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Dietary Curcumin Alleviated Aflatoxin B1-Induced Acute Liver
Damage in Ducks by Regulating NLRP3–Caspase-1
Signaling Pathways
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Abstract: Aflatoxin B1 (AFB1) is a mycotoxin widely distributed in animal feed and human food;
it represents a serious threat to human and animal health. This study investigates the mechanism
by which dietary curcumin protected liver against acute damage caused by AFB1 administration in
ducks. One-day-old male ducks (n = 450) were randomly assigned to three groups, the control group,
the AFB1 group, and the AFB1 + curcumin group; the first group were fed with basic diet, while the
third group was fed basic diet containing 500 mg/kg curcumin. Ducks in the AFB1 group and AFB1
+ curcumin group were challenged with AFB1 at the age of 70 days. The results show that AFB1
administration caused liver damage, increased CYP450 content and AFB1-DNA adducts in the liver,
and induced oxidative stress and inflammatory response in the liver. Dietary curcumin significantly
inhibited the generation of H2O2 and MDA in liver, activated the Nrf2-ARE signaling pathway, and
suppressed the NLRP3–caspase-1 signaling pathway in the liver of ducks. Conclusively, curcumin in
diet could protect duck liver against the generation of AFB1-DNA adducts, toxicity, oxidation stress
and inflammatory response induced by AFB1 through regulating the NLRP3–caspase-1 signaling
pathways, demonstrating that curcumin is a potential feed additive agent to reduce the serious
harmful effects of AFB1 on duck breeding.

Keywords: curcumin; acute liver; AFB1-DNA adducts; Nrf2-ARE; NLRP3–caspase-1

1. Introduction

Aflatoxin B1 (AFB1), produced by Aspergillus species, is a stable toxic metabolite
among the most toxic and carcinogenic metabolites [1]. AFB1 is as classified the most
potent natural group 1 carcinogen by the International Agency for Research on Cancer
(IARC) and resulted in 170,000 (28%) annual cases of human hepatocellular carcinoma
cancer [2]. AFB1 can be found in poorly stored food or feeds, such as peanut, corn, rice,
wheat, and soybean [3]. The consumption of food with AFB1 results in damage of the liver,
as the liver is the target organ where the activation, metabolism, and elimination of toxins
are all carried out [4–6]. In addition, AFB1 is mainly metabolized in the liver by cytochrome
P450 (CYP450) bioactive enzymes including CYP1A1, CYP1A4, CYP2A6, and CYP3A4,
contributing to disease development in the liver [7]. As well known, the pathophysiological
processes of disease development are usually accompanied with oxidative stress and
inflammation, such as the metabolic processes of AFB1 in the liver [8]. Excessive oxidation
stress and inflammation play a vital role in the toxicity metabolism of AFB1 in the liver;
as expected, antioxidants are an effective way to protect body against toxic metabolites,
oxidative stress, and inflammation [9–11].

Curcumin is a kind of polyphenol component derived from the rhizome of turmeric
(Curcuma Longa Linn.); it performs diverse biological activities, including serving as a
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free radical scavenger and antioxidant, as well as being vital in anti-inflammatory re-
sponses [12–14]. Studies reported that polyphenol component (resveratrol and curcumin)
supplementation enhanced the antioxidant capacity of ducks by enhancing antioxidant en-
zyme activities [15,16]. Curcumin supplementation suppressed inflammation by inhibiting
the activation of inflammasome in liver and kidney of mice and rats [17,18]. A research
study reported the protective effects of curcumin on AFB1-induced liver damage by inhibi-
tion of the activity of CYP1A1 and AFB1-DNA adducts content in liver [19]. Pauletto et al.
(2020) reported similar results, whereby, curcumin supplementation protected the liver of
broilers against damage induced by AFB1 the inhibition of hepatic CYP2A6 gene expres-
sion [20]. Otherwise, curcumin has protective effects for the liver against damage induced
by AFB1 by increasing the activity of antioxidant enzymes, e.g., by upregulating antioxi-
dant genes expression in the nuclear factor erythroid 2-related factor 2 (NRF2) signaling
pathway [5,21]. Furthermore, oxidation stress could activate the NLRP3 inflammasome and
result in inflammation [22]. Pauletto et al. (2020) reported that curcumin supplementation
inhibited inflammation by decreasing interleukin 1β (IL 1β) content in liver induced by
AFB1 [20]. Therefore, curcumin supplementation has an ability to alleviate oxidation stress
and inflammation induced by AFB1, but the application of curcumin as a feed additive for
ducks to alleviate the damage of liver induced by AFB1 has not been researched.

This study established an antioxidant duck model; we investigate the metabolic
mechanism of the protective effects of dietary curcumin on the acute liver damage induced
by AFB1. This study provides a theoretical basis for the potential application of curcumin
supplementation to protect avian health threatened by AFB1 administration.

2. Materials and Methods
2.1. Chemicals

Curcumin (CAS: 458-37-7) was obtained from Nanjing NutriHerb BioTech Co., Ltd.
(Nanjing, China). AFB1 (CAS no. 1162-65-8) was obtained from Shanghai Yuanye Bio-
Technology Co., Ltd. (Shanghai, China). Antibodies were obtained from Beyotime Biotech-
nology (Shanghai, China) including GAPDH (catalog number: AG019), caspase-1 (catalog
number: AF1681), NLRP3 (catalog number: AF2155), horseradish peroxidase (HRP)-
labeled Goat Anti-Mouse IgG (catalog number: A0216) and HRP-labeled Goat Anti-Rabbit
IgG (catalog number: A0208).

2.2. Ducks and Husbandry

All ducks (Anas platyrhynchos) (n = 450) aged 1 day were randomly assigned to
3 groups (Table S1). Ducks were fed a corn–soybean basal diet formulated according to
the National Research Council (1994) (Table S2) and 500 mg kg−1 curcumin was added in
the basal diets for ducks in the T500 + AFB1 group. On the 70th days, ducks were fasted
for 12 h and 15 were selected from each group, oral administration of phosphate-buffered
saline (PBS) (T0), and of 60 µg of AFB1 kg−1 body weight (AFB1 was dissolved in PBS, for
both T0 + AFB1 group and T500 + AFB1 group). All animal care and treatment regimens
were performed in strict accordance with the regulation of the National Research Council
Guide (1996) and Ethical and Animal Welfare Committee of Heilongjiang province, China
(revised in 2016). The protocols employed in this study were approved by the Institutional
Animal Care and Use Committee of Northeast Agricultural University (protocol number:
Northeast Agricultural University (NEAU)-[2011]-9).

2.3. Sample Collection

Whole blood samples were obtained from duck wing veins 12 h after AFB1 administra-
tion and were then centrifuged (1000× g for 15 min at 4 ◦C) and stored at −80 ◦C. The liver
was washed 3 times in ice-cold phosphate-buffered saline (PBS, Beyotime Biotechnology
Shanghai, China; pH = 7.2–7.4), then immediately and individually stored at −80 ◦C for
antioxidant enzymes activity and Real time quantitative PCR (qRT-PCR) analyses.
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2.4. Histopathological Observation

About 0.125 cm3 of liver was quickly harvested and fixated with 4% paraformaldehyde
for pathological studies. After paraffin embedding, the samples were cut and stained with
hematoxylin and eosin (H&E) and observed with a light microscope (Nikon Eclipse Ci-L,
Tokyo, Japan). The liver samples, at the level of 1 mm3, was fixed with 2.5% glutaraldehyde
and 1% osmic acid, dehydrated and embedded in resin. A final examination using the
transmission electron microscopy (TEM, H-7650, Hitachi, Tokyo, Japan) was performed
after staining with uranyl acetate and lead citrate.

2.5. Assay of CYP450 Content, AFB1-DNA Adducts Level and Antioxidant Ability in Liver

Liver samples were homogenized in a pre-cooled 0.9% stroke-physiological saline
solution (4 ◦C, 0.9% NaCl, pH = 7.2–7.4) and centrifuged at 4 ◦C (5000× g, 10 min) to
obtain the supernatant. The contents of CYP450 and AFB1-DNA adducts in the liver
were determined by a competitive enzyme linked immune sorbent assay (ELISA) method,
according to the manufacturer’s instructions (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China). The activity or content of total antioxidant capacity (T-AOC, U/mg
protein), catalase (CAT, U/mg protein), total superoxide dismutase (T-SOD, U/mg protein),
reductive glutathione glutathione S-transferase (GSH, µmol/mg protein), Glutathione
S-transferase (GST, U/mg protein), hydrogen peroxide (H2O2, mmol/mg protein), and
hydrogen peroxide (MDA, nmol/mg protein) of liver homogenates was measured using
commercial kits (Nanjing Jiancheng Bioengineering Institute, Nanjing, China) according to
the manufacturer’s instructions.

2.6. Plasma Biochemical Assay

Hematological and biochemical parameters were determined using an automatic
biochemical analyzer. The content or activity of total protein (TP, g/L), albumin (ALB,
g/L), globulin (GLB, g/L), ALB/GLB (A/G), total bilirubin (TBIL, µmol/L), alkaline phos-
phatase (ALP, U/L), ALT (alanine aminotransferase, U/L), AST (alanine aminotransferase,
U/L), and AST/ALT in the plasma was assessed with commercial kits (Nanjing Jiancheng
Bioengineering Institute, Nanjing, China), according to the manufacturer’s guidelines.

2.7. RNA Isolation and Real-Time Quantitative Polymerase Chain Reaction (qRT-PCR)

Total RNA from frozen liver tissues was isolated utilizing TRIzol Reagent (TaKaRa,
Dalian, China) according to Xue et al. (2021) with minor changes [23]. Total RNA con-
centration and purity was examined with a spectrophotometer (Implen NanoPhotometer
P-330, Munich, Germany). Samples with an A260/A280 ratio between 1.8 and 2.0 were
considered acceptable for the quality and integrity. In total, 1000 ng of total RNA was con-
verted into cDNA using a Prime Script™ RT reagent kit containing gDNA Eraser (TaKaRa,
Dalian, China). The obtained cDNA was amplified using a TB Green™ Premix Ex Taq™
(TaKaRa, Dalian, China) RT-PCR (qRT-PCR) kit. All PCR primers were obtained from NCBI
and synthesized by Sangon Biotech Co., Ltd. (Shanghai, China) (Table S3). The target
genes expression was determined by an ABI 7500 real-time PCR instrument (Perkin-Elmer,
Applied Biosystems, Foster City, CA, USA).

2.8. Western Blotting

Total protein of the liver was obtained and measured using an radioimmunoprecipita-
tion (RIPA) buffer including PMSF (1 mmol/L) (Beyotime, Shanghai, China) and a BCA
assay kit (Beyotime, Shanghai, China), respectively. Protein extracts were mixed with load-
ing buffer and fully denatured in a boiling water bath according to Yang et al. (2021) with
minor changes [24]. Target proteins were subjected to 8–12% SDS-PAGE electrophoresis,
and transferred to a polyvinylidene-difluoride (PVDF) membrane (Beyotime, Shanghai,
China). Afterwards, PVDF membranes were washed (3 times × 10 min in 1 × PBST), after
blocking 2 h in 5% skim milk. After washing 3 times, PVDF membranes were incubated in
primary antibody (GAPDH, NLRP3, and caspase-1) for 8–12 h at 4 ◦C. Related horseradish
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peroxidase labeled antibody was incubated at 37 ◦C for 1 h, after washing 3 times in
PBS–0.1% Tween 20 (PBST). Protein bands were quantified and were recorded using the
Essential V6 imaging platform (UVITEC, Cambridge, England) with the enhanced chemilu-
minescence (ECL) chemiluminescence kit (Beyotime Biotechnology). The GAPDH protein
served as an internal control protein. The protein expression was expressed as the ratio of
band intensities of proteins to that of GAPDH.

2.9. Statistical Analysis

The data were obtained and analyzed using the Independent-Sample t-Test in SPSS
(Version 22.0, SPSS Inc., Chicago, IL, USA) with a 5% probability of error (p < 0.05). Graphs
with standard error of the mean were plotted in GraphPad Prism 8.3.0 (GraphPad Software,
San Diego, CA, USA) and formatted in Photoshop 2020CC (Adobe Systems, San Jose, CA,
USA).

3. Results
3.1. Biochemical Levels in Plasma

Plasma biochemical indexes containing TP, ALB, GLO, TBIL, ALP, ALT, and AST were
considered clinical signs in injured liver (Figure 1). We identified a significant decrease in
TP (p < 0.01), ALB (p < 0.002) and GLO (p < 0.002) levels in the T0 + AFB1 group relative to
those in the T0 group; however, there was no significant increase in TP (p = 0.262), ALB
(p = 0.305), and GLO (p = 0.611) levels in the T500 + AFB1 group relative to those in the T0 +
AFB1 group (Figure 1A–C). In comparison with the T0 group, a significant difference in TP
(p < 0.01) and GLO (p < 0.01) levels in the T500 + AFB1 group was found; however, there was
no significant difference in the ALB (p > 0.05) value. AFB1 administration increased TBIL
content (p = 0.451) more in the T0 + AFB1 group than in the T0 group. Adding curcumin in
diet significantly decreased TBIL level (p = 0.043) in the T500 + AFB1 group with respect to
the T0 + AFB1 group. As expected, there was no significant difference in TBIL level between
the T500 + AFB1 group and T0 group (p > 0.05) (Figure 1E). No significant difference in
ALP (p = 0.621) and a decreasing trend in ALP (p = 0.676) were observed among groups
(Figure 1F). There was no significant increase in ALT (p = 0.246) and AST (p = 0.065) activity
in the T0 + AFB1 group relative to those in the T0 group. Adding curcumin into diet
inhibited the activities of ALT (p = 0.544) and AST (p = 0.140) in the T500 + AFB1 group
relative to those in the T0 + AFB1 group, but with no significant differences. No significant
difference in ALT and AST activity between the T0 + AFB1 group and the T0 group was
found (p > 0.05) (Figure 1G,H).

3.2. Evaluation of Pathological Sections and Ultrastructural Assessment in Liver

Histopathological examination of H&E-stained livers shown in Figure 2. In the T0
group, hepatocytes morphology was normal (Figure 2A). AFB1 administration caused
obvious toxicity containing vacuolation of hepatocytes, swelling of hepatocytes, and in-
flammatory cell infiltration in the T0 + AFB1 group compared to the T0 group (Figure 2B).
Dietary curcumin protected the liver against damage through the decrease in the number
of inflammatory cells and swelling of hepatocytes in the liver of ducks in the T500 + AFB1
group compared with in the T0 + AFB1 group (Figure 2C). A few inflammatory cells and
swelling of hepatocytes in the T500 + AFB1 group compared with the T0 group was no-
ticed. The results of this study demonstrate that dietary curcumin could protect duck liver
against acute damage induced by AFB1 administration. The liver ultrastructure is shown
in Figure 2. In the T0 group, the cell nucleus and mitochondrial ridge of hepatocytes were
clearly visible and the chromatin in the cell nucleus was evenly distributed (Figure 2D). In
comparison with the T0 group, the hepatocyte nucleus was visibly deformed; chromatin
was aggregated and the hepatocyte mitochondrial ridge was enlarged and deformed in
the T0 + AFB1 group (Figure 2E). As expected, in comparison with the T0 + AFB1 group,
hepatocyte nucleus and mitochondrial ridge were clearly visible and the chromatin ag-
gregation of hepatocytes was observed in the T500 + AFB1 group (Figure 2F). In addition,
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the hepatocyte nucleus and mitochondrial ridge were clearly visible when comparing the
T500 + AFB1 group and T0 group.

Foods 2021, 10, x FOR PEER REVIEW 5 of 19 
 

 

 
Figure 1. The plasma biochemical levels of ducks exposed to AFB1 at 12 h. (A) The TP content in the 
plasma of ducks; (B) The ALB content in the plasma of ducks; (C) The GLO content in the plasma 
of ducks; (D) The rate of ALB/GLO; (E) The TBIL activity in the plasma of ducks; (F) The ALP ac-
tivity in the plasma of ducks; (G) The ALT activity in the plasma of ducks; (H) The AST activity in 
the plasma of ducks; (I) The rate of AST/ALT. Values mean the mean ± SEM (standard error (SE) of 
means.), * means p < 0.05, ** means p < 0.01. 

3.2. Evaluation of Pathological Sections and Ultrastructural Assessment in Liver 
Histopathological examination of H&E-stained livers shown in Figure 2. In the T0 

group, hepatocytes morphology was normal (Figure 2A). AFB1 administration caused ob-
vious toxicity containing vacuolation of hepatocytes, swelling of hepatocytes, and inflam-
matory cell infiltration in the T0 + AFB1 group compared to the T0 group (Figure 2B). Die-
tary curcumin protected the liver against damage through the decrease in the number of 
inflammatory cells and swelling of hepatocytes in the liver of ducks in the T500 + AFB1 
group compared with in the T0 + AFB1 group (Figure 2C). A few inflammatory cells and 
swelling of hepatocytes in the T500 + AFB1 group compared with the T0 group was noticed. 
The results of this study demonstrate that dietary curcumin could protect duck liver 
against acute damage induced by AFB1 administration. The liver ultrastructure is shown 
in Figure 2. In the T0 group, the cell nucleus and mitochondrial ridge of hepatocytes were 
clearly visible and the chromatin in the cell nucleus was evenly distributed (Figure 2D). 
In comparison with the T0 group, the hepatocyte nucleus was visibly deformed; chromatin 
was aggregated and the hepatocyte mitochondrial ridge was enlarged and deformed in 
the T0 + AFB1 group (Figure 2E). As expected, in comparison with the T0 + AFB1 group, 
hepatocyte nucleus and mitochondrial ridge were clearly visible and the chromatin ag-
gregation of hepatocytes was observed in the T500 + AFB1 group (Figure 2F). In addition, 
the hepatocyte nucleus and mitochondrial ridge were clearly visible when comparing the 
T500 + AFB1 group and T0 group.  

Figure 1. The plasma biochemical levels of ducks exposed to AFB1 at 12 h. (A) The TP content in the
plasma of ducks; (B) The ALB content in the plasma of ducks; (C) The GLO content in the plasma of
ducks; (D) The rate of ALB/GLO; (E) The TBIL activity in the plasma of ducks; (F) The ALP activity
in the plasma of ducks; (G) The ALT activity in the plasma of ducks; (H) The AST activity in the
plasma of ducks; (I) The rate of AST/ALT. Values mean the mean ± SEM (standard error (SE) of
means.), * means p < 0.05, ** means p < 0.01.
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3.3. CYP450 Content in Liver

Changes in CYP450 content in 10% liver homogenate are shown in Figure 3. There
was a significant increase in CYP450 (p = 0.008) content in the T0 + AFB1 group relative
to that in the T0 group. Dietary curcumin supplementation significantly attenuated the
CYP450 aggregation (p = 0.041) in the liver of ducks in the T500 + AFB1 group compared
with those in that in the T0 + AFB1 group. In addition, there was no significant increase in
CYP450 aggregation between the T500 + AFB1 group and T0 group (p > 0.05).
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3.4. AFB1-DNA Adducts in Liver

The aggregation of AFB1-DNA adducts in liver is depicted in Figure 4. AFB1 admin-
istration significantly increased AFB1-DNA adducts in the liver (p = 0.004) of ducks in
the T0 + AFB1 group compared with the T0 group. In addition, a significant decrease in
AFB1-DNA adducts in the liver of ducks in the T500 + AFB1 group (p = 0.013) compared
with the T0 + AFB1 group was found. Furthermore, a significant increase in AFB1-DNA
adducts in the T500 + AFB1 group compared with the T0 group was observed (p < 0.05).

3.5. Expression of Phase (I) Metabolic Enzyme Related Genes

To investigate the role of the phase (I) metabolic enzymes in the attenuating effects
of dietary curcumin on acute liver damage in ducks caused by AFB1 administration, the
expression levels of genes related to the phase (I) metabolic enzymes (CYP1A1, CYP2A6,
CYP1A4, and CYP3A4) were determined. As shown in Figure 5, AFB1 administration
significantly increased mRNA levels of genes containing CYP1A1, CYP1A4, and CYP3A4
and showed an increasing trend of the CYP2A6 mRNA level in the liver of ducks in the
T0 + AFB1 group compared with the T0 group. As predicted, adding curcumin into diet
significantly decreased phase (I) metabolic enzymes genes expression, including the mRNA
levels of CYP1A1, CYP1A4, and CYP2A6, in the liver of ducks in T500 + AFB1 group relative
to those in the T0 + AFB1 group. In addition, it had no significant impact on the increase in
mRNA expression including CYP1A1, CYP1A4, and CYP3A4 in the T500 + AFB1 group
compared with the T0 group (p > 0.05) and showed a significant decrease in CYP2A6
gene expression.
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3.6. Antioxidant Capacity in Liver

The antioxidant capacity in liver homogenate of ducks was demonstrated in Figure 6.
In comparison with the T0 group, AFB1 administration significantly decreased T-AOC
(p < 0.001), CAT (p < 0.001), T-SOD (p < 0.001), and GSH-ST (p < 0.001) activities and GSH
(p < 0.001) content; it also increased H2O2 and MDA contents in the liver of ducks in the
T0 + AFB1 group. Compared with the T0 + AFB1 group, dietary curcumin significantly
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increased the T-AOC (p < 0.001), CAT (p = 0.001), SOD (p < 0.001) and GSH-ST (p = 0.011)
activities and GSH (p < 0.001) content in liver; further, it decreased of H2O2 and MDA
contents in the liver. In addition, in comparison with the T0 group, a significantly decrease
in the antioxidant enzyme activities of T-AOC (p < 0.01), CAT (p < 0.01), T-SOD (p < 0.01),
GSH-ST (p < 0.01), and GSH (p < 0.001) was observed, along with a significant increase in
the contents of H2O2 (p < 0.01) and MDA (p < 0.01) in the T500 + AFB1 group.
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3.7. Expression of Molecules in the Nrf2-ARE Signaling Pathway

AFB1 administration is associated with cell antioxidant response, suggesting the
expression changes in genes participating in the Nrf2-ARE signaling pathway. As shown in
Figure 7A, compared with the T0 group, AFB1 administration decreased the related genes
expression including Nrf2 (p > 0.05), as well as enzymatic antioxidant system (CAT, SOD1,
GPX1, and GST; p > 0.05) and phase (II) detoxifying enzymes (NQO1, HO-1, GCLC, GCLM;
p > 0.05) in the T0 + AFB1 group. As expected, in comparison with the T0 + AFB1 group,
curcumin supplementation significantly increased the genes expression levels including
Nrf2, CAT, SOD1, GST, NQO1, HO-1, GCLC (p < 0.05) in the T500 + AFB1 group; further
there was an increasing trend in the GPX1 and GCLM genes (p > 0.05). In addition, in
comparison with the T0 group, a significant increase in genes expression of Nrf2, SOD1 and
NQO1 (p < 0.05) and a generally increasing trend of gene expression of CAT, GST, HO-1,
GCLC, GPX1, and GCLM (p > 0.05) in the T0 + AFB1 group were observed.
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3.8. Expression of Molecules in the NLRP3–Caspase-1 Signaling Pathway

As shown in Figure 8, compared with the T0 group, the mRNA levels of NLRP3 in the
liver of ducks were significantly increased after AFB1 administration and an increasing
trend of TXNIP and IL-18 gene expression was observed in the T0 + AFB1 group. As ex-
pected, in comparison with the T0 + AFB1 group, dietary curcumin significantly decreased
the mRNA levels of the genes NLRP3, TXNIP and IL-18 (p < 0.01) in liver of ducks in
the T500 + AFB1 group (Figure 8A–C). In addition, compared to the T0 group, there was
no significant decrease in the gene expression of NLRP3 and IL-18 (p > 0.05); however,
there was a significant increase in TXNIP (p < 0.05) gene expression in the T500 + AFB1
group. the protein levels of NLRP3 and caspase-1 were significantly increased in the liver
of ducks in the T0 + AFB1 group compared with the T0 group; whereas, compared to the T0
+ AFB1 group, it had a significant impact on the decrease in NLRP3 and caspase-1 protein
expression in the T500 + AFB1 group (Figure 8D–F). A significant decrease in caspase-1
protein expression (p < 0.05) was observed in the T500 + AFB1 group compared with the
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T0 group; whereas, there was a generally increasing trend in NLRP3 protein expression
(p > 0.05). These results indicated that dietary curcumin protected the liver against injury
induced by AFB1 administration by inhibiting the NLRP3–caspase-1 signaling pathway.
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4. Discussion

In this study, blood metabolism disorders and abnormal liver enzyme activity occurred
when animals were challenged with AFB1 administration. Abnormal metabolism, down-
regulation of TP, ALB and GLB and upregulation of metabolic enzyme activities (TBIL,
ALP, ALT, and AST) in the plasma have been reported as indicators for liver toxicity [25].
Hematological biochemical disorders were reported in broilers when AFB1 was added into
their diet (74 µg kg−1) [26]. Herein, a decrease in TP, ALB and GLB content and increases
in TBIL content and activities of ALP, ALT, and AST in the plasma were caused by AFB1
administration; the blood metabolism disorders demonstrated that AFB1 led to serious
liver damage in ducks. Similar results were reported by Wang et al. (2019), whereby AFB1
administration (40 µg/kg in the total mixed ration) increased the activity of ALB and GLO
and increased TP content in the serum of dairy cows [27]. Meanwhile, dietary curcumin
protected the liver against injury induced by AFB1 administration in this study. Li et al.
(2019) reported that curcumin supplementation significantly slowed the increase in ALT
and AST activity and the damage of liver induced by AFB1 [28]. In addition, our results
indicate that adding curcumin into the diet protected duck liver against acute damage
caused by AFB1 administration, which is consistent with the previous studies [7,19]. The
blood metabolism disorders were also reflected the changes in liver morphology.

The liver is a vital detoxification organ in the body and the main target organ of
AFB1 [29]. AFB1-contaminated diet induced liver damage as well as liver oxidation,
mainly manifesting as inflammatory cell infiltration [10]. In this study, results of H&E
staining and SEM demonstrate that morphological changes occurred in the liver of ducks
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after AFB1 administration, including enlargement and injury of hepatocellular tissues,
inflammatory cell infiltration, and nuclear vacuolation and necrosis. We observed changes
in the morphology and structure of hepatocytes induced by AFB1 administration indicating
liver functional disorders, while adding curcumin into diet showed remarkable protective
effects against histological toxin-induced injuries by AFB1 administration. In addition,
little inflammatory cell infiltration and nuclear vacuolation and necrosis were observed
in the T500 + AFB1 group compared with the T0 group. Furthermore, for rats, acute oral
AFB1 (44–663 µg of AFB1 kg−1 of b. w.) led to liver damage, manifesting in inflammatory
infiltrate, nuclear vacuolation and necrosis, in line with our results [30]. Similar results
were reported for Cobb broilers, in which AFB1 induced histopathological lesions; grape
seed proanthocyanidin extract (250 and 500 mg kg−1) + AFB1 (1 mg kg−1) mitigated AFB1’s
negative effects in rats with sitagliptin activating the Nrf2-ARE-HO-1 signaling pathway to
protect liver against AFB1-induced injury, while tea polyphenols protected hepatotoxicity
against AFB1-induced injury in rats [29–31].

Synthesizing and enriching AFB1-DNA adducts in the liver by the activation of
AFB1 in damaged liver morphology resulted in carcinogenic development [32]. After AFB1
administration, AFB1 is metabolized by cytochrome P450s isoenzymes to AFB1-8,9-epoxide
(AFBO) and related adducts [33], which are aggregated in liver damage and oxidative
DNA damage by ROS [34]. Therefore, the inhibition of AFB1-DNA adduct generation
in liver would protects the liver against damage induced by AFB1. In this study, AFB1
administration significantly increased AFB1-DNA adducts in the liver; notably, there was a
significant decrease in AFB1-DNA adducts in liver in the T500 + AFB1 group was observed,
compared with the T0 + AFB1 group. No significant increase of the generation of AFB1-
DNA adducts in the T500 + AFB1 group than that in the T0 group. Similar studies reported
by Li et al. (2019) and Saranya et al. (2015) argued that curcumin relieved liver damage
induced by AFB1 by decreasing AFB1-DNA adducts in the liver [28,35].

The expression levels of genes related to cytochrome P450s in healthy individual are
lower than those in specimens stimulated by exogenous chemicals [36]. Some studies
showed that genes expression related to CYP450 in tissues was modulated by nutritional
factors in turkeys and chicken and inhibited by polyphenols in humans [9,37]. The results
of this study demonstrated that CYP450 protein content was significantly increased in
injured liver after AFB1 administration; there was a significant decrease in CYP450 protein
content in the T500 + AFB1 group. No significant increase in CYP450 content in the T500
+AFB1 group was observed when compared with the T0 group. Limaye et al. (2018)
reported a similar report, arguing that curcumin inhibited hepatic activation of AFB1 to
toxic metabolic forms by decreasing the generation of CYP450 [38].

Previous studies demonstrated that curcumin inhibited the hepatic activities in CYP3A,
CYP2D6, CYP1A4, CYP3A4, and CYP2C9 in humans and CYP1A1, CYP1A4, CYP2A6
and CYP3A4 in chicks [7,39]. Herein, in order to investigate expression changes in genes
related to CYP450 in the liver of ducks, the gene expression levels containing CYP1A1,
CYP1A4, CYP2A6, and CYP3A4 in duck liver were determined. The mRNA levels of
CYP1A1, CYP1A4, CYP2A6, and CYP3A4 and related protein contents in CYP1A1 and
CYP3A4 were increased in the liver injured by AFB1 administration, which is consistent
with a previous study reporting that AFB1 was metabolized by the related cytochrome
P450s [40]. Dietary curcumin significantly decreased the expression levels of CYP450s
(CYP1A1, CYP1A4, CYP2A6, and CYP3A4) in the injured liver in the T500 + AFB1 group
compared with the T0 + AFB1 group. Similar to our report, Pauletto et al. (2020) presented
that curcumin supplementation alleviated liver damage by inhibiting the CYP2A6 gene
expression in broilers treated with curcumin supplementation and AFB1 administration [8].
In addition, a previous study demonstrated that bush sophora root polysaccharide (BSRPS)
eliminated liver injury induced by AFB1 by increasing the SOD2 protein content to inhibit
CYP1A5 protein levels, which supported the research results whereby the upregulation of
SOD gene expression significantly inhibited CYP450 activity in injured liver after AFB1
administration [40].
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Oxidation stress can cause a great harm to many important physiological functions
in livestock and poultry, such as liver function, renal function and immunity function,
et al. T-AOC, CAT, SOD, GSH, and GST play a vital role in maintaining the capacity of the
cellular antioxidant defense system, which could alleviate oxidation stress [41–44]. The
decrease in antioxidant enzymes activity and the increase in MDA and H2O2 content could
lead to an imbalance between oxidation and antioxidants in the body. In this study, AFB1
administration induced oxidative stress, indicating that a decrease in antioxidant activities
(T-AOC, CAT, and T-SOD) and GSH content, and an increase in MDA and H2O2 content in
the liver. Notably, adding curcumin into the diet diminished these negative effects induced
by AFB1, which is in line with a study reported by Wang et al. (2018) [45]. Changes in these
antioxidant enzymes activities containing T-AOC, CAT, and T-SOD, and contents in GSH,
MDA, and H2O2 in the liver in this study indicated that adding curcumin into the diet
attenuated the damage to antioxidant defense systems in the damage liver induced by AFB1
administration, which attributed to the properties of curcumin of scavenging free radicals,
inhibited oxidative enzymes and lipid peroxidation, and restored the antioxidant status [46].
In addition, AFB1 administration significantly decreased the GST activity, which in line
with a previous study [47]; however, adding curcumin into the diet restored GST activity
in duck liver, which may be related to the activation of the Nrf2 signaling pathway. GSH
plays an important role in maintaining the normal structure and function of cells via the
antioxidant system of redox and detoxification reaction, which is another key detoxification
cofactor of GST for AFB1 [48]. In this study, there was a significant decrease in GSH values
in the liver of ducks after AFB1 administration. As expected, dietary curcumin improved
GSH level in ducks, which may relate to the fact that curcumin improves gene expression
of glutamate-cysteine ligase (GCL), then induces de novo synthesis of GSH and elevates
the level in cellular GSH [49]. Our results demonstrated that curcumin protect liver against
oxidative stress induced by AFB1, which is in line with previous studies that curcumin has
an ability to alleviate oxidative stress in rats induced by AFB1 administration in rats [21,50].
This study reports that curcumin may have an ability to alleviate oxidative stress induced
by AFB1.

The Nrf2-ARE signaling pathway is crucial for the body in regulating oxidative stress.
Nrf2 has the ability to diminish oxidative stress in injured liver. When dissociated from the
Keap1-Nrf2 complexity in the cytoplasm, Nrf2 is translated into the nucleus and bound to
the antioxidant response element (ARE) and upregulates the expression of downstream
genes [51,52]. Nrf2 regulates gene expression of both antioxidant genes (CAT, SOD1, GPX1,
and GST) and phase (II) detoxifying enzyme genes (NQO1, HO-1, GCLC, and GCLM) [53].
In this study, the mRNA expressions in Nrf2 gene and a series of downstream genes
including antioxidant genes (CAT, SOD1, GPX1, and GST) and phase (II) detoxifying
enzyme (NQO1, HO-1, GCLC, and GCLM), were inhibited in the liver of ducks by AFB1
administration; in addition, curcumin supplementation significantly altered these genes
expression. Overall, this study reported that dietary curcumin protected liver against
damage and oxidative stress induced by AFB1 administration by regulating Nrf2-ARE
signaling pathway to enhance the antioxidant ability in liver of ducks. A similar study
shown that dietary curcumin significantly increased genes expression containing HO−1,
Cu/ZnSOD, CAT, γ-GCLC, γ-GCLM, and GPx via the activation of the Nrf2 signaling
pathway to enhance the resistant in broiler to heat stress [54]. Jin et al. (2021) also reported
that curcumin supplementation alleviated the oxidation stress in the ileum of ducks induced
by AFB1 by activating Nrf2 signaling pathway [55]. Overall, their results support our
results, in that curcumin has the ability to alleviate oxidative stress induced by AFB1 via
the Nrf2 signaling pathway.

The NLRP3–caspase-1 signaling pathway is a typical signaling pathway that mediates
inflammatory response. NLRP3 inflammasome could be activated by oxidative stress [56].
ROS are generally generated by redox potent responses and can activate the mitochondrial
electron transport chain (ETC) and induce tissue injury [57]. The activation for ROS leads
to dissociation of thioredoxin-interacting protein (TXNIP) from oxidized thioredoxin-1
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(Trx-1). Trx-1 activates the NLRP3 pathway via association with TXNIP [58], and then
activates caspase-1 to accelerate the production of proinflammatory cytokines IL-1β/IL-18.
Inflammation inhibition is another mode of curcumin action to protect the liver against
injury [59]. Gong et al. (2015) reported that curcumin has the ability to inhibit NLRP3
inflammation and IL-1β content induced by LPS, essentially due to its anti-inflammatory
and anti-oxidative properties [18]. In addition, similar studies showed that curcumin
inhibited NLRP3 protein expression, caspase1-p20 activation, and caspase-1 and IL-1β
levels in lupus-prone mice, as well as suppressed NLRP3 inflammation and IL-1β level
in rats [17,55,60]. This supports the results of this study, in that AFB1 administration
significantly increased gene and (or) protein expression of TXNIP, NLRP3, caspase-1, and
IL-18 in the NLRP3–caspase-1 signaling pathway, which may be related to the oxidative
stress induced by AFB1 administration. However, adding curcumin into the diet inhibited
related gene expression in the NLRP3–caspase-1 signaling pathway in this assay, which is
in line with our previous report arguing that curcumin supplementation could suppress
the inflammatory cytokines production induced by AFB1 in duck ileum [55]. Overall, these
previous results support our results in this study, in that curcumin relieved inflammation
and liver damage induced by AFB1 via inhibiting the NLRP3–caspase-1 signaling pathway.

5. Conclusions

In the present study, curcumin supplementation ameliorated AFB1 induced acute
liver lesion, detoxification, oxidative stress, and inflammation, strengthened GST-mediated
detoxification; and decreased the generation of CYP450 and AFB1-DNA adducts in liver.
Moreover, curcumin supplementation ameliorated acute liver lesion induced by AFB1
by inhibiting NLRP3–caspase-1 signaling pathway (Figure 9). The results of this study
demonstrate that curcumin was an effective feed additive to suppress liver injury induced
by AFB1, providing a potential guarantee for production safety and reduction in economic
losses induced by AFB1 contamination in the poultry breeding industry.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/foods10123086/s1, Table S1 shows the experiment design; Table S2 shows the ingredient
composition and nutrient content of the basal diet (%, as-fed basis); Table S3 shows the accession
number, Primer sequence, and product size of target genes.
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Abbreviations

AFB1 Aflatoxin B1
TP total protein
ALB albumin
GLB globulin
A/G ALB/GLB
ALT alanine aminotransferase
AST aspartate aminotransferase
ALP alkaline phosphatase
TBIL total bilirubin
T-AOC total antioxidant capacity
CAT catalase
T-SOD total superoxide dismutase
GSH reductive glutathione
GST glutathione S-transferase
H2O2 hydrogen peroxide
MDA methane dicarboxylic aldehyde
GSH-Px/GPx glutathione peroxidase
Keap1 Kelch-like ECH-associated protein
Nrf2 nuclear factor erythroid 2-related factor 2
NQO1 NAD(P)H quinone oxidoreductase 1
HO-1 heme oxygenase 1
GCLC glutamate cysteine ligase catalyzes subunits
GCLM glutamic acid cysteine ligase modified subunit
TXNIP thioredoxin interacting protein
NLRP3 NOD-like receptor family pyrin domain containing protein 3
Caspase-1 cysteine-dependent aspartate-directed protease-1
CYP1A1 cytochrome P450 1A1
CYP1A4 cytochrome P450 1A2
CYP2A6 cytochrome P450 2A6
CYP3A4 cytochrome P450 3A4
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