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Abstract: The olive is a fruit tree species economically very important in countries of the Mediter-
ranean basin. Somatic embryogenesis is a powerful in vitro technique with multiple uses in dif-
ferent fields, including breeding programs performed by both classical and innovative procedures.
Thus, somatic embryogenesis enables the application of biotechnological methods such as genetic
transformation, somaclonal variation, somatic hybridization, germplasm cryopreservation, in vitro
mutagenesis or in vitro selection. This editorial paper presents a special issue focused on “Somatic
embryogenesis in olive”. In this manuscript, the conceptual framework of the special issue is es-
tablished and the contributions are summarized and put into context. Finally, the main bottlenecks
limiting the practical applicability of somatic embryogenesis in this species are identified and the
future research prospects are discussed.
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1. Introduction

The olive (Olea europaea L.) is one of the most important and widespread fruit trees in
the Mediterranean basin [1]. This evergreen, long-lived tree is cultivated for its fruits and oil,
which constitutes an important component of the Mediterranean diet [2]. High nutritional
quality and healthy effects of olive oil compared with other plant oils greatly increased
worldwide olive oil consumption in the last years [3,4], thus raising its commercial value [2]
and economic importance.

Although olive has been cultivated in the Mediterranean basin from ancient times [5],
increased interest in olive products has led to worldwide expansion of olive tree planta-
tions. New countries such as Argentina, Chile, Mexico, USA, Japan, China, New Zealand,
Australia, and South Africa have introduced its cultivation in the last years [6,7] and the
cultivated area has increased from 8,351,779 ha in 2000 to 10,578,246 ha in 2019 [8], thus
making olive one of the most extensively cultivated fruit crops in the world [9]. Neverthe-
less, about 90% of olive groves still concentrates in the Mediterranean basin [8], with Spain,
Italy, and Morocco accounting for over 51% of the 19,464,495 tons of olives worldwide
produced [8].

Somatic embryogenesis is the developmental process through which a somatic cell
or group of somatic cells give rise to an embryo, capable of developing into a whole
plant [10]. Somatic embryogenesis can be initiated through several pathways: (1) Direct
embryogenesis from single cells through a totipotent zygotic-like state, (2) direct embryo-
genesis dependent on seed/embryo identity factors, and (3) indirect embryogenesis from
embryogenic cell clusters [11]. The switch from a somatic to an embryogenic state implies
coordinated changes at multiple levels produced by exogenous plant growth regulators or
stress treatments [12,13]. Subsequently, plant growth regulators, among other physical and
chemical treatments, regulate the transition between each embryonic developmental stage
up to embryo conversion into plants [14].

Somatic embryogenesis presents multiple applications, such as: (1) Utilization as a
model system in embryological studies and investigations on the cellular, molecular, and
genetic mechanisms involved in the acquisition of competence for somatic embryogene-
sis [15,16] or cell differentiation [13,17]. (2) Large-scale propagation of selected genotypes.
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(3) Production of synthetic seeds. (4) Germplasm conservation. (5) Use as adventitious
regeneration method, thus allowing the exploitation of biotechnological techniques such as
genetic transformation, somaclonal variation, in vitro mutagenesis, production of haploid
and double-haploid plants, somatic hybridization, and in vitro selection against biotic
or abiotic stressing agents [10]. Therefore, somatic embryogenesis is a powerful in vitro
technique, with multiple possibilities of use in olive-breeding programs based in both
conventional and innovative methods.

2. Somatic Embryogenesis in Olive

The olive is a tissue culture recalcitrant species [18] and, as in other trees, somatic
embryogenesis is the main method for adventitious plant regeneration [19,20].

Somatic embryogenesis in olive was first reported by Rugini [21], who initiated
embryogenic cultures from immature zygotic embryos of the cultivars Dolce Agogia,
Leccino, Frantoio, and Moraiolo. Since then, olive embryogenic cultures have been induced
from juvenile tissues of multiple cultivars and, in scarce occasions, from explants of adult
origin [20]. Somatic embryogenesis protocols currently available allow the obtainment of
an acceptable number of plants from embryogenic cultures of juvenile origin [22,23].

Application of biotechnological tools to olive through somatic embryogenesis-based
systems has greatly progressed in the last years [20]. Genetic transformation is the innova-
tive technique most widely applied, having been used with different aims, such as, growth
habit modification [24], drought [25] and osmotic stress tolerance [26], or pathogen resis-
tance [27,28]. Somaclonal variation occurrence has been investigated in olive embryogenic
cultures and different somaclones with altered vegetative and reproductive characters
have been identified [29–31]. Cryopreservation of different embryogenic tissues has been
performed using both slow cooling and vitrification-based methods [32–36]. The droplet
vitrification method in aluminum foil strips gave rise to very good results allowing the safe
long-term storage of both embryogenic calli and somatic embryos [32,36].

This special issue includes four articles on somatic embryogenesis in olive. The
first two works address the optimization of somatic embryogenesis in specific genotypes,
while the last two manuscripts focus on the effect of cryopreservation on the somatic
embryogenesis process and the quality of the regenerated plants. This is an important
issue deserving attention as some of the somatic embryogenesis applications involve its
execution in combination with other biotechnological methods.

Pires et al. [37] developed a somatic embryogenesis protocol for the Portuguese
cultivar Galega vulgar. The embryogenic competence of different explants excised from
mature zygotic embryos was investigated following a two-step procedure. The best results
were attained from radicles cultured under a 16 h photoperiod. Embryogenic cultures
were maintained in ECO medium [38,39] under light conditions and embryo conversion
was achieved in plant growth regulator free-OMc medium, not being necessary very
rigorous maturation requirements. Regenerated plants successfully acclimatized to ex
vitro conditions. This is the first investigation reporting somatic embryogenesis from
embryo-derived explants of the cultivar Galega vulgar.

Mazri et al. [40] optimized the maturation and conversion of somatic embryos derived
from radicle segments of mature zygotic embryos of the cultivar Dahbia. Different culture
media and plant growth regulator treatments were tested to induce the maturation of
globular embryos selected from maintenance medium. Similarly, cotyledonary embryos
developed in maturation medium were subjected to different culture media, hormone
combinations and light conditions in order to induce germination. Sucrose and mannitol
pretreatments were also applied to matured embryos, although no improvement in embryo
conversion was obtained. Secondary embryogenesis and adventitious bud formation
were observed in non-germinating somatic embryos. The frequency of these morphogenic
responses depended on culture conditions.

Bradaï and Sánchez-Romero [41] evaluated the effect of cryopreservation on the
different phases of the somatic embryogenesis process. For this purpose, the behavior
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of cultures established from cryopreserved somatic embryos was compared with that of
control, non-cryopreserved cultures during the proliferation, maturation, and germination
steps. The results obtained revealed that the droplet-vitrification method optimized by
Bradaï et al. [32] for the cryopreservation of olive somatic embryos did not negatively affect
somatic embryogenesis executed following the protocol described by Sánchez-Romero [23].
The genotype played a key role, largely determining the effect of cryopreservation on the
different phases of somatic embryogenesis.

In a second article, Bradaï and Sánchez-Romero [42] investigated the influence of
cryopreservation on the regeneration performance of olive embryogenic cultures and the
quality of the plants obtained, analyzing their behavior on the subsequent steps required
for ex vitro plant establishment. No effect of cryopreservation could be observed on the
regeneration potential or the regenerated plants. No influence on shoot multiplication,
rooting and acclimatization was detected either, although a significant genotype × cryop-
reservation interaction was found for shoot length during the multiplication step.

3. Conclusions and Future Prospects

Although much progress has been accomplished in olive somatic embryogenesis in
the last years [20], some drawbacks still limit its practical applicability in this species.

Though different somatic embryogenesis protocols are available in olive [20], their
efficiency varies depending on the genotype [20,22,41]. This influence of the genetic
constitution has been observed in the different phases of this multi-step technique, from the
initiation of embryogenic cultures [21,43] to the germination of somatic embryos [40]. This
high genotype dependence limits the applicability of the established procedures, hindering
protocols standardization.

Basic studies carried out at multiple levels (molecular, cellular, physiological, genetic,
or epigenetic) on key events of the somatic embryogenesis process, such as dedifferentiation,
acquisition of the embryogenic competence, or the transition thorough the successive
embryonic developmental stages can contribute to elucidate the mechanisms underlying
somatic embryogenesis. These investigations can help to understand the effects of the
treatments tested, thus improving the efficiency of protocol optimization and minimizing
trial and error experimentation. Additionally, knowing factors regulating key processes or
shifts in this morphogenic program may contribute to the development of more general,
widely applicable procedures.

Although limitations at different steps of the somatic embryogenesis process have
been reported in olive [44], induction of embryogenic cultures from adult tissues can be
nowadays considered the most limiting step. As only the initiation from explants of adult
origin can ensure genetic conformity, this point must be regarded as a fundamental aspect
determining the applicability of somatic embryogenesis. Although Rugini and Caricato [45]
and Capelo et al. [46] reported successful somatic embryogenesis initiation from adult
material of the cultivars Canino and Moraiolo and one genotype of wild olive, respectively,
the protocols utilized were not applicable to other genotypes. More recently, Mazri et al. [47]
developed a protocol for the induction of somatic embryogenesis from petioles and leaf
fragments of plants of the cultivar Dahbia rejuvenated by repetitive micropropagation.
This procedure has been successfully reproduced in two genotypes of wild olive, using
apical buds excised from micropropagated shoots [48]. Toukif et al. [49] also obtained
somatic embryogenesis from leaves and petioles derived from micropropagated plants of
the cultivar Picual. Although the induction medium contained the hormonal combination
previously used by Mazri et al. [47], significantly longer induction periods were tested
and the expression of somatic embryogenesis was performed in a plant growth regulator-
free medium.

An important aspect in somatic embryogenesis is the fidelity of the regenerated
plants. As in other in vitro culture techniques, somaclonal variation is one of the more
important drawbacks of somatic embryogenesis. Somaclonal variation, defined by Larkin
and Scowcroft [50] as the variation arising in the cell cultures, regenerated plants, and their
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progenies as a consequence of the plant cell culture itself, can have multiple origins, such
as chromosomal aberrations, genetic alterations, or epigenetic changes [51]. According to
Hervé et al. [51], these different defects are not mutually exclusive, and several different
sources of somaclonal variation can be observed within the same regenerant population.

In olive plants regenerated via somatic embryogenesis, both true-to-typeness and
somaclonal variation have been reported. Thus, Rugini and Silvestri [44] found phenotypic
stability in in-field observations of plants of the cultivar Canino derived from somatic
embryogenesis. However, in plants of the cultivar Frangivento, Leva et al. [31] described
two somaclones exhibiting altered vegetative and reproductive traits. In plants regenerated
from zygotic embryos of the cultivar Picual, somaclonal variation was detected by both
phenotypic [29] and genetic analysis [30]. Phenotypic analysis allowed the identification of
fourteen variant phenotypes affecting vegetative and reproductive development. Some
of the identified variants can constitute a very interesting material to be included in olive
breeding programs [29].

Therefore, although much more progress has been achieved in olive in the last years,
some drawbacks still limit its practical applicability supporting breeding programs based
in both conventional and innovative techniques. Until such weak points are solved, more
research is still needed.
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