

ferent disease severity as groups in the Chua dataset from (A) healthy controls (B) moderate

patients and (C) severe patients. The nodes represent major cell types and the edges represent

aggregate tCCI interaction signals across individuals from the same group. Thicker edges indi-

cate stronger cell-cell interaction signals. (D) Network representing the difference of cell-cell

interaction between severe and moderate patients. The nodes represent cell types and an edge
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measures the difference in cell-cell interaction. A red edge indicates an interaction higher in

severe patients and a blue edge indicates an interaction higher in moderate patients.

(DOCX)

S4 Fig. (A-C) Heatmaps indicating the group specific cell-cell interaction between different

cell types in (A) healthy controls (B) moderate patients (C) severe patients for the Chua data-

set. Rows indicate the sender cell types and columns indicate the receiver cell types. (D-F)

Heatmaps indicate the difference in group specific cell-cell interaction between different cell

types in (D) severe patients and healthy controls (E) moderate patients and healthy controls

(F) severe patients and moderate patients for the Chua dataset. Red color indicates a higher

interaction in severe patients and blue color indicates a higher interaction in moderate

patients. Rows indicate the sender cell types and columns indicate the receiver cell types.

(DOCX)

S5 Fig. Cell type composition of each individual sample in the six PBMC datasets.

(DOCX)

S6 Fig. (A) Heatmaps indicating the group specific cell-cell interaction between different cell

types in healthy controls (left panel), moderate patients (middle panel) and severe patients

(right panel) for the PBMC dataset collection. Rows indicate the sender cell types and columns

indicate the receiver cell types. (B) Heatmaps indicate the difference in group specific cell-cell

interaction between different cell types in moderate patients and healthy controls (left panel),

severe patients and healthy controls (middle panel) and severe patients and moderate patients

(right panel) for the PBMC dataset collection. Red color indicates a higher interaction in severe

patients and blue color indicates a higher interaction in moderate patients. Rows indicate the

sender cell types and columns indicate the receiver cell types.

(DOCX)

S7 Fig. (A) tSNE plot of monocytes in the Chua dataset, colored by the five cellular subtypes

of monocytes. (B) Stacked bar plots representing the number of cells for healthy, moderate

and severe groups. The x-axis represents the five cellular subtypes of monocytes for the Chua

dataset. (C) Heatmap indicates the scaled average marker expression of the five cellular sub-

types of monocytes. (D) Gene ontology analysis for the cellular subtypes of monocytes.

(DOCX)

S1 Table. LOOCV accuracy rate for four datasets using four classification methods: KNN

(K = 1), KNN (K = 3), linear discriminant analysis (LDA), and random forest (RF). The row

“Top CCI” refers to classification results based on features selected by Kruskal-Wallis rank sum

test on pathway-specific cell-cell interaction (pCCI) (See Material and Methods section for more

details). The row “Epi-Immune CCI” refers to classification results based on features selected

from the cell-cell interaction between the two major epithelial cell types (Goblet and Ciliated) and

the immune cell types (B cells, dendritic cells, macrophages, monocytes and T cells). The row “cell

type proportion” refers to classification results based on the cell type proportion. The highlighted

cells indicated the best performing signature(s) for each of the classification methods.

(DOCX)
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