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Cardiovascular disease is the leading cause of premature death worldwide, and atherosclerosis is the main contributor. Lipid-laden
macrophages, known as foam cells, accumulate in the subendothelial space of the lesion area and contribute to consolidate a chronic
inflammatory environment where oxygen and nitrogen derived oxidants are released. Oxidatively modified lipids and proteins are
present both in plasma as well as atherosclerotic lesions. A relevant oxidative posttranslational protein modification is the addition
of a nitro group to the hydroxyphenyl ring of tyrosine residues, mediated by nitric oxide derived oxidants. Nitrotyrosine modified
proteins were found in the lesion and also in plasma from atherosclerotic patients. Despite the fact of the low yield of nitration,
immunogenic, proatherogenic, and prothrombotic properties acquired by 3-nitrotyrosine modified proteins are in agreement with
epidemiological studies showing a significant correlation between the level of nitration found in plasma proteins and the prevalence
of cardiovascular disease, supporting the usefulness of this biomarker to predict the outcome and to take appropriate therapeutic
decisions in atherosclerotic disease.

1. Introduction

A wide range of studies support the role of oxidative stress
in the development of cardiovascular disease [1–6], and the
evaluation of oxidant-mediated biomolecule modifications is
able to predict clinical outcomes [7–9]. The atheromatous
process is related to endothelial dysfunction, and the presence
of atherosclerotic risk factors such as hypercholesterolemia
and hypertension induces the expression of cell adhesion
molecules such as VCAM-1, ICAM-1, E-selectin, and P-
selectin [10], which promote the adhesion of monocytes and
T cells to the vascular endothelium and its transmigration
into the subendothelial space. Leukocytesmigrating from the
blood stream to the vascular wall play a fundamental role
in atherosclerosis, acting as nucleating centers for modified
biomolecules and also as the main source of oxidants inside
the inflamed blood vessel. Uncontrolled uptake of LDL and
altered cholesterol efflux are the main factors that contribute
to macrophages lipid overload and foam cell formation [11].
In macrophages, the uptake of oxidized LDL is mediated by
a group of receptors, including the scavenger receptors class
A (SR-A) and CD36, a class B receptor, and the lectin-type
oxidized LDL receptor 1 (LOX-1) [12, 13]. On the contrary, the
scavenger receptor B1 (SR-B1) and the ATP-binding cassette

transporters A1 (ABCA1) andG1 (ABCG1) are responsible for
cholesterol efflux [14].

Activation of inflammatory cells into the subendothelial
space is tightly associated with generation of reactive oxy-
gen species (ROS) and nitrogen species (RNS), which can
mediate protein and lipid modifications. Protein nitration
is a posttranslational modification caused by nitric oxide
(∙NO) derived oxidants that frequently modifies the activity
of the target molecule [15, 16]. The presence of proteins
bearing the 3-nitrotyrosine modification was described in
both plasma and atherosclerotic lesions from coronary artery
disease patients and also from atherosclerotic prone mice
[17, 18].

2. Mechanisms of Protein Nitration

Protein nitration involves two steps (Figure 1); in the first
one hydrogen atom is lost from the phenolic ring of tyrosine
residues with the transient formation of a tyrosyl radical
(Tyr∙). This step is followed by the diffusion controlled
reaction of Tyr∙ with nitrogen dioxide radical (∙NO

2

) at
diffusion controlled rate (𝑘 = 3.9 × 109M−1 s−1) [19]
(Figure 1). The initial oxidation of tyrosine can be achieved
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Figure 1: Mechanism of protein 3-nitrotyrosine formation.

by a number of oxidants, including hydroxyl radical (∙OH,
𝑘 = 1.3×10

10M−1 s−1) [20] and ∙NO
2

(𝑘 = 3.2×105M−1 s−1)
[21].

Peroxynitrite (ONOO−), the diffusion controlled reaction
product between ∙NO and superoxide (O

2

∙−) (1), generates
both radicals [16]:

∙NO +O
2

∙−

→ ONOO− (1)

Actually, the homolytic decomposition of the protonated
form, peroxynitrous acid (pKa = 6.8), generates ∙OH and
∙NO
2

:

ONOO− +H+ → ONOOH → ∙OH + ∙NO
2

(2)

Carbonyl radicals (CO
3

∙−), produced by decomposition of
nitrosoperoxycarboxylate (ONOOCO

2

), the product of the
reaction between peroxynitrite and CO

2

(3), also react with
tyrosine residues (𝑘 = 4.5 × 107M−1 s−1) [22]:

ONOO− + CO
2

→ ONOOCO
2

→
∙NO
2

+ CO
3

∙− (3)

Lipid-derived alkoxyl (LO∙) (𝑘 = 5 × 105M−1 s−1) [23] and
peroxyl radicals (LOO∙) (𝑘 = 4.5 × 103M−1 s−1) [24] can
also promote one-electron oxidations of tyrosine residues
in proteins. Meanwhile, myeloperoxidase (MPO) is able to
feed both steps. In the first one, MPO-derived compounds
I (𝑘 = 2.9 × 104M−1 s−1) [25] and II (𝑘 = 1.57 × 104M−1 s−1)
[26] react with tyrosine to yield Tyr∙. In addition, both
compounds generate ∙NO

2

[27] ((4)–(6)), which is able to

mediate themodification of tyrosine residues attained in both
steps (Figure 1):

MPO +H
2

O
2

→ Comp-I +H
2

O (4)

Comp-I +NO
2

−

→ Comp-II + ∙NO
2

(5)

Comp-II + 2H+ +NO
2

−

→ MPO +H
2

O + ∙NO
2

(6)

3. Vascular Sources of Reactive Species

Protein tyrosine nitration is localized within specific subcel-
lular compartments in close proximity to the enzymes related
to the production of the involved oxidants, as demonstrated
by immunoelectron microscopy [28]. The formation of the
main precursors of ROS is catalyzed by a group of specially
committed enzymes present fundamentally in the plasma
membrane and membrane surrounded organelles known
as NADPH-oxidase (Nox, EC 1.6.3.1). The Nox family of
enzymes is specifically dedicated to generate oxygen derived
oxidants, in particular O

2

∙− and less frequently hydrogen
peroxide (H

2

O
2

). Four Nox isoforms have been found in
the vasculature, Nox1, Nox2, Nox4, and Nox5, and at the
vascular level Nox enzymes have emerged as themajor source
of ROS [29]. The different Nox isoforms accomplish several
biological functions, which are dependent not exclusively
on the enzyme but also on the specific cell type. Nox1 is
expressed in endothelium, smooth muscle cells, and adven-
titial fibroblasts [30, 31], while Nox2, Nox4, and Nox5 are
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found in all vascular wall cells [31, 32]. Generation of ROS
by phagocytic cells, mostly mediated by Nox2, is activated
by several stimuli through receptor-mediated protein kinase
activation. In fact, cytokines and modified-LDL are able to
trigger p47phox phosphorylation and its migration to the
plasmamembranewhere it associates with the electron trans-
ferase (gp91phox) and p22phox, activating O

2

∙− production.
During membrane migration p47phox is escorted by several
cytosolic subunits, in particular p67phox and Rac2 [33].
While Nox1 is activated in an analogous way as Nox2, Nox4
activation requires the association of Poldip2 with p22phox
[34], and Nox5 is activated by association of Ca2+ with its N-
terminal calmodulin-like domain, which contains four Ca2+-
binding EF-handmotifs. As other Nox enzymes, Nox5 is also
regulated by protein kinase C (PKC) as well as the tyrosine
kinase c-Abl [35].

Other putative sources of ROS at vascular level are
xanthine oxidase (XO, EC 1.17.3.2) and the mitochondrial
electron transport chain. Unlike its precursor xanthine dehy-
drogenase (XDH, EC 1.17.1.4), which uses NAD+, xanthine
oxidase uses oxygen as electron acceptor [36–38]. Superoxide
is generated as a mitochondria byproduct, by electron leak-
ages predominantly at complexes I and III [39, 40].

Meanwhile ∙NO, the main precursor of reactive nitrogen
species (RNS) is generated by the family of nitric oxide
synthases (NOS, EC 1.14.13.39) from L-arginine. In the
vasculature ∙NO produced by the endothelial isoform or
NOS3 is responsible for the endothelial-mediated vascular
relaxation. In the vascular wall the inducible form or NOS2
generates ∙NO after cell stimulation. Macrophage activation
may lead to the simultaneous production of O

2

∙− and
∙NO and consequently to ONOO− formation. Actually, the
presence of proinflammatory cytokines, as interleukin-1𝛽,
tumor necrosis factor 𝛼, and interferon 𝛾, generated by
inflammatory cells induces simultaneously the assembly of
Nox2 and the expression of NOS2 [41–43].

Myeloperoxidase (EC 1.11.2.2) is a member of the
mammalian heme peroxidase superfamily of enzymes and
uses H

2

O
2

to form more reactive oxidant species. In the
presence of MPO and H

2

O
2

, hypochlorous acid (HOCl)
and ∙NO

2

are formed from Cl− and NO
2

−, respectively
[44, 45]. Circulating neutrophils, monocytes, and some
tissue macrophages express MPO [46]. While MPO and
its products are important defense factors against invading
microorganisms, different evidences suggest that excessive
activity of MPO can play a role in inflammatory tissue
injury. In fact, plasma MPO independently predicted the
early risk of myocardial infarction, as well as the risk of
other major adverse cardiac events (MACE) in patients with
chest pain [47, 48]. Additional evidences of the role of
MPO in vascular pathology come from population stud-
ies, where elevated circulating levels of this enzyme in
an initially healthy population predicted the risk of future
coronary heart disease [9, 49, 50]. In patients being treated
for coronary artery disease, increased MPO concentrations
remained significantly associated with incident MACE over
a follow-up of 3 years, even after adjusting for traditional
cardiac risk factors, creatinine clearance, B-type natriuretic
peptide, and high-sensitivity C-reactive protein [51]. In fact,

the accumulation of leukocytes containing MPO in the
subendothelial space in sites of erosion and breakdown of
coronary plaque has been reported [52, 53], pointing to this
enzyme as one of those responsible for the acute coronary
syndrome.

4. Main Nitration Targets in Atherosclerosis

State-of-the-art technology has allowed precise evaluation
of circulating nitrotyrosine modified proteins. Higher levels
of 3-nitrotyrosine in plasma proteins have been reported in
atherosclerotic patients and accurately measured by stable
isotope dilution HPLC with on-line electrospray ionization
tandem mass spectrometry (LC/ESI/MS/MS) [54] and spe-
cific ELISA techniques developed to measure fibrinogen
and 3-nitrotyrosine modified fibrinogen [55, 56]. An impor-
tant increase of 3-nitrotyrosine modified apolipoprotein A-
1 (apoA-1), apolipoprotein B-100 (apoB-100), and fibrinogen
has been reported in plasma from individuals diagnosed with
coronary artery disease (Table 1). In addition, using specific
enrichment and mass spectrometric techniques the site of
nitration was identified in several proteins isolated from
human plasma (Table 2).

Apolipoprotein A-1, the major protein in high density
lipoprotein (HDL), was a preferential target for nitration
in subjects with CVD. Experimental evidences support
the role of MPO in circulating apoA-1 nitration [57]. In
particular, coimmunoprecipitation experiments proved the
presence of circulating apoA-1/MPO complexes in HDL
isolated from human CVD plasma [58]. Colocalization of
3-nitrotyrosine modified HDL with MPO in human aortic
atherosclerotic intima was also reported [59]. Moreover,
MPO levels predicted accelerated progression of coronary
atherosclerosis in diabetic patients [60]. Consequently, MPO
appears to be responsible for the dramatic increase of
nitrotyrosine and chlorotyrosine observed within apoA-1
in HDL recovered from serum and atherosclerotic lesions
from individuals with CVD. In cholesterol-loaded murine
macrophages, nitration and chlorination of apoA-1, both
in vitro and in vivo, resulted in a less effective protein
than the unmodified one to stimulate ABCA-1-dependent
cholesterol efflux [57, 58, 61]. While in CVD patients, the
site of union to lecithin cholesterol acyltransferase (LCAT),
involving tyrosine 166, was the primary target for apoA-
1 modification (Table 2). Nitration of this tyrosine residue
decreased apoA-1-mediated LCAT activation and resulted in
a dysfunctional HDL particle [62–64]. MPO-modified apoA-
1 showed also a reduced capacity to stimulate endothelial
cell proliferation and migration, through decreased Akt and
ERK1/2 phosphorylation [65]. The modification of apoA-
1 in vitro by MPO-derived hypochlorous acid, in protein
residues different from tyrosine, switched the role of HDL
in inflammation from anti- to proinflammatory. In fact, the
association of this oxidized lipoprotein form to endothelial
cells led to NF-𝜅B activation and the appearance of VCAM
on the cell surface. This gain of function was mediated
by the saturable and specific binding of oxidized HDL to
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Table 1: Quantitative estimation of 3-nitrotyrosine in CVD plasma.

Control CVD
Change (%) ReferenceNO2-Tyr/Tyr

(𝜇mol/mol)1
NO2-Tyr/protein

molecule2
NO2-Tyr/Tyr
(𝜇mol/mol)1

NO2-Tyr/protein
molecule2

Total serum proteins3 6.1 (3.9–7.8) NA 9.0 (5.7–12.9) NA 47 [57]
ApoA-I3 438 (335–598) 1/325 629 (431–876) 1/227 44 [57]
ApoB-1003 4.0 (1.3–6.9) 1/1,644 8.7 (5.2–12.1) 1/756 117 [57]
Fibrinogen4 24.6 (23.4–25.9) 1/303 31.8 (28.7–34.9) 1/235 29 [56]
1Nitrotyrosine levels are reported as median (IQR).
2The number of Tyr modified residues per protein molecule (NO2-Tyr/protein molecule) was calculated using 153, 7, and 134 Tyr residues for apoB-100, apoA-
1, and fibrinogen, respectively, from the PromParam tool (Expasy) [76].
3Data in reference [57] were obtained using stable isotope dilution LC/ESI/MS/MS.
4Plasma concentrations of total and nitrated fibrinogen in reference [56] were determined by ELISA and reported as mg/mL for fibrinogen and nM for
nitrotyrosine; 𝜇mol NO2-Tyr/mol Tyr were calculated using a molecular weight for fibrinogen of 340 kDa and 134 Tyr residues.

Table 2: Nitration sites in plasma proteins identified by mass spectrometry.

Protein Nitrated Tyr Effect References
ApoA-11 Y166 and Y192 Decreased activation of LCAT and ABCA1 [59, 77–79]

ApoB-1002 Y276, Y583, Y666, Y720, Y2524,
Y3139, Y3295, Y3489, Y4141

Increased affinity for LOX-1, CD36, SR-A [69]

Fibrinogen 𝛽 chain1 Y292, Y422 Accelerated clot formation [55]
Ig gamma-1 chain C region1 Y161, Y290 Unknown [18]
Ig kappa chain C region1 Y32, Y84 Unknown [18]
Ig lambda chain C region1 Y84 Unknown [18]
Ig mu chain C region1 Y276 Unknown [18]
Ig heavy chain V-III1 Y33, Y80, Y95 Unknown [18]
Zinc finger and BTB domain-containing protein 11 Y83 Unknown [18]
Protein EFR3 homolog B1 Y669 Unknown [18]
1Data from proteins immunocaptured from individuals diagnosed with CVD.
2Data from an electronegative LDL fraction isolated from plasma from healthy humans.

an unknown endothelial cell receptor, different from the
scavenger receptors CD36 and SR-A [66].

Apolipoprotein B-100, the main LDL protein, has also
been found nitrated in CVD plasma (Table 1). Several LDL
nitration sites were identified by mass spectrometry after
authentic peroxynitrite exposure [67, 68] and also by upreg-
ulation of Nox expression by bovine aortic endothelial cells
exposed to oscillatory and pulsatile shear stress [67]. A simi-
lar pattern of tyrosine nitration was observed in circulating
LDL isolated from healthy blood donors (Table 2) [69]; no
data on CVD patients were reported. Nitrated apoB-100
showed profound conformational changes, which promoted
increased LDL binding and uptake by endothelial cells.
Internalization of thismodified form of LDLwasmediated by
LOX-1, CD36, and SR-A [69]. Moreover, the in vitro exposure
to nitrating agents derived from monocytes in the presence
of exogenous NO

2

− converted LDL into a form that was
taken up and degraded by macrophages, leading to foam cell
formation [70].

Fibrinogen is another important target of reactive species
in CVD, and increased levels of nitrated fibrinogen were
found in patients with coronary artery disease (Table 1) [56].
In otherwise healthy humans, an inflammatory challenge
was able to induce fibrinogen nitration [71]. Moreover, in

atherosclerosis-prone mice, knockout for the LDL receptor
and apolipoprotein B mRNA editing enzyme (apobec), the
lack of apoA-1 increased the level of nitrated fibrinogen in
plasma, pointing to a subrogate role for the coagulation
protein as a nitration target [17]. Besides, cigarette smoking,
an important risk factor for both atherosclerosis and throm-
bosis, also induced an important increase in the level of 3-
nitrotyrosinemodified fibrinogen. In fact, nitrated fibrinogen
was significantly higher in smokers (51.0 ± 5.5 𝜇mol NO

2

-
Tyr/mol Tyr) compared with nonsmokers (36.0 ± 3.2 𝜇mol
NO
2

-Tyr/mol Tyr) [55]. The presence of 3-nitrotyrosine
in fibrinogen 𝛽 chain significantly accelerated fibrin clot
formation [17]. The fibrin clot architecture was altered, with
increased stiffness, and the rate of clot lysis was reduced
by nitration [55, 72]. This modified form of fibrinogen
could favor fibrin deposition onto atherosclerotic plaques and
explain the increased propensity for thrombotic events found
in coronary artery disease subjects and atherosclerosis-prone
mice.

To add to the pathogenic effects of protein nitration in
atherosclerosis, the presence of increased levels of nitroty-
rosine in circulating proteins and proteins isolated from
atherosclerotic plaques was associated with the presence of
circulating specific immunoglobulins against the nitrated
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epitope. Anti-3-nitrotyrosine antibodies were strongly asso-
ciated with angiographic evidence of significant coronary
artery disease [18]. The levels of immunoglobulins that rec-
ognize 3-nitrotyrosine were significantly high also in plasma
of subjects with acute lung injury [73] and in atherosclerosis-
prone mice [17]; however the functional repercussion of this
immune response still remains unexplored. Passive immu-
nization of experimentation animals would help to under-
stand the role of anti-nitrotyrosine antibodies in atheroscle-
rosis. In addition, the identification of protein(s) responsible
for triggering the adaptive immune response against the
nitrated epitope would help to bring some light onto the
pathways linking inflammation, oxidative posttranslational
protein modifications, and atherosclerosis.

5. Concluding Remarks

Weand others have demonstrated the presence and structural
and functional consequences of the modification by 3-
nitrotyrosine on plasma as well as tissue proteins [16]. Despite
the fact of significant increases observed on protein nitration
in CVD, the inhibitory effect of this posttranslational protein
modification on the activity of the entire population of
proteinmolecules isminimal, since for each proteinmolecule
modified by nitration there are several hundreds of them still
unmodified and active [74]. For instance, apoA-1 nitration
increased 47% in CVD patients (Table 1); this supposed a
change in the number of tyrosine residues modified by
nitration from one residue each 325 protein molecules to
one residue each 227 protein molecules. The highly signif-
icant number of unmodified protein molecules would be
enough to fulfill the protein function without any manifest
biochemical effect. However, as already discussed, nitration
of apoB-100 and fibrinogen promote new proatherogenic
and prothrombotic functions, which together with the onset
of an adaptive immune response triggered by the nitrated
epitope agree with epidemiological results demonstrating a
significant correlation between plasma 3-nitrotyrosine levels
and higher cardiovascular risk and support the usefulness of
this posttranslational protein modification as a risk marker
[75].

Abbreviations

ROS: Reactive oxygen species
RNS: Reactive nitrogen species
NO
2

-Tyr: 3-Nitrotyrosine
LDL: Low-density lipoprotein
HDL: High density lipoprotein
apoB-100: Apolipoprotein B-100
apoA-1: Apolipoprotein A-1
SR-A: Scavenger receptor class A
CD36: Scavenger receptor CD36
LOX-1: Lectin-type oxidized LDL receptor 1
SR-B1: Scavenger receptor B1
ABCA1: ATP-binding cassette transporter A1
ABCG1: ATP-binding cassette transporters G1
Nox: NADPH-oxidase
MPO: Myeloperoxidase

NOS: Nitric oxide synthase
LC/EIS/MS/MS: Liquid chromatography electron

ionization spray mass spectrometry.
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[21] W. A. Prütz, H. Mönig, J. Butler, and E. J. Land, “Reactions
of nitrogen dioxide in aqueous model systems: oxidation of
tyrosine units in peptides andproteins,”Archives of Biochemistry
and Biophysics, vol. 243, no. 1, pp. 125–134, 1985.

[22] O. Augusto, M. G. Bonini, A. M. Amanso, E. Linares, C. C. X.
Santos, and S. L. de Menezes, “Nitrogen dioxide and carbonate
radical anion: two emerging radicals in biology,” Free Radical
Biology and Medicine, vol. 32, no. 9, pp. 841–859, 2002.

[23] L. K. Folkes, S. Bartesaghi,M. Trujillo, R. Radi, and P.Wardman,
“Kinetics of oxidation of tyrosine by a model alkoxyl radical,”
Free Radical Research, vol. 46, no. 9, pp. 1150–1156, 2012.

[24] S. Bartesaghi, J.Wenzel,M. Trujillo et al., “Lipid peroxyl radicals
mediate tyrosine dimerization and nitration in membranes,”
Chemical Research in Toxicology, vol. 23, no. 4, pp. 821–835, 2010.

[25] M. Tien, “Myeloperoxidase-catalyzed oxidation of tyrosine,”
Archives of Biochemistry and Biophysics, vol. 367, no. 1, pp. 61–
66, 1999.

[26] L. A. Marquez and H. B. Dunford, “Kinetics of oxidation of
tyrosine and dityrosine by myeloperoxidase compounds I and
II: implications for lipoprotein peroxidation studies,” Journal of
Biological Chemistry, vol. 270, no. 51, pp. 30434–30440, 1995.

[27] A. van der Vliet, J. P. Eiserich, B. Halliwell, and C. E. Cross,
“Formation of reactive nitrogen species during peroxidase-
catalyzed oxidation of nitrite: a potential additional mechanism
of nitric oxide- dependent toxicity,” The Journal of Biological
Chemistry, vol. 272, no. 12, pp. 7617–7625, 1997.

[28] H. F. G. Heijnen, E. van Donselaar, J. W. Slot et al., “Subcellular
localization of tyrosine-nitrated proteins is dictated by reactive

oxygen species generating enzymes and by proximity to nitric
oxide synthase,” Free Radical Biology and Medicine, vol. 40, no.
11, pp. 1903–1913, 2006.
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