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Abstract

The ability of cells to accurately control gene expression levels in response to extracellular cues is limited by the inherently
stochastic nature of transcriptional regulation. A change in transcription factor (TF) activity results in changes in the
expression of its targets, but the way in which cell-to-cell variability in expression (noise) changes as a function of TF activity,
and whether targets of the same TF behave similarly, is not known. Here, we measure expression and noise as a function of
TF activity for 16 native targets of the transcription factor Zap1 that are regulated by it through diverse mechanisms. For
most activated and repressed Zap1 targets, noise decreases as expression increases. Kinetic modeling suggests that this is
due to two distinct Zap1-mediated mechanisms that both change the frequency of transcriptional bursts. Notably, we
found that another mechanism of repression by Zap1, which is encoded in the promoter DNA, likely decreases the size of
transcriptional bursts, producing a unique transcriptional state characterized by low expression and low noise. In addition,
we find that further reduction in noise is achieved when a single TF both activates and represses a single target gene. Our
results suggest a global principle whereby at low TF concentrations, the dominant source of differences in expression
between promoters stems from differences in burst frequency, whereas at high TF concentrations differences in burst size
dominate. Taken together, we show that the precise amount by which noise changes with expression is specific to the
regulatory mechanism of transcription and translation that acts at each gene.
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Introduction

The cellular response to environmental changes is mediated

through activation of TFs and subsequent coordinated activation

and repression of dozens of target genes. However, gene

expression is noisy [1], and this limits the precision with which

cells can regulate protein levels. Genome-wide, noise (s2/m2,

variance/mean2) decreases as expression increases [2–4]. Along

this global trend, individual genes with the same average

expression in the population differ in their amount of noise. The

level of noise for each gene is related to its function and is

determined by the mechanisms of regulation [5]. However, the

precise mechanisms by which control of noise is accomplished for

native genes are not known.

Two quantities that describe the dynamics of gene expression,

and have been related to the distribution of protein abundances,

are burst size and burst frequency. Burst frequency is determined

by the rate at which the promoter switches from an inactive to an

active transcriptional state due to transcription factor (TF) binding

and subsequent PolII recruitment (promoter on-switching). Burst

size is the number of proteins produced during each promoter

on-event [6–8]. Native genes differ in the relative contribution of

burst frequency and size to expression [4,9,10], suggesting that

evolution can tune both parameters in order to reach an optimal

level of expression and noise for each gene [11].

When an increase in gene expression is caused by an increase in

the rate of promoter on-switching (burst frequency), noise (s2/m2)

decreases monotonically with expression [12]. In contrast, an

increase in burst size (due to a decrease in promoter off-switching

rate or an increase in the transcription or translation rate) results in

an increase in expression and in noise strength (s2/m), and no

change in noise [12]. Mutations in the TATA box in yeast [13]

and the ribosome binding site in B. subtilis [14] both affect noise

strength, but not noise. The former is thought to be involved in

transcription re-initiation [15], thus extending the time of each

active state of the promoter, while the latter affects the number of

proteins produced from each mRNA molecule. These observa-

tions strengthen the claim that changes in mean expression but not
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noise stem from molecular mechanisms that affect the number of

proteins produced during each transcriptional event, but not the

frequency of such events. Taken together, these data support a

model of gene expression in which changes in promoter dynamics,

such as changes in on-switching rates and transcription and

translation rates, can be deduced by measuring how noise changes

with expression [4,7,8].

Since most genes are regulated through multiple mechanisms,

each of which can affect burst size and burst frequently differently,

different genes should exhibit different relationships between mean

expression and noise. However, measurements of a set of seven

different promoters in E. coli all showed similar changes in

expression and noise throughout induction [16]. Gene regulation

in eukaryotes is more complex, and we hypothesized that burst

frequency and burst size would be differentially regulated for each

gene and, as a consequence, that the relationship between noise

and expression would be different for different genes.

To characterize the relationship between mean expression and

noise for native promoters in response to environmentally

stimulated changes in TF activity, we generated a set of 16 strains

in which distinct promoters are fused upstream of a yellow

fluorescent protein reporter (YFP). In each strain, we extracted a

different Zap1 binding-site containing promoter from its native

locus, integrated it into the his3 locus, and measured its expression

and noise at 12 different zinc concentrations (induction levels).

Decreasing zinc concentration increases the activity and expres-

sion of Zap1 and changes the expression of Zap1 target promoters

[17]. The resulting Zap1 dose-response curves of these targets

show activation, repression, and a combination of activation and

repression, consistent with previous observations [17].

We found that for Zap1-activated targets, an increase in Zap1

causes an increase in expression and a decrease in noise. Similarly,

Zap1-repressed targets exhibit the same relationship between

expression and noise, whereby an increase in Zap1 causes a

decrease in expression and an increase in noise. Despite this

general trend that has previously been reported [2–4], we found

that the slope of noise versus expression is unique for each

promoter, showing that noise is not determined by expression level

alone. The most notable exception to expression determined noise

is the ZRT2 promoter, which is both activated and repressed by

Zap1 [18], in which we found a different and novel relationship

between mean expression level and the distribution of expression.

Repression of ZRT2 by Zap1 results in a decrease in both

expression and noise, leading to a transcriptional state of low

expression and low noise that is unique among the 16 tested

promoters. This behavior is predicted by a kinetic model in which

repression is due to a secondary binding event near the TATA that

causes a decrease in transcription rate (burst size), thereby

preventing the typical increase in noise that accompanies

repression due to a reduction in burst frequency. These results

suggest that the relationship between noise and expression is

unique to each promoter and is determined by the regulatory

mechanism encoded in the promoter DNA sequence and not by

mean expression level alone.

We hypothesized that further noise reduction will occur when

activation and repression are performed by the same TF. Using a

model of noise that takes into account the sensitivity to TF level

fluctuations and an experiment in which we decouple activator

from repressor, we find strong evidence supporting our hypothesis

that coupling between activator and repressor is a mechanism for

noise reduction.

Finally, analysis of the data from all measured Zap1 targets

brings forward a global principle of regulation in which the major

source of differences in expression between promoters changes

with induction. Our results strongly support a model in which at

low Zap1 activity, differences in expression between Zap1 targets

are due to variability in the frequency of transcriptional bursts,

while at high Zap1 activity, differences are due to variability in the

number of proteins produced during each transcriptional burst.

This model suggests that such behavior is a general property of

transcriptional regulation.

Results

Each Target of a Single TF Exhibits a Unique Gene-
Specific Scaling of Expression and Noise in Response to
Changes in TF Activity

To study how expression of different native promoters is

regulated by environmental-induced changes in TF activity, we

measured promoter-driven expression in single cells for 16 targets

of the TF Zap1 in response to changes in extracellular zinc. To do

this we used an experimental system that we previously developed

in which a promoter of interest drives YFP expression from the

genomic his3 locus (Figure 1A) [19]. We generated a set of 16

promoter-YFP fusion strains and used flow-cytometry to perform

quantitative single-cell measurements of promoter-driven expres-

sion at 12 induction points (Figure 1C). These promoters

(Figure 1B, Table S1) have diverse activation curves (Figure 1D,

Figure S1) and, while the response of each promoter correlates

with the predicted Zap1 occupancy along the promoter (Figure

S2), the diversity of responses suggests that the way in which Zap1

alters expression is different for different promoters. In addition,

we examined the changes in noise and noise strength along the

induction curves (Figure 1E,G). For most activated (11/13) and

repressed (2/3) promoters, noise decreases as expression increases

(Figure 1E, average Pearson correlation for all promoter of 20.73,

Figure S3A), consistent with observed genome-wide trends [2–4].

In contrast, noise strength changes less consistently across Zap1

targets (Figure 1G, average Pearson of 20.09, Figure S3B).

Surprisingly, not only do different promoters exhibit different

amounts of noise at the same level of expression (Figure 1C), but

also the way in which noise and noise strength change with

expression is unique to each promoter (Figure 1E,G, Figure S4).

Author Summary

In response to environmental changes, cells regulate the
activity of transcription factors (TFs), which in turn change
the expression of dozens of downstream target genes by
binding to their promoters. The response of each target
gene is determined by the interplay between TF concen-
tration and the context in which TF binding sites occur in
each target promoter. To examine the relationship
between promoter sequence, mechanism of regulation,
and response to TF activity, we measured expression of 16
target genes of a single TF in response to changes in TF
concentration in single cells. We found that different
native promoters that are all targets of the same TF exhibit
diverse responses to changing TF levels in terms of both
gene expression level and cell-to-cell variability (noise) in
expression. Using computational modeling and mutations
of specific promoter elements, we show that the molecular
mechanisms of regulation can be inferred by measuring
how noise changes with expression. These results show
that a single TF can regulate transcription through
multiple mechanisms, resulting in similar changes in mean
expression but vastly different changes in cell-to-cell
variability.

Sequence determines expression and noise
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A

B           C

D           E

F           G

Figure 1. Measuring mean promoter activity and cell-to-cell variability for a library of Zap1 target promoters. (A) The transcription
factor Zap1 is induced by decreasing the concentration of zinc in the growth medium. A schematic of the site of chromosomal integration for
measuring promoter-driven expression is shown. Each yeast strain has a single promoter inserted upstream of the YFP coding sequence. At the same
locus a constitutively expressed mCherry is also integrated, which is used to normalize the YFP signal and correct for extrinsic cell-to-cell variability.
(B) For each Zap1 target promoter the predicted locations of the major architectural features are shown. Promoters are aligned by the transcription
start site (TSS) (cyan). PSSMs for the TATA box (purple) [36] and Zap1 (green) [17] were used to predict binding sites for TBP and Zap1, respectively.
The width of the green bars is proportional to the predicted affinity of each Zap1 binding site. Darker shades of grey show regions with higher
predicted nucleosome occupancy. Blue lines show translation start sites. (C) Zap1 activates its own transcription, in addition to other target
promoters, such as Zrt1. Shown is the measured expression (the ratio between YFP and mCherry fluorescence) of the ZAP1 promoter and the
activated target ZRT1, graphed against the concentration of zinc added to the growth media. The inset shows the single-cell distribution of measured
fluorescence intensities for ZAP1 and ZRT1 at two zinc levels obtained from flow-cytometry. (D) Measured promoter-driven expression (quantified as
the ratio between YFP and mCherry fluorescence) throughout the Zap1 induction is shown for each measured promoter. Each point shows the

Sequence determines expression and noise
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Interestingly, a single promoter (ZRT2) that is both activated and

repressed by Zap1 (Figure 1D, lower right) [18] shows very

different amounts of noise at the same mean expression (Figure 1F).

Because different molecular mechanisms of gene regulation can

lead to the same change in mean expression but different changes

in noise [20], these results suggest that the precise molecular

mechanism by which a change in Zap1 activity causes a change in

expression may be different at each promoter.

A Kinetic Model of Promoter Switching Replicates the
Experimentally Observed Changes in Expression and
Noise for the ZRT1 Promoter

To better understand what determines the relationship between

expression and noise we used an analytical model of gene

regulation (Figure 2A) [21] to predict changes in expression and

noise in response to changes in TF activity (see Materials and

Methods). We fit this model to measurements of ZRT1 expression

and noise and find that the model replicates our experimental

results when an increase Zap1 activity causes an increase in the

promoter on-switching rate (Kon) (Figure 2B,C). To further

challenge the model we created a set of seven start codon context

mutants of the ZRT1 promoter (NNNNATG) and measured the

expression distribution of these variants at 12 different levels of TF

activity (Figure 2D–F) (only three mutants are shown for clarity).

These mutations change translational efficiency and therefore the

number of proteins produced per mRNA (b), without affecting

promoter dynamics (Figure S5). We find that ATG context

variants at a single induction point differ in expression but not in

noise, consistent with similar experiments in B. subtilis [14]. In

support of the above hypothesis, we obtain the best fit of the model

to our data when TF induction is modeled as changing Kon while

ATG context variants change b (Figures S6 and S7). Furthermore,

when fitting our model to data, we find that the optimal rate

constants are on the order of experimentally measured promoter

switching rates [9,22,23], and not TF binding/unbinding rates

[24]. This suggests that promoter switching rates probably

correlate with, and are partially determined by, TF concentration

and binding kinetics. However, each TF binding event does not

necessarily lead to transcription initiation. These results suggest

that increases in TF activity increase the frequency of transcrip-

tional bursts, while increases in translational efficiency cause an

increase in the size (number of proteins produced) of each burst.

We note that this is in contrast to observations in E coli [16] and in

yeast at the GAL1 promoter [25], in which TF induction appears

to change the promoter off-switching rate (Koff) but consistent with

measurements of the PHO5 promoter [20].

Repression of ADH1 and ADH3 by Zap1 Is Likely Due to a
Decrease in the Frequency of Transcriptional Bursts

In addition to increasing expression of target genes, Zap1 can also

act as a repressor. Zap1 represses two targets (ADH1 and ADH3) by

binding upstream of the core promoter and inducing intergenic

transcription through the core promoter, probably promoting

dissociation of the activating TF Rap1 (Figure 3A,B) [26]. Two

mechanisms have been proposed for repression by transcriptional

interference: dislodgement of TFs and the Pol II pre-initiation

complex by RNA Polymerase [27], and competitive binding, one

form of which is deposition of nucleosomes in the otherwise

nucleosome-free region where the activating TFs and Pol II bind

[28]. We hypothesized that deposition of nucleosomes would result

in occlusion of the activating binding site, the TATA box, and Pol II

binding, thus reducing the effective TF concentration and lowering

the frequency of transcriptional activation. We model this

mechanism as a reduction in Kon. Alternatively, passage of RNA

polymerase may dislodge already bound Rap1, TBP, and/or the

RNA polymerase pre-initiation Complex. This would shift the

promoter from the ‘‘on’’ into the ‘‘off’’ state, thus reducing the

length of each transcriptional on state and therefore the number of

mRNA molecules produced during each transcriptional burst

(Figure 3C). We model this mechanism as an increase in Koff. To

determine the ability of dislodgement by Pol II (TD) or occlusion of

TF binding by nucleosomes (NO) to explain our experiments, we fit

each model to the data. We find that the NO model fits our data

better than the TD model (Figure 3D) (see Materials and Methods).

Furthermore, the NO model consistently fits the data better in the

case in which we vary each parameter by up to 2-fold. The

increased robustness (Figure 3E) and decreased sensitivity (Figure

S8) of the NO model gives us further reason [29] to favor a model in

which repression by Zap1 at the ADH1 and ADH3 promoters occurs

by inducing intergenic transcription and nucleosome deposition

over the core promoter and/or Rap1 binding site.

ZRT2 Achieves a State of Low Expression and Low Noise
Due to a Repression-Mediated Mechanism of Intrinsic
Noise Reduction

Uniquely among Zap1 target promoters, ZRT2 responds

nonmonotonically to an increase in Zap1 activity, whereby its

expression first increases then decreases in response to increasing

Zap1 activity [18]. In the activating regime of ZRT2, noise

decreases as expression increases, suggesting a Kon (burst

frequency) dominated change that is similar to the purely activated

targets. However, in contrast to the repressed targets ADH1 and

ADH3, where noise increases with the decrease in expression, in

the regime where ZRT2 expression decreases noise remains

constant. These results suggest that the decrease in ZRT2

expression is a result of a decrease in burst size (see below), with

the consequence of having induction points that have the same

mean expression level but different expression distributions

(Figure 1F). At high induction, the distribution is less noisy

(Figure 1F, blue) than at low induction (Figure 1F, red). Thus, the

ZRT2 promoter reaches a state that is unique amongst Zap1

targets that is characterized by both low expression and low noise.

Taken together, these findings suggest that although ADH1,

ADH3, and ZRT2 are all repressed by Zap1, the mechanism by

which ZRT2 is repressed is unique.

A Zap1 Binding Site Near the TATA Box Is Both Necessary
and Sufficient for Repression Through Zap1-Mediated
Burst Size Reduction

In response to increasing Zap1, ZRT2 expression first increases

and then decreases. The activation by Zap1 is a result of Zap1

binding at activating binding sites 250–300 bp upstream of the

start codon, while the repression is due to the presence of

average of at least four biological replicates. (E and F) Noise and noise strength graphed against mean expression for each promoter that changes
expression by more than 2-fold. The line g2 = cmk was fit (solid lines) to the induction data per promoter, showing that different promoters show
different scalings of noise and mean expression. (G) The measured expression distribution for the ZRT2 promoter at two different zinc induction levels
(50.4 mM and 648 mM zinc, blue and red points in E and G) with the same mean expression level but different distributions. The mean expression level
for each distribution is marked with a dashed line.
doi:10.1371/journal.pbio.1001528.g001

Sequence determines expression and noise
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repressive Zap1 binding sites near the TATA box (between 290

and 2112) [18]. We made a variant of the ZRT2 promoter

(ZRT2-zre) that lacks the repressive binding sites (Figure 4B). We

hypothesized that a model of the ZRT2 promoter should include

promoter states in which Zap1 is bound as an activator, as a

repressor, and both as activator and repressor (Figure 4A). Based

on experimental evidence [18], we model the binding site affinity

for the repressive site as weaker than that of the activating site. We

assume that binding of Zap1 to the repressive site turns off the

promoter but does not affect the transition probabilities between

states. When the model was simultaneously fit to both the ZRT2-

WT and ZRT2-zre experimental data, we find that the model

obtains a good fit to data when, like with ZRT1, an increase in

Zap1 activity increases Kon and does not affect any other

parameters. Interestingly, we find that the repressed state (state

4, Figure 4A) is not fully off, but has a small, but not insignificant,

transcription rate relative to the transcription rate of the active

state (state 2, Figure 4A). Notably the only parameter change

required to change from ZRT2-WT to ZRT2-zre is setting Koffrep

to be very high, mimicking the mutation of the repressive binding

sites (Figure 4C,D). These experimental and modeling results

suggest that binding of the transcriptional activator Zap1 to a

binding site between the TATA box and TSS is necessary to

generate a promoter state with low transcriptional activity.

Notably, a very simple promoter model is able to replicate a

nonmonotonic response to changes in TF activity. Furthermore, it

suggests that ZRT2 is able to reach a state of low expression and

low noise purely through transcriptional regulation due to a

A                       D

B                       E

C                       F

Figure 2. Measured and modeled gene expression of ZRT1. (A) ZRT1 expression is modeled with a kinetic scheme in which the promoter
switches between a transcriptionally active (on) and inactive (off) state as a result of Zap1 (red oval) binding and unbinding. (B) Experimentally
measured ZRT1 promoter-driven expression changes as a function of zinc concentration (triangles). The kinetic model in (A) fits (line) the data
(triangles) when zinc is assumed to change Kon (inset). (C) Noise graphed as a function of expression for the data and model from (B). (D) A schematic
of the experimental system used to change translation efficiency through mutations of the ATG context. (E) Measured expression distributions for
two ATG context variants at three zinc induction levels shows that changing expression via induction or ATG context has a different effect on the
shape of the expression distribution. Measured (F, squares) and fit (F, solid lines) of noise as a function of mean expression for three ZRT1 promoter
mutants (F, colors) that each has a unique four base-pair sequence immediately upstream of the ATG. A model (F, solid lines) in which the only
difference between ATG context variants (different colors) is in the number of proteins produced per mRNA (B) fits the experimental data (squares)
better than any alternative model (Figure S6).
doi:10.1371/journal.pbio.1001528.g002
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promoter state with high burst frequency (due to binding of

activating Zap1) and low burst size (due to binding of repressive

Zap1).

These results suggest that in the ZRT2 promoter, an increase in

Zap1 both increases the frequency and decreases the size of

transcriptional bursts. Therefore, our simple kinetic model shows that

adding a repressive binding site for the activating TF is sufficient for

explaining both ZRT2 expression and noise as a function of induction.

Repression of ZRT2 is accompanied by a decrease in noise

strength, suggesting that repression occurs via a decrease in burst

size. We therefore hypothesized that addition of a repressive Zap1

binding site to a native Zap1 target that lacks repression would

cause a decrease in expression and burst size. To test this

hypothesis, we added a consensus Zap1 binding site (AC-

CTTAAGGT) upstream of the transcription start site of ZRT1

(Figure 4E, ZRT1pr+ZRE). Consistent with our hypothesis that

this repressive site reduces expression through a decrease in burst

size, this additional site results in a constant ,2-fold decrease in

expression, a decrease in noise strength, and no change in noise

(Figure 4F). A model identical to the ZRT2 model (Figure 4A),

except that the repressive site has a higher affinity to Zap1 than the

activating site, replicates the experimental data (Figure 4F).

Interestingly, we find that while both models require the repressed

state to be partially active, the repressed state of the ZRT1

promoter has higher activity (in model and data) than for the

ZRT2 promoter. This may be because ZRT2 has at least two

repressive Zap1 binding sites, while we only introduced a single

repressive binding site into ZRT1. Nevertheless, these results show

A            

B              C

D              E

Figure 3. Measured and modeled gene expression for ADH1. We model ADH1 expression using a two-state kinetic scheme (A) in which Kon
and Koff are determined by the binding of transcriptional activators (blue circle) or a repressor (red circle). (B) Two mechanisms have been proposed
for repression by upstream interfering transcription: TF dislodgment, in which an alternative transcript dislodges the bound activator, and
nucleosome occlusion, where transcription through the promoter results in an occluding nucleosome that prevents binding of the activator. Hence,
we assume that TF dislodgment increases the dissociation rate of the activator and that nucleosome occlusion results in a decrease in the binding
rate of the activator. (C) We fit the model such that either Kon (black) for nucleosome occlusion or Koff (blue) for TF dislodgment changes as a
function of [zinc]. (D) Measured mean expression versus noise (triangles) and fits (lines) of both model variants show that the nucleosome occlusion
model has a better fit to the data (D is distance of fit to data). (E) To compare the robustness of each model, each parameter was independently
perturbed 50 times over a 2-fold change from the fit value, and the distance of each model to the data was computed. Shown are the cumulative
distributions of these distances. The narrower distribution of the nucleosome occlusion model (black) shows that it is significantly more robust to
parameter variation than the TF dislodgment model (blue).
doi:10.1371/journal.pbio.1001528.g003
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that the presence of a Zap1 binding site between the TATA box

and transcription start site is both necessary and sufficient for

repression mediated by a decrease in burst size.

Mutation of Additional Repressive Zap1 Binding Sites
Suggests That a Combination of Activation and
Repression May Be Common

A computational search for Zap1 binding sites between the TATA

box and the transcription start site identified three weak Zap1 binding

sites in the ZRT3 promoter (Figure 5A). A closer look at the ZRT3

induction curve at very low zinc concentrations showed that expression

of ZRT3 decreases slightly at high Zap1 induction (Figure 5B, inset). To

determine if these weak Zap1 sites were functional, we mutated them

and measured expression of the wild-type and mutant ZRT3

promoters. Consistent with our hypothesis that Zap1 binding sites

around the TSS are repressive, removal of the presumptive Zap1

binding sites increased expression (Figure 5B), in particular at higher

induction, consistent with our model in which repression is a function

of repressor activity. This suggests that low-affinity binding sites may be

functional at high TF concentration, perhaps mostly at promoters that

have additional high-affinity binding sites.

A            E

B            

C            D

F

Figure 4. A repressive Zap1 binding site is both necessary and sufficient for repression in ZRT2. (A) We model ZRT2 expression with a
four-state kinetic scheme that represents four promoter configurations as a result of binding and unbinding of Zap1 to two different binding sites.
One binding site is activating (blue square) and the other repressing (purple square), and as a result we assume that each configuration can have
different transcriptional activity (see Materials and Methods for a detailed description of the model). (B) Promoter architectures are shown in terms of
Zap1 binding sites (green), TATA box (purple), TSS (light blue), and nucleosome occupancy (white to grey for increasing occupancy) for wild-type
ZRT2 and a ZRT2 mutant (2zre) in which the repressive Zap1 binding site was removed (at the arrow). (C) Measured (triangles and squares) and
modeled (lines) mean expression as a function of [zinc] for wild-type ZRT2 (black) and the 2zre mutant (blue). (D) The same measured data and
model from (C) are shown for mean expression versus noise. The ZRT2 model was simultaneously fitted to the wild-type (C, D, black line) and the
mutant (C, D, blue line) with the assumption that the only difference between wild-type and mutant is that the Koffrep of the mutant is infinite, to
model the removal of the repressive binding site. Intrinsic noise (D, inset) measured in a dual reporter assay shows the same mean to noise scaling.
Two biological replicates for each induction level are shown (points) with a smoothed line drawn through the induction points. (E) The promoter
architectures are shown for the wild-type ZRT1 promoter and a +zre mutant in which a repressive Zap1 binding sites was added around the TSS/TATA
(at the arrow). (F) Measured mean expression and noise for the ZRT1 wild-type (purple circles) and the +zre mutant (red triangles), and mean
expression versus noise strength (inset). The ZRT2 model was simultaneously fitted to both wild-type ZRT1 (purple line) and +zre mutant (red line)
again with the assumption that only Koffrep changes as a result of the addition of a repressive binding site. The black bar and inset indicate that a shift
in expression occurred without a change in noise consistent with the assumption that the repressive binding site changes the apparent ‘‘off’’ rate and
not the ‘‘on’’ rate.
doi:10.1371/journal.pbio.1001528.g004
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Activation and Repression by the Same TF as a
Mechanism for Reduction of Extrinsic Noise Due to
Fluctuating TF Levels

The ZRT2 promoter presents a case in which the activator and

repressor are the same TF. We were intrigued by this mechanism

and wondered whether this affects the noise properties. Many

promoters in yeast are regulated by the binding of both activators

and repressors to different binding sites in the promoter [30]. The

activator and repressor can be different proteins (e.g., ADH1 is

activated by Gcr1 and Rap1 and repressed by Zap1) or the same

protein (such as ZRT2 that is both activated and repressed by

Zap1) (Figure 6A). We hypothesized that the sensitivity to TF

fluctuations for a promoter that is both activated and repressed

depends on the coupling between activator and repressor. For

example, we expect that when activation and repression are done

by the same TF, in a regime where a change in activator binding

has the exact opposite result on expression as the same change in

repressor binding, the promoter is insensitive to any fluctuations in

TF levels. This is because any random fluctuation in the

concentration or activity of the TF will have an equal activating

and repressive effect and therefore result in no net change in target

activity. To study this hypothesized phenomenon, we used our

kinetic model of ZRT2 and simulated the case where activator and

repressor are different (decoupled) and where they are the same

TF (coupled). We then calculated the contribution of TF

fluctuations to expression noise throughout the induction

(Figure 6B) (see Materials and Methods for a detailed description

of the model). Coupling of the activator and repressor reduces the

sensitivity to TF fluctuations throughout induction and places the

point of minimal sensitivity to TF fluctuations at the point of

maximum target gene expression (Figure 6B, blue line).

Our model predicts that the total sensitivity to TF fluctuations is

reduced throughout the induction curve, and that this reduction is

greatest at maximal promoter expression (Figure 6B, point 1). To

test this we measured extrinsic noise (the contribution of variance

in all factors; e.g., ribosomes, Zap1, Pol II) for the native ZRT2

promoter using a dual-reporter. We find that extrinsic noise is

constant across the induction (Figure 6D, purple, see also Text S1

and Figure S11). However, when we remove as much global

extrinsic noise [4] as possible using a very narrow forward and side

scatter gate (Figure S9) [25] we hypothesize that we are left with

mostly pathway-specific noise (e.g., noise due to TF level

fluctuations). In support of this hypothesis, we find that

pathway-specific noise is not constant, but rather varies greatly

(around 10 fold) with induction. We find that this signal, which we

expect to be dominated by changes in TF sensitivity, does indeed

drop around the point of maximal expression (Figure 6D, blue),

consistent with our model. In fact, the extrinsic noise replicates

quite well the general predicted change in TF sensitivity with

induction.

Finally, our model predicts that decoupling of activator and

repressor will increase total noise as the sensitivity to TF

fluctuations is increased. To test this we replaced the two

activating Zap1 binding sites of ZRT2 with two Gal4 binding

sites (Figure 6A) and measured expression and noise throughout

the repressive regime at high Gal4 induction (0.5% galactose)

(Figure S10). Consistent with our model, the Gal4-Zap1 regulated

ZRT2 variant has higher noise than the wild-type promoter

(Figure 7C). These results show that, while repression is able to

reduce expression and keep noise constant (Figure 4), a

transcriptional regulatory motif, in which the activator and

repressor are the same protein, is capable of reducing noise even

further. This suggests that the coupling of activator and repressor

can be a mechanism to regulate gene expression with less

variability.

The Dominant Source of Differences Between Promoters
in Expression and Noise Changes with TF Concentration

We hypothesized that the source of differences in expression

between genes might change with TF concentration. At low TF

concentrations, promoters will be inactive most of the time, and

differences in expression may depend mostly on differential

recruitment of the TF. In this case, the major source of differences

in expression between promoters should stem from the frequency

with which transcriptional bursts occur. Alternatively, at saturating

concentrations of activating TF, the promoter should be ‘‘on’’

most of the time and the major difference in expression between

promoters should arise from the transcription and translation rates

of each promoter. Thus, as the concentration of TF changes from

A

B

Figure 5. Removal of a predicted repressive Zap1 binding site
increases expression of ZRT3. (A) Promoter architectures are shown
for wild-type ZRT3 (wt) and a ZRT3 mutant (2zre) in which a potential
repressive Zap1 binding site was removed (at the arrow). Shown are
Zap1 binding sites (green), TATA box (purple), TSS (light blue), and
nucleosome occupancy (white to grey for increasing occupancy). The
potential repressive binding site was predicted using a bioinformatics
search. (B) Consistent with this prediction mean expression is higher for
the 2zre mutant (blue) compared to the wild-type (black). The
difference in expression appears only to exist at higher induction,
consistent with the idea that repression is a function of Zap1 induction.
Further induction of wild-type ZRT3, at very low zinc levels (inset),
appears to decrease expression, consistent with a ZRT2-type repressive
mechanism in which expression first goes up and then down with
increasing TF levels.
doi:10.1371/journal.pbio.1001528.g005
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negligible to saturating, we expect the transcription and translation

rates of each promoter to become more important in determining

expression differences between genes.

To determine whether burst frequency or burst size dominate

the differences in expression between promoters, for each

induction level, we measured the correlation between expression

and noise or noise strength across promoters. Consistent with the

above hypothesis, across all promoters, noise is highly correlated

with expression at low levels of Zap1 activity (R = 20.66, p,0.01),

while noise strength is uncorrelated (R = 20.02, p,0.94)

(Figure 7A). This suggests that at low TF concentration, burst

frequency determines the differences in expression across promot-

ers. Conversely, at high levels of Zap1 activity, noise strength is

correlated with expression (R = 0.63, p = 0.01), and noise is slightly

less correlated (R = 20.55, p = 0.04) (Figure 7A). Overall, we found

a continual increase in the correlation between noise strength and

expression with increasing TF activity (unpublished data). To test

the hypothesis that these differences are due to a change in the

dominant source of expression difference between promoters, we

generated 50 random genes in-silico that differ only in their rates of

promoter on-switching (KON) and translation (KTL). We then

performed an induction by increasing KON for each promoter to 20

A            B

C            D

Figure 6. Activation and repression by the same TF as a mechanism for noise reduction. (A) A promoter that is both activated and
repressed can be regulated by two different TFs (decoupled; e.g., Gal4-act and Zap1-rep) or one TF (coupled; e.g., Zap1) that functions as both an
activator and repressor. (B) A simulation of noise as a result of fluctuations in TF concentration is shown for a coupled (blue) and decoupled (red)
system. The y-axis shows noise as a result of TF fluctuations as a function of promoter induction (mean on-switching rate, Kon) for the coupled (blue)
and decoupled (red) system. In addition, the mean expression at each induction level is shown (dashed line). Noise from TF fluctuations was
quantified by sampling the model at different TF concentrations (i.e., Kon values) that were drawn from a gamma distribution (see Materials and
Methods for a detailed description of the model). The model predicts that coupling of activator and repressor (e.g., if they are the same molecule)
reduces noise. Notably, reduction is maximal where mean expression peaks (arrow 1). (C) Noise measurements, at various zinc induction levels, of
native ZRT2 (blue) and a mutant that has two Gal4 UASs upstream of a repressive Zap1 site (red). The coupled system (wild-type Zrt2) has consistently
lower noise than the decoupled system (Gal4-act Zap1-repr), as is predicted by our model. (D) Measurement of extrinsic noise from a dual-reporter
assay is shown as a function of zinc induction. Nonstringent gating on cell size (through forward and side scatter) shows an extrinsic noise that is
constant with induction (purple). However, strict gating (through a small forward and side scatter gate) significantly reduces the extrinsic noise and
reveals a signal that changes with zinc induction (blue). We hypothesize that this signal is determined by noise from TF fluctuations, which according
to our model has specific behavior as a function of induction. As predicted by our model we find a reduced noise where mean expression (dashed
line) is maximal and sensitivity to TF changes is minimal (B, D, arrow 1), and minimal reduction (maximal extrinsic noise) where mean expression is
most sensitive to changes in TF concentration (B, D, arrow 2).
doi:10.1371/journal.pbio.1001528.g006
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times its original value. This results in a mean to noise and mean

to noise strength scaling that is strikingly similar to what we

observed for the native Zap1 targets (Figure 7B). Taken together,

our results suggest that as a set of targets of the same TF are

induced, the major source of expression differences between them

changes from being dominated by burst frequency to a combina-

tion of burst frequency and burst size.

Discussion

We have measured the dose response curve, in terms of

expression and noise, for a set of native yeast promoters that are all

targets of the same TF, yet are regulated by that TF via at least

three distinct transcriptional mechanisms: activation, repression by

binding between the TATA box and TSS, and repression by

induction of an upstream interfering transcript. Although noise

generally decreases with increased expression, the quantitative

scaling of noise with expression is specific to each promoter and

depends on the mechanism by which the TF regulates the

promoter.

The Promoter Sequence Determines How Activation by
Zap1 Affects Noise and Expression

Similar to the global trend [3], our data suggest that changes in

expression of individual promoters are dominated by differences in

burst frequency. This is consistent with Zap1 binding to promoters

being limiting for transcriptional activation, especially at low Zap1

concentrations, and with the proposal that the rate-limiting step in

transcription for yeast is promoter firing rate, which is determined

by TF search times [31]. However, the observation that different

activated targets have different scaling between noise and

expression suggests that while activation by Zap1 acts only

through burst frequency at most activated promoters, it may act

partially or even completely through burst size at other activated

promoters. This is entirely reasonable; Zap1 is not the only TF

acting at these promoters, and the promoters differ in both

nucleosome organization and the presence and location of TATA

boxes. Experiments that placed a tetO sequence at different

locations within the FLO11 promoter suggest that the same TF can

have different effects on promoter dynamics, depending on the

location of binding sites within the promoter [23]. Unfortunately,

there are not enough strongly induced Zap1 targets in S. cerevisiae

to identify the promoter architecture features that determine the

source of the promoter-specific slope. It will be interesting to

perform dose-response curves for a larger set of promoters from

other yeasts, or on synthetic promoters, in order to identify

promoter architectures that determine the promoter-specific slope.

Different Mechanisms of Regulation by the Same TF Can
Cause Similar Changes in Expression But Different
Changes in Noise

Our observation that repression by production of an upstream

interfering transcript causes an increase in noise, while repression

when the TF binds near the TATA box causes a decrease in noise,

suggests that different dynamics occur at each promoter during

repression. This, along with previous observations [18,23,25,28,32],

suggests that the mechanism of regulation by any TF is determined

in cis by the promoter architecture. Binding sites between the

TATA box and TSS decrease burst size, binding sites within a few

hundred bases upstream of the TATA box increase burst frequency,

and binding sites further upstream, with a nearby downstream

TATA box, repress through a reduction in burst frequency. These

data show, to our knowledge, for the first time that different

promoter architectures can cause a similar change in expression in

response to changes in TF activity, but exhibit different changes in

noise.

High Burst Frequency and Low Burst Size Is a Strategy to
Produce Low-Abundance Proteins with Low Noise

If the genome-wide scaling of expression and noise extends to

proteins with very low expression, then a large fraction of cells will

have zero molecules of protein [33]. Single-molecule studies have

confirmed this: many cells have zero molecules of proteins with

low levels of expression [4]. However, many proteins expressed at

low levels are essential. This raises the question: How does the cell

maintain a low level of both expression and noise for essential

proteins, so that all cells have the minimum number of proteins?

Figure 7. The correlation of noise and noise strength with
expression changes with TF concentration. (A) Scatter plots of
noise (top) and noise strength (bottom) graphed against expression for
each promoter at low (left side) and high (right side) Zap1 induction
points. A line fit to each set of points using linear regression shows that,
across promoters, noise strength is uncorrelated with expression at low
TF concentration, but is positively correlated with expression at high TF
concentration. (B) Noise and noise strength graphed against expression
for high and low TF as in (A) but for in silico promoters that differ in
both KON and KTL. The change from low to high TF was simulated by
multiplying the initial KON of each promoter by 20.
doi:10.1371/journal.pbio.1001528.g007
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Our results showing that burst size regulation can reduce

expression without increasing noise suggest a way out of this trap.

Lowly expressed genes tend to be bound by many transcriptional

regulators, both activators and repressors [30]. Low levels of an

activating TF result in low expression and high noise. Notably, a

motif in which weak transcription but efficient translation

generates high noise may exist at the comK gene in B. subtilis

[34]. In contrast, combinatorial regulation that results in high

burst frequency and low burst size (approaching the Poisson limit

[9]) provides a regulatory motif through which cells can produce

low levels of protein with low cell-to-cell variability. Our

identification of this same regulatory motif in the ZRT3 promoter

suggests that this motif may be common. This regulatory strategy

may be used to prevent some cells from having zero molecules of

protein when expression is low.

Coupling of Activator and Repressor as a Mechanism for
Reducing Extrinsic Noise

The concentrations of TFs, like those of all other proteins, vary

greatly from cell to cell. We expect that these variations have a

significant impact on the cell-to-cell variability of target gene

expression [4], and therefore wondered how cells deal with this

source of noise. Interestingly, we find that ZRT2 is able to reduce

noise through its reduced sensitivity to fluctuations in TF levels, as

a result of activator and repressor being the same molecule.

Mechanisms for extrinsic noise reduction have been previously

reported [21]. However, to the best of our knowledge, we are the

first to propose theoretically and confirm experimentally a

mechanism for desensitizing promoters to TF noise. Noise as a

result of TF fluctuations has been proposed theoretically in several

studies [4,35]. In fact, Bai et al. propose a dual-reporter

experiment to investigate extrinsic noise resulting from TF

fluctuations, which we have performed in this work (Figure 6D).

We note that noise from TF fluctuations is a special case of noise

propagation in a gene network, where the noise of a downstream

gene is a function of its intrinsic noise and the noise from any

upstream genes [36]. An alternative mechanism for a similar

reduction in sensitivity would be the regulation by multiple

different decoupled TFs. We hypothesize that as the number of

different TFs increases, target sensitivity (and therefore noise)

decreases, if the TFs are sufficiently de-correlated. This potential

mechanism, as well as the general characterization of the effect of

TF noise on target noise, would make the subject of a meaningful

follow-up study.

The Dominant Type of Noise Changes with TF
Concentration

The observed change in the scaling between noise and

expression throughout the increase in TF concentration suggests

that variability between promoters in burst size (transcription

efficiency, translation efficiency, and promoter off-switching rate)

becomes more important as TF concentration is increased. This

suggests that differences in promoter architecture play different

roles at low and high TF concentrations. In the presence of

limiting TF, promoter architecture may determine expression by

determining TF search time, through the number of accessible TF

binding sites. However, at high TF concentration, promoters are

mostly bound by TFs, and the transcription and translation

efficiency of each gene may play a greater role in determining

expression. This idea is supported by the positive correlation

between noise strength and expression at high TF concentration,

as would be expected from theory [20]. In addition, differences in

burst frequency cannot account for the measured single-cell

expression distributions at high TF concentration. These data

suggest that the dominant sources of gene-to-gene variability in

expression change with TF concentration: at low TF concentra-

tion burst frequency (the ability of the promoter to recruit TF)

differences dominate, whereas at high TF concentration burst size

(transcriptional and translational efficiency) differences dominate.

Overall, our results show that the relationship between

expression and noise is highly dependent on the promoter

architecture. One implication of this finding is that using only a

single TF, evolution can implement diverse expression profiles

with unique noise properties. The fact that repression of ZRT2 by

Zap1 is evolutionarily conserved suggests that there is an

advantage to this ability.

Materials and Methods

Yeast Strains
Construction of promoter-YFP strains was performed as

described previously [19]. In brief, a master strain, his3::-

TEF2pr-mCherry-YFP-NatMX4, was created in the background

strain Y8205 [37] by homologous recombination. Each promoter-

YFP strain was created by integration of a PCR product

containing the native promoter along with URA3 as a selection

marker. Integration by homologous recombination upstream of

YFP was confirmed by DNA sequencing and by identical

expression and growth of multiple independent transformants.

Creation of Promoter Variants
To introduce, alter, and remove elements within ,150 bp of

the ATG, we developed a method in which an existing URA3-

promoter-YFP cassette is amplified over multiple rounds of PCR.

In each subsequent round, a new primer is used that further

extends the product towards the YFP and optionally introduces

designed mutations. Thus multiple site-directed mutations can be

tiled onto the 39 end of the promoter. All promoter variants were

confirmed by DNA sequencing.

Yeast Growth and Expression and Noise Measurements
Yeast strains were grown overnight to saturation in YPD,

resuspended in low zinc medium [18], and grown overnight to

saturation in media lacking zinc. Cultures were then diluted 1:40

in water and 6 ml of this dilution was inoculated in 130 ml of low

zinc media supplemented with various concentrations of zinc.

Cells were grown in round-bottom 96-well plates shaking at 30uC
a minimum of 12 h, to approximately 5*106 cells/ml prior to

expression measurements. For galactose inductions, cells were

pregrown overnight to saturation in low zinc media with 0.5%

galactose as the sole carbon source to induce expression, then

resuspended in media with varying concentrations of zinc with

0.5% galactose similar to the above experiments. Flow cytometry

was performed on a BD LSRII. YFP and mCherry were excited

using 488 nm and 561 nm lasers and emitted light was collected

with 525/50 nm and 610/20 nm band-pass filters, respectively.

There is no detectable spillover of YPF or mCherry into the other

channel using these filters and lasers. Expression and noise

measurements were collected and calculated using the ratio of YFP

over mCherry for each cell. To obtain expression and noise

measurements from each well, a relatively homogenous subpop-

ulation of mostly G1 cells was chosen by gating on forward and

side scattering. Wells containing fewer than 500 cells after gating

or with obvious contamination were excluded from further

analysis. Noise was quantified as the variance over the mean

squared and noise strength as the variance over the mean.
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Kinetic Model of Activation and Repression
We model stochastic promoter state switching, transcription, and

translation using the master equation following the approach described

by Sanchez et al. [38], which in turn is an adaptation of previous

derivations of the master equation for gene regulation [38–40].

In this description of promoter regulation, TF binding and

unbinding events determine the transitions between promoter

states. A change in transcriptional activity occurs when a transition

is made to a state with differing transcription rate. Each promoter

state is modeled to have a low (including zero) or relatively high

transcription rate to describe in-active (‘‘off’’) or active (‘‘on’’)

states, respectively. Translation occurs in bursts with the proba-

bility of a burst described by a geometric distribution. The master

equation (in matrix notation) takes the form:

d

dt
~pp(n)~ K̂K{

b

1zb
R̂R{nd ÎI

� �
~pp(n)z

R̂R
Xn

b~1

h(b)~pp(n{b)z(nz1)d ÎI~pp(nz1),

ð1Þ

where~pp is the vector of probabilities of having n proteins in the cell

for each promoter state. d=dt~pp(n) describes the time evolution of

these probabilities. K̂K is the matrix of promoter state transition

rates, where K̂Kij is the rate of transitioning from state j to state i and

K̂Kii is 21 times the sum over all outgoing rates from i. R̂R is the

diagonal matrix of transcription rates with ~rr on the diagonal

(R̂Rii~~rri), where~rri is the transcription rate of state i. ÎI is the identity

matrix. b is the average burst size (proteins produced per mRNA).

d is the protein degradation rate. h(b) describes a geometric

distribution and is the probability of producing a burst of size b.

To derive the mean protein abundance and variance, we solve

this system at steady state, thus for d=dt~pp(n)~0, we get mean

protein abundance:

SnT~
b~rr ~mm(0)

d
, ð2Þ

where ~mm(0) is the zeroth partial moment of the distribution of

mRNA abundance and is the solution to:

0~K̂K ~mm(0): ð3Þ

We can get noise (s2/m2) and noise strength (s2/m) by deriving:

Sn2T~(1zb)SnTz
b~rr~nn(1)

d
, ð4Þ

where~nn(1) is the first partial moment of the distribution of protein

abundance and is the solution to:

0~(K̂K{d ÎI)~nn(1)zb R̂R ~mm(0): ð5Þ

Variance (s2) is:

Var(n)~Sn2T{SnT2: ð6Þ

Therefore, noise (s2/m2) becomes:

Sg2T~
(1zb)SnT{SnT2z

b~rr~nn(1)

d
SnT2

, ð7Þ

and noise strength (s2/m):

SFT~
(1zb)SnT{SnT2z

b~rr~nn(1)

d
SnT

: ð8Þ

We solve the master equation for a number of different

promoter architectures, where we define K̂K and R̂R for each system

to describe the specific promoter states, the transitions between

them, and the transcriptional activity of each state.

Case ZRT1. We describe gene expression and regulation of

ZRT1 using a two-state kinetic scheme that represents switching

between an active (ON) and inactive (OFF) promoter configura-

tion. We assume that on switching (with rate Kon) and off switching

(with rate Koff) are a function of binding and unbinding,

respectively, of the Zap1 transcriptional activator at the ZRT1

promoter. The Zap1 bound (ON) state is transcriptionally active

(with rate r1) and we allow the unbound (OFF) state to have some

(leaky) transcriptional activity (with rate r2). K̂K and~rr thus become:

K̂K~
{Koff Kon

Koff {Kon

� �
, ð9Þ

~rr~ r1 r2ð Þ: ð10Þ

The promoter off rate (Koff) is a function of Zap1 binding

affinity and therefore assumed to be constant. We describe the

promoter on rate (Kon) with a Hill-equation (see Eq. 11) with Kmin

and Kmax as the minimum and maximum possible rates,

respectively, [Zn] as the zinc concentration (induction level),

[Zn]mid as the zinc concentration that gives half maximal induction,

and H as the Hill-coefficient (i.e., the sensitivity of Kon to changing

zinc).

Kon~Kminz
(Kmax{Kmin)

1z(
½Zn�
½Zn�mid

)H

: ð11Þ

Case ZRT2. ZRT2 is both activated and repressed by Zap1.

We model Zap1 binding (Kon), unbinding at the activating binding

site (Koffact), and unbinding at the repressive binding site (Koffrep).

We describe Kon with a Hill-equation as a function of [Zinc] (see

Eq. 11). Transcription can occur from each state (i.e., expression is

leaky), however we assume that the state where the activator, and

not the repressor, is bound has the highest transcriptional activity

(with rate r1). K̂K and~rr therefore become:

K̂K~

{(Koff actzKon) Kon 0 Koff rep

Koff act {2Kon Koff rep 0

0 Kon {(KonzKoff rep) Koff act

Kon 0 Kon {(Koff repzKoff act)

0
BBB@

1
CCCA, ð12Þ(12)
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~rr~ r1 r2 r3 r4ð Þ: ð13Þ

Case ADH1. ADH1 is activated by Rap1 and repressed by

Zap1. We model the switching between the active (Rap1 bound)

and repressed (Zap1 bound) states with the two-state kinetic

scheme that we used to model ZRT1 activation by Zap1.

Repression of ADH1 by Zap1 occurs through (one of) two

hypothesized mechanisms: nucleosome occlusion and TF dis-

lodgement. We model both mechanisms by a subtle difference in

the dynamics of repression.

Case ADH1, Nucleosome Occlusion. Zap1-mediated in-

tergenic transcription may repress ADH1 by causing nucleosome

deposition in the otherwise nucleosome-free core promoter region,

thus preventing the activator (Rap1) or PolII from binding. We

model this mechanism by changing Kon as a function of induction,

as occlusion (accessibility) effectively changes the on-switching rate

of the promoter. More specifically we model Kon as a sigmoid that

is a function of [Zinc] (see Eq. 14), where increasing zinc increases

Kon (as Zap1 decreases) while Koff is constant.

Kon~Kminz
(Kmax{Kmin)

1z(
½Zn�
½Zn�mid

){H

: ð14Þ

Case ADH1, TF Dislodgement. In the hypothesized TF

dislodgement mechanism, repression occurs as the interfering

transcript (caused by upstream Zap1 binding) dislodges the already

bound activator (Rap1) or the PolII holoenzyme. This would

effectively change the rate at which the promoter switches from on

into the off state; hence, we model this by changing Koff as a

(sigmoidal) function of [Zinc] (see Eq. 15), while keeping Kon

constant.

Koff ~Kminz
(Kmax{Kmin)

1z(
½Zn�
½Zn�mid

)H

: ð15Þ

Model Fitting and Robustness Analysis
We fit the kinetic scheme’s analytical solutions of mean and

noise of protein abundance to the measured mean and noise of

fluorescence intensity (see Text S1 for a detailed description of the

fitting procedure and parameter constraints). The goodness of fit is

measured by the root mean squared error (distance, D) of both

mean and noise.

To investigate the hypothesized effect of promoter mutations,

we simultaneously fit the model to wild-type and mutant

promoters while only one parameter is allowed to change between

the fits.

We distinguish between two hypothesized ADH1 regulatory

mechanisms by fitting two models to the measured data. While

ADH1 nucleosome occlusion gives a better fit than TF dislodge-

ment, both models have a good fit to the data. To investigate if

nucleosome occlusion gives a significantly better fit to the data, for

each fit found by optimization, we perform 2-fold perturbations on

each parameter. By looking at the distribution of fits after

perturbation, we get an idea of which model is more robust and as

a result is more likely to be the correct model [29,41]. We find that

the NO model is significantly more robust than the TD model.

Sensitivity Analysis of the Kinetic Model
To measure the sensitivity of the kinetic model to variations in each

parameter, we performed a rigorous sensitivity analysis procedure

described by Marino et al. [42] that uses the Latin Hypercube

Sampling–based Partial Rank Correlation Coefficient (LHS-PRCC).

First, we uniformly sampled 10,000 instances of the model (without

fitting), each with a unique parameter setting, sampled from the entire

allowed parameter space using Latin Hypercube sampling, and

evaluated each of these models by measuring the distanced to the

experimental data. Next, we calculate the Partial Rank Correlation

Coefficient of the parameter value to the model score (goodness of fit) to

measure the sensitivity of that parameter. We find that the NO model

is significantly less sensitive to parameter variation than the TD model

(see Figures S7 and S8 for sensitivity analyses of the ZRT1 and ADH1/

3 models, respectively).

Simulating Coupled and Decoupled Activation and
Repression

To investigate the effect on gene expression noise of activation and

repression by the same TF (coupled) versus activation and repression

by two different TFs (decoupled), we extended the ZRT2 kinetic model

to incorporate fluctuations in the concentration of TF. We use a kinetic

scheme in which on-switching rates for activator and repressor can be

changed independently (Konact and Konrep, see Eq. 16). These rates are

determined by the distributions of activator TF and repressor TF,

respectively. We therefore assume that the on-switching rates have

Gamma distributions with a constant shape parameter (burst size) and

varying scale parameter (burst frequency) as the activator and repressor

are induced. The means of the on-switching rates were chosen to be in

the range of our model fits (1023 to 101), which are in accordance with

previously determined promoter switching rates [9,22,31]. Next, we

calculate the shape parameter of the distribution of Kon using the ratio

between the mean of the measured protein distribution and the chosen

mean of the on-switching rates (ratio of ,104), which we apply to the

measured noise strength (,103). This gives a shape parameter value of

around 1021. Because the product of shape and scale is equal to the

mean, we can compute the values of the scale parameter (1022 to 102).

We note that the qualitative result of predicted noise reduction

(Figure 7B) is robust to 10-fold changes (up and down) of both shape

and scale parameter of the distributions of Konact and Konrep. Finally, to

simulate coupled and decoupled activation and repression, we sampled

the on-switching rates of the activator and repressor from a bivariate

gamma distribution with a normalized covariance of zero (decoupled)

or one (coupled). Each sample represents a single cell with some

amount of activator and repressor, and therefore some Konact and Konrep.

We then computed the mean expression for each ‘‘cell’’ using the

analytical solution of the ZRT2 model and calculated the predicted

noise that results from fluctuations of activator and repressor as the

squared coefficient of variation (sensitivity to TF fluctuations, g2
TF).

K̂K~

{(Koff actzKonrep) Konact 0 Koff rep

Koff act {Konact{Konrep Koff rep 0

0 Konrep {(KonactzKoff rep) Koff act

Konrep 0 Konact {(Koff repzKoff act)

0
BBB@

1
CCCA: ð16Þ

Supporting Information

Figure S1 Zap1-regulated targets change expression in response

to changes in zinc concentration. Shown is measured mean

expression for four different Zap1 targets (ZAP1, ZRT1, ADH4,

and TKL2) showing quantitatively different basal (high zinc, low

Zap1) expression levels as well as different induction curves. Also

shown is expression of YFP from a truncated ENO2 promoter that

ð16Þ
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lacks the two Zap1 binding sites, and is thus insensitive to changes

in zinc concentration. For all YFP data, error bars show the

standard deviation from at least three biological replicates. Shown

in red is measured expression of TEF2pr-mCherry from all of the

data from all strains shown.

(EPS)

Figure S2 Predicted Zap1 occupancy of each promoter is

predictive of each activated promoter’s change in expression in

response to increasing Zap1. The range of expression (lowest to

highest measured values) graphed against the predicted number

Zap1 molecules bound to a 500 bp window from 2600 to 2100

relative to the transcription start site for each promoter. A

thermodynamic model of promoter TF occupancy [37] shows that

the measured Zap1 dose-response curve for each promoter highly

correlates with the predicted occupancy of Zap1 at each promoter,

suggesting that the number and affinity of Zap1 binding sites plays

a large role in determining each promoter-specific dose-response

curve. To identify sequence features in each promoter, we used a

thermodynamic model in which Zap1 binding along the promoter

sequence is determined by the concentration of the TF, its

measured sequence specificities, and competition with nucleo-

somes [37].

(EPS)

Figure S3 The correlation of noise and noise strength with mean

expression for all measured Zap1 targets throughout the induction.

The correlation between expression and noise (A) and expression

and noise strength (B) is shown for all measured expression data

for each Zap1 target promoter. For each target, expression is

normalized between zero and one. The mean Spearman

correlation coefficient for all promoters is shown.

(EPS)

Figure S4 Gene-specific slopes are significantly different from

each other. Distributions show the mean-noise slopes obtained by

bootstrapping all biological replicate experimental measurements

of noise (g2) and mean expression (m) and fitting the line g2 = cmk

1,000 times for each promoter. The distributions show that the

slope (k) values are significantly different and that slope value

estimation is robust for most promoters.

(EPS)

Figure S5 Only part of the change in expression due to ATG

context variants can be explained by changes in mRNA level. Shown

are the fold differences in protein and mRNA between start codon

context variants of the ZRT1 promoter. In order to determine if

changes of the four nucleotides upstream of the ATG lead to

differences in mRNA levels, we performed RT-qPCR on three ATG

context variants plus the WT ZRT1 promoter. Because mCherry is

expected to be constant between the different strains, YFP/mCherry

ratios are used as measurements for both fluorescence and mRNA. In

addition, because both measurements are in arbitrary units, we cannot

compare numeric values directly. However, both measurements are

linear, and therefore ratios relative to a common control (the CTTT

strain) can be compared. We find a 2.1-fold change in protein levels

and a 1.3-fold change in mRNA levels. In addition we observe no

correlation between mRNA and protein. These results are consistent

with previous data [43] showing that the start codon context can

change protein expression without affecting mRNA levels.

(EPS)

Figure S6 A model in which zinc concentration changes

promoter Kon, and ATG context variants change b, best explains

the experimental data. There are many possible regulatory

mechanisms by which zinc concentration and ATG context may

change expression of ZRT1. In order to determine which regulatory

mechanism best fits our data, we fit the model represented by the

kinetic scheme in Figure 2A to our data 12 times. In each time, we

mandated that a different pair of regulatory mechanisms be used to

fit the induction of the ATG context variants. We find that a model

in which the induction increases Kon and ATG context variants

change b (first column) obtains the best fit to data. We note that

similar regulatory mechanisms in which ATG context variants

change burst size (columns 2 and 3) obtain fits that are almost as

good. In contrast, a model in which zinc changes promoter off

switching rate (Koff) never obtains as good a fit to the data, and is

only capable of obtaining a reasonable fit to the data when ATG

context variation changes the rate of transcription.

(EPS)

Figure S7 Sensitivity analysis of the ZRT1 model. To determine

how sensitive the ZRT1 model is, we used LHS-PRCC (see

Materials and Methods). We find that the fit of the model to data is

highly sensitive only to S, a scaling factor we use to convert

measured YFP/mCherry value per cell to number of YFP protein

molecules per cell. (A) Density scatter plots from LHS sampling of

the parameter space show how the fit to data (y-axis) changes as a

function of each parameter (x-axis). Correlations of the data in (A)

are shown together for comparison in (B).

(EPS)

Figure S8 Sensitivity analysis of both proposed ADH1 models

shows that the nucleosome occlusion (NO) model is less sensitive to

parameter variation than the TF dislodgment (TD) model. To

determine how sensitive each of the ADH1 models are, we

performed LHS-PRCC sensitivity analysis. (A) Density scatter

plots from LHS sampling of the parameter space show how the fit

to data (y-axis) changes as a function of each parameter (x-axis).

Correlations of the data in (A) are shown together for comparison

in (B). The NO model is far less sensitive to variation in biological

parameters.

(TIF)

Figure S9 Gating of the ZRT2pr dual reporter causes a 10-fold

reduction in extrinsic noise. For each cell, mCherry is plotted

against YFP for one induction point from the ZRT2pr dual

reporter. Extrinsic noise was reduced by gating using either a very

wide (black) or very narrow (red) gate on forward and side scatter.

(EPS)

Figure S10 Mean expression and noise of decoupled activation

and repression. The decoupled Gal4-activating Zap1-repressive

mutant was measured at 0.5% galactose and varying Zinc

concentrations. Shown is mean expression (black dashed line)

and noise (magenta and blue lines), as a function of [Zinc].

Removing extrinsic noise (from magenta to blue line) to reveal the

pathway specific and intrinsic noise by stringent gating decreases

noise but does not show a noise reduction at specific induction

levels.

(EPS)

Figure S11 Equivalence of YFP and mCherry distributions in

the repressive regime of ZRT2pr expression. (A) In order to test the

equivalence of the YFP and mCherry fluorescent reporters for use

in a dual-reporter system, we compared the fluorescence

distributions at different induction points. (B) A Kolmogorov-

Smirnov test in which we sampled 500 cells from each induction

point by bootstrapping shows that at low induction points the

distributions are not equivalent, and therefore the measurement of

intrinsic noise may not be valid. However, at induction points less

than 600 mM, the distributions are equivalent.

(EPS)
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Table S1 Lengths of cloned promoters inserts. Listed for each

promoter is the length of each cloned sequence, in bases upstream

of the ATG.

(XLS)

Text S1 This file contains supporting information.

(DOCX)
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