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Introduction
Medullary thyroid carcinoma (MTC) and papillary thyroid 
carcinoma (PTC) are endocrine malignancies that are primar-
ily detected via thyroid ultrasonography. Aschebrook-Kilfoy 
et al1 posited that no ultrasonographic findings can reliably dif-
ferentiate between MTC and PTC tumors, with nodule size 
being one of the primary determinants of ultrasound charac-
teristics. Zhou et  al2-4 further suggested that MTC nodules 
>1.0 cm in size differed from those of nodules ⩽1.0 cm in size.
For example, MTC nodules ⩽1.0 cm in size with a width-
diameter ratio >1 tend to exhibit poor blood flow and low 
rates of cervical lymph node metastasis, consistent with typical 
findings associated with PTC nodules ⩽1.0 cm in size. 
Moreover, the calcification, internal composition, and echoic 
features of MTC and PTC lesions >1.0 cm in size are very 
similar to one another. As such, there is substantial overlap 

with respect to the ultrasonographic features of MTC and 
PTC nodules of different sizes, yet the prognosis of these dif-
ferent nodules and their responsiveness to treatment can differ 
greatly. As such, the selection of an appropriate treatment strat-
egy based solely on ultrasonography findings can be very 
challenging.

As there is an inherent degree of subjectivity to the visual 
interpretation of ultrasound images, there are often substantial 
differences among diagnosticians with respect to judgments 
made regarding MTC and PTC nodules of different sizes.5,6 
Lambin et al7 first proposed a radiomics, approach that extracts 
high dimensional features from medical images. Gu8 has since 
found such an approach to be a reliable means of quantitatively 
differentiating between and diagnosing benign and malignant 
thyroid nodules. Liang et al9 also reported similar findings, and 
Yoon et al10 applied texture analyses and the LASSO method 
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ABSTRACT

BACkgRounD: Radiomics strategies exhibit great promise in the context of thyroid nodule diagnosis. This study aimed to compare radi-
omics features of different sizes of medullary thyroid carcinoma (MTC) and papillary thyroid carcinoma (PTC) tumors and to compare the 
efficiency of radiomics approaches as a means of differentiating between these tumor types.

MeThoDS: In total, 86 MTC and 330 PTC nodules were divided into the macronodular (>10 mm) and micronodular (⩽10 mm) categories. 
The radiomics features of these nodules were analyzed to identify independent prognosis factors and evaluate the efficacy of individual and 
combined indicators as predictors of tumor type.

ReSulTS: In total, 12 radiomics features were found to differ significantly between MTC and PTC macronodules, while 6 differed signifi-
cantly between MTC and PTC micronodules. Shape 2D_Sphericity, firstorder_Skewness, glrlm_RunLengthNonUniformity, glszm_GrayLev-
elNonUniformity, and glszm_SizeZoneNonUniformity were features that were independently associated with the differential diagnoses of 
MTC and PTC macronodules. Receiver operating characteristic (ROC) curve analyses of the efficacy of these 5 single indicators and a com-
bined indicator composed thereof yielded area under the curve (AUC) values of 0.621, 0.678, 0.704, 0.762, 0.747, and 0.824, respectively, 
with respective sensitivities of 55.3%, 43.0%, 53.1%, 56.3%, 46.9%, and 65.6%, and respective specificity values of 65.6%, 89.1%, 81.6%, 
88.8%, 95.0%, and 91.1%. The glrlm_RunEntropy and glszm_SizeZoneNonUniformity features were identified as independent factors asso-
ciated with the differential diagnoses of MTC and PTC micronodules. Receiver operating characteristic curve analyses of the efficacy of 
these 2 single indicators and a combined indicator composed thereof yielded respective AUC values of 0.678, 0.678, and 0.771; Sensitivi-
ties of 57.0%, 72.7%, and 72.7%; and specificities of 77.3%, 64.2%, and 77.5%.

ConCluSionS: A range of different radiomics features can enable effective differentiation between MTC and PTC nodules of different 
sizes. Moreover, analyses of combinations of radiomics features yielded diagnostic efficiency values higher than those associated with sin-
gle radiomics features, highlighting a more reliable approach to diagnosing MTC and PTC tumors.
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to interpret ultrasonographic images to classify malignant thy-
roid nodules with indeterminate cytology, achieving satisfac-
tory predictive performance. To date, however, these approaches 
have primarily focused on distinguishing between benign and 
malignant thyroid nodules based on radiomics features. 
Whether such an approach can similarly be used to differenti-
ate between MTC and PTC nodules of differing sizes remains 
to be established.

Herein, we sought to compare the radiomics features of 
MTC and PTC nodules of different sizes with the goal of 
better-defining radiomics features capable of reliably aiding in 
the differential diagnosis of these two tumor types, including 
2D shape features, first-order features, gray-level co-occurrence 
matrix (GLCM) features, gray-level dependence matrix 
(GLDM) features, gray-level run length matrix (GLRLM) 
features, gray-level size zone matrix (GLSZM) features, and 
neighboring gray-tone difference matrix (NGTDM) features.

Methods
Clinical subjects

Retrospective study data from consecutive MTC and PTC 
patients from West China Hospital of Sichuan University were 
collected from February 2005 through September 2021. As 
there are usually fewer MTC patients than PTC patients, all 
MTC patients were first selected, after which PTC patients 
evaluated during this same period were selected at random to 
reduce selection bias. Ultrasound imaging data were used to 
define each nodule as being either macronodular (>10 mm) or 
micronodular (⩽10 mm). Patients eligible for inclusion were 
those who had undergone surgical resection and been diag-
nosed via pathologic examination, with thyroid ultrasonogra-
phy having been performed for all patients at first observation. 
Patients were excluded from this study if they had undergone 
previous thyroid surgery, adjunctive treatment such as thyroid 
radiation, or chemotherapy. In addition, those patients whose 
ultrasound images did not meet the quality control standards 
of the department were excluded. In total, imaging data from 
86 and 330 MTC and PTC patients, respectively, were ana-
lyzed herein. The primary approach of this study was the utili-
zation of receiver operating characteristic (ROC) curves to 
analyze the differential diagnosis of MTC (positive) and 
PTC(negative). Accordingly, the PASS software was used to 
calculate sample size according to ROC results. With an AUC 
of 0.7 as the null hypothesis and an AUC of 0.85 as an alterna-
tive hypothesis, at a test level of 0.05 and a test efficiency of 
0.85, 32 cases were needed in the positive group (MTC 
patients) according to a 1/5 positive/negative ratio. With 
AUC = 0.60 as the null hypothesis and AUC = 0.75 as the alter-
native hypothesis, 86 cases in the positive group (MTC 
patients) and 83 cases in the negative group (PTC patients) 
were calculated under a test level of 0.05 and test efficiency of 
0.95. The power value calculated by using 86 cases in the posi-
tive group and 330 cases in the negative group reached 99.42%. 

Therefore, the sample size of 86 MTC and 330 PTC patients 
in this study achieved sufficiently high test efficiency.11,12 Our 
study was approved by the ethics committee of West China 
Hospital of Sichuan University (approval number: 2021-919), 
and the need to obtain written informed consent was waived 
due to its retrospective nature. The study was performed 
according to the principles of the Declaration of Helsinki.

Image acquisition

All patients underwent preoperative thyroid ultrasound (US) 
using the Philips iU22, Philips HD11XE, and Philips Envisor 
HD2 with a commercially available 5 to 12 MHz linear-array 
transducer before surgery. A total of 7 radiologists with 5 to 
20 years of experience in the thyroid US performed all ultra-
sonographic imaging for this study.

Radiomics feature extraction

Two-dimensional (2D) images were used, and all JPG format 
images were collected from the picture archiving and communi-
cation system. Radiologist 1 (10 years experience) selected one 
2D image with the largest cross-section for every thyroid nod-
ule and drew a single region-of-interest (ROI) along the nodule 
margin using Photoshop software (Figure 1A and B). Then, the 
ROIs were validated by radiologist 2 (20 years experience). 
These radiologists were blinded to pathology findings. For mul-
tifocal disease, we selected the largest nodule for analysis. 
Radiomics hold great promise as a modern approach to thyroid 
tumor diagnosis.13 However, due to the limited code capabilities 
of our research group, we were unable to develop a feature 
extraction tool comparable to Pyradiomics. The reliability and 
stability of Pyradiomics have been widely recognized.14 As such, 
it was used for feature extraction in our study. The contours 
(Figure 1C and D) and radiomics features from each volume of 
interest were extracted with the “PyRadiomics 3.0.1” package in 
Python software (Python 3.6.10.).

In total, 102 radiomics features were extracted from each 
volume of interest, including 9 2D shape features, 18 first-
order features, 24 GLCM features, 14 GLDM features, 16 
GLRLM features, 16 GLSZM features, and 5 NGTDM fea-
tures. Details regarding these radiomics features are listed in 
Table 1.

Statistical analysis

SPSS v25 was used for all statistical testing. Data are given as 
means ± SD when normally distributed and were otherwise 
given as medians. Optimal radiomics feature selection and 
comparisons among groups were performed using t-tests, 
Mann-Whitney U-tests, and least absolute shrinkage selection 
operator (LASSO) approaches. Independent predictors of 
MTC or PTC nodule diagnoses were identified via a logistic 
regression analysis approach. Receiver operating characteristic 
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curves based on the developed models were then used to assess 
the diagnostic efficiency of different individual and combined 
radiomics indicators based on area under the curve (AUC), 
sensitivity, specificity, and cut-off values. P < .05 was the 
threshold of statistical significance.

Results
Patient information

In total, 86 MTC patients (28 male, 58 female) with a median 
age of 46 years (range: 17-75) were included in this study, of 
whom 64 and 22 exhibited macronodules and micronodules, 
respectively. In addition, 330 PTC patients (86 male, 244 
female) were included in this study with a median age of 
40.50 years (range: 7-72), of whom 179 and 151 exhibited 
macronodules and micronodules, respectively.

Comparison of MTC and PTC macronodule 
radiomics features

Using t-tests or Mann-Whitney U-tests, 30 significant radi-
omics features that differed between MTC and PTC 
macronodules were identified and subjected to LASSO 

regression to filter out 12 features exhibiting noncollinearity. 
The firstorder_Energy, glrlm_RunLengthNonUniformity, 
glszm_GrayLevelNonUniformity, glszm_SizeZoneNon 
Uniformity, glszm_SmallAreaEmphasis, glszm_Zone 
Percentage, and ngtdm_Busyness values in MTC macronod-
ules were significantly greater than corresponding values in 
PTC macronodules (Z = 3.319, P <.05; Z = 4.838, P < .05; 
Z = 6.212, P < .05; Z = 5.860, P < .05; Z = 3.769, P < .05; 
Z = 3.292, P <.05; Z = 6.075, P < .05). The shape2D_
PerimeterSurfaceRatio, shape2D_Sphericity, firstorder_
Minimum, firstorder_Skewness, and glcm_ClusterShade 
radiomics features were significantly greater in PTC 
macronodules relative to corresponding values in MTC 
macronodules (Z = 4.513, P < .05; Z = 2.878, P < .05; 
Z = 3.481, P < .05; t = 4.698, P < .05; Z = 2.238, P < .05).

Evaluation of the diagnostic efficiency of individual 
radiomics features as tools for differentiating 
between MTC and PTC macronodules

Logistic regression analyses indicated that shape2D_Sphericity, 
firstorder_Skewness, glrlm_RunLengthNonUniformity, glszm_
GrayLevelNonUniformity, and glszm_SizeZoneNonUniformity 

Figure 1. (A) and (B): manual segmentation; (C) and (D): extracted nodule contour.



4 Clinical Medicine Insights: Oncology 

were independent indicators of MTC or PTC macronodule 
diagnosis (Table 2), with AUC, sensitivity, specificity, and cut-off 
values being summarized in Table 3 and Figure 2.

Evaluation of the diagnostic eff iciency of a 
combined radiomics indicator as a tool for 
differentiating between MTC and PTC 
macronodules

A logistic regression model for the differential diagnosis of MTC 
and PTC macronodules based on the 5 radiomics features identi-
fied above was next developed with the following formula: logisti
c(P) = 5.226 − 8.025 × shape2D_Sphericity-0.87 × firStorder_
Skewness − 0.002 × grlrlm_RunLengthNonUniformity + 0.024 
× glszm_GrayLevel-NonUniformity + 0.036 × glszm_
SizeZoneNonUniformity. Corresponding AUC, sensitivity, 

specificity, and cut-off values are summarized in Table 3 and 
Figure 2.

Comparison of MTC and PTC micronodule 
radiomics features

Using t-tests or Mann-Whitney U-tests, 12 significant radi-
omics features that differed between MTC and PTC micro-
nodules were identified and subjected to LASSO regression to 
filter out 6 features exhibiting noncollinearity. This analysis 
revealed the glcm_Imc1, glszm_SizeZoneNonUniformity, and 
glszm_ZonePercentage values in MTC micronodules to be 
greater than those in PTC micronodules (Z = 2.829, P < .05; 
Z = 2.693, P < .05; Z = 2.948, P < .05). The firstorder_
Minimum, glrlm_LongRunHighGrayLevelEmphasis, and 
glrlm_RunEntropy features were also significantly larger in 

Table 1. Details and descriptions of the radiomics features.

TyPE FEATURES DESCRiPTiON

shape2D Elongation, MajorAxisLength, MaximumDiameter, MeshSurface, MinorAxisLength, 
Perimeter, PerimeterSurfaceRatio, PixelSurface, Sphericity

included descriptors of the 
two-dimensional size and shape of 
the ROi

firstorder 10Percentile, 90Percentile, Energy, Entropy, interquartileRange, Kurtosis, Maximum, 
MeanAbsoluteDeviation, Mean, Median, Minimum, Range, 
RobustMeanAbsoluteDeviation, RootMeanSquared, Skewness, TotalEnergy, 
Uniformity, Variance

Describe the distribution of voxel 
intensities within the image  
region defined by the mask  
through commonly used and basic 
metrics

GLCM Autocorrelation, ClusterProminence, ClusterShade, ClusterTendency, Contrast, 
Correlation, DifferenceAverage, DifferenceEntropy, DifferenceVariance, id, idm, 
idmn, idn, imc1, imc2, inverseVariance, JointAverage, JointEnergy, JointEntropy, 
MCC, MaximumProbability, SumAverage, SumEntropy, SumSquares

Describes the second-order joint 
probability function of an image 
region constrained by the mask

GLDM DependenceEntropy, DependenceNonUniformity, 
DependenceNonUniformityNormalized, DependenceVariance, 
GrayLevelNonUniformity, GrayLevelVariance, HighGrayLevelEmphasis, 
LargeDependencDeEmphasis, LargeDependenceHighGrayLevelEmphasis, 
LargeDependenceLowGrayLevelEmphasis, LowGrayLevelEmphasis, 
SmallDependenceEmphasis, SmallDependenceHighGrayLevelEmphasis, 
SmallDependenceLowGrayLevelEmphasis

Quantifies gray-level dependencies 
in an image

GLRLM GrayLevelNonUniformity, GrayLevelNonUniformityNormalized, GrayLevelVariance, 
HighGrayLevelRunEmphasis, LongRunEmphasis, LongRunHighGrayLevelEmphasis, 
LongRunLowGrayLevelEmphasis, LowGrayLevelRunEmphasis, RunEntropy, 
RunLengthNonUniformity, RunLengthNonUniformityNormalized, RunPercentage, 
RunVariance, ShortRunEmphasis, ShortRunHighGrayLevelEmphasis, 
ShortRunLowGrayLevelEmphasis

Quantifies gray-level runs, which 
are defined as the length in number 
of pixels, of consecutive pixels that 
have the same gray-level value

GLSZM GrayLevelNonUniformity, GrayLevelNonUniformityNormalized, GrayLevelVariance, 
HighGrayLevelZoneEmphasis, LargeAreaEmphasis, 
LargeAreaHighGrayLevelEmphasis, LargeAreaLowGrayLevelEmphasis, 
LowGrayLevelZoneEmphasis, SizeZoneNonUniformity, 
SizeZoneNonUniformityNormalized, SmallAreaEmphasis, 
SmallAreaHighGrayLevelEmphasis, SmallAreaLowGrayLevelEmphasis, 
ZoneEntropy, ZonePercentage, ZoneVariance

Quantifies gray-level zones in an 
image. A gray-level zone is defined 
as a the number of connected 
voxels that share the same 
gray-level intensity

NGTDM Busyness, Coarseness, Complexity, Contrast, Strength Quantifies the difference between a 
gray value and the average gray 
value of its neighbors within 
distance

GLCM, gray-level co-occurrence matrix; GLDM, gray-level dependence matrix; GLRLM, gray-level run length matrix; GLSZM, gray-level size zone matrix; NGTDM, 
neighboring gray-tone difference matrix; ROi, region-of-interest.
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PTC micronodules relative to MTC micronodules (Z = 2.088, 
P < .05; Z = 2.634, P < .05; t = 2.954, P <.05).

Evaluation of the diagnostic efficiency of individual 
radiomics features as tools for differentiating 
between MTC and PTC micronodules

Logistic regression analyses revealed glrlm_RunEntropy and 
glszm_SizeZoneNonUniformity to be independent indicators 
of MTC or PTC micronodule diagnosis (Table 4), with AUC, 
sensitivity, specificity, and cut-off values being summarized in 
Table 3 and Figure 3.

Evaluation of the diagnostic eff iciency of a 
combined radiomics indicator as a tool for 
differentiating between MTC and PTC 
micronodules

A logistic regression model for the differential diagnosis  
of MTC and PTC micronodules based on the 2 

radiomics features identified above was next developed with 
the following formula: logistic (P) = 14.495 − 3.469 × glrlm_
RunEntropy + 0.344 × glszm_SizreZoneNonUniformity. 
Corresponding AUC, sensitivity, specificity, and cut-off values 
are summarized in Table 3 and Figure 3.

Discussion
Medullary thyroid carcinoma nodule ultrasonographic find-
ings are often inconsistent and highly similar to those of simi-
larly sized PTC nodules. Despite their apparent similarity 
upon imaging evaluation, however, PTC and MTC tumors 
originate from different cells, necessitate disparate treatment 
strategies, and exhibit distinct prognostic outcomes.15 
Ultrasonographic images are typically monochromatic and 
low-resolution, such that relatively few features can be reliably 
recognized by the naked eye even with training. Luo et  al16 
found that radiomics strategies exhibit great promise in the 
context of thyroid nodule diagnosis. As such, there is a clear 
need to conduct a comprehensive analysis of the unique 

Table 2. Results of logistic regression analysis of radiomics features in diagnosis of MTC and PTC macronodules.

B SE WalS df P ExP (B)

shape2D_Sphericity −8.025 2.762 8.440 1 0.004 0.000

firstorder_Skewness −0.870 0.389 4.999 1 0.025 0.419

glrlm_RunLengthNonUniformity −0.002 0.000 13.299 1 <0.001 0.998

glszm_GrayLevelNonUniformity 0.024 0.007 12.137 1 <0.001 1.025

glszm_SizeZoneNonUniformity 0.036 0.016 5.156 1 0.023 1.037

Constant 5.226 2.437 4.600 1 0.032 186.039

SE, standard error.

Table 3. The efficacy of single and combined indicator differential diagnoses models for macronodules and micronodules of MTC and PTC.

iTEM AUC CUT-OFF VALUE SENSiTiViTy SPECiFiCiTy P

Macronodules

 shape2D_Sphericity 0.621 0.878 0.553 0.656 0.004

 firstorder_Skewness 0.678 1.000 0.430 0.891 <0.001

 glrlm_RunLengthNonUniformity 0.704 1288.557 0.531 0.816 <0.001

 glszm_GrayLevelNonUniformity 0.762 111.950 0.563 0.888 <0.001

 glszm_SizeZoneNonUniformity 0.747 50.226 0.469 0.950 <0.001

 combined radiomics features 0.824 0.355 0.656 0.911 <0.001

Micronodules

 glrlm_RunEntropy 0.678 5.352 0.570 0.773 0.007

 glszm_SizeZoneNonUniformity 0.678 5.001 0.727 0.642 0.007

 combined radiomics features 0.771 0.133 0.727 0.775 <0.001

AUC, area under the curve.
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Figure 3. ROC analysis of the diagnostic ability of radiomics features used to distinguish between MTC and PTC micronodules. This approach revealed 

that combined indicator diagnoses based on 2 radiomics features exhibited significantly greater accuracy than those based on the corresponding 

individual radiomics features, all P < .05.

Table 4. Results of logistic regression analysis of radiomics features in diagnosis of MTC and PTC micronodules.

B SE WalS df P ExP (B)

glrlm_RunEntropy −3.469 1.049 10.928 1 0.001 0.031

glszm_SizeZoneNonUniformity 0.344 0.093 13.773 1 <0.001 1.410

Constant 14.495 5.381 7.255 1 0.007 1 972 775.890

SE, standard error.

Figure 2. ROC analysis of the diagnostic ability of radiomics features used to distinguish between MTC and PTC macronodules. This approach revealed 

that combined indicators based on 5 radiomics features had significantly higher diagnostic accuracy than the corresponding individual radiomics features, 

all P < .05.
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radiomics features associated with MTC and PTC nodules to 
more reliably differentiate between these tumor types.

There may be value in comparing the diagnostic perfor-
mance of a standard clinical approach, and this newly proposed 
radiomics approach, and future studies will thus seek to test 
this. Elevated levels of serum calcitonin (sCt) are a highly sen-
sitive marker for MTC but lack specificity.17 Here, these levels 
were not examined in 3 MTC patients, while 74 of 83 MTC 
patients (89.2%) were sCt positive (>10 pg/mL). Unfortunately, 
sCt was not examined in most PTC patients in this study. In 
2021, Yang et  al18 found that the levels of sCt in the MTC 
group were significantly higher than those in the PTC group. 
Only 10% to 40% of all patients with thyroid nodules associ-
ated with high basal levels of sCt were diagnosed with MTC.17 
Among the non-MTC conditions reported to cause elevations 
in sCt levels, PTC is the most relevant.17,19 There have also 
been many individual case reports pertaining to MTC patients 
with basal sCt level and stimulated calcitonin levels within the 
normal range (up to 10 pg/mL).20 As such, we believe that 
radiomics analysis will offer additional auxiliary value in the 
evaluation of these patients.

Tumor growth patterns may be a key determinant of the differ-
ences in radiomics features associated with MTC and PTC nod-
ules of different sizes. In this study, we were able to extract over 
100 radiomics features for MTC and PTC nodules of different 
sizes. These features have the potential to offer greater insight into 
the internal structure and heterogeneity of these types of nodules, 
enabling the quantification of specific voxels, figures, and grayscale 
areas within the images using appropriate radiomics methods that 
cannot otherwise be recognized by sonographers, thereby aiding 
in the differential diagnosis process.

In our logistic regression analysis, five independent factors 
were found to be of value when differentiating between MTC 
and PTC macronodules.

The Shape2D_Sphericity features indicated that PTC 
macronodules were shaped more closely a perfect circle than 
were MTC macronodules. This may be related to the size of 
thyroid nodules. As these nodules grow, the anterior and pos-
terior diameters of PTC macronodules are limited by the thy-
roid capsule and can grow in other directions, including 
laterally. The firstorder_Skewness features revealed that  
PTC macronodules exhibited greater asymmetry with respect 
to value distributions about the mean as compared with  
MTC macronodules. The glrlm_RunLengthNonUniformity 
parameter indicated that PTC macronodules exhibited 
greater image run-length homogeneity than MTC macronod-
ules. The PTC macronodule grayscale unevenness factor 
takes the minimum value into account, and the distribution 
across the whole image was not as uniform as that for MTC 
macronodules. This may be related to the fact that PTC 
tumor cells often exhibit more complex internal structures 
relative to MTC macronodules. Papillary thyroid carcinoma 
macronodule tumor cells often exhibit complex papillary 

structures and ground glass nuclei, with irregular nuclear 
morphology and overlap, nuclear grooves, pseudo-inclusion 
bodies, and surrounding lymphocytic infiltration.21 The 
glszm_GrayLevelNonUniformity parameter indicated that 
PTC macronodules exhibited greater intensity value homo-
geneity relative to MTC macronodules, while glszm_
SizeZoneNonUniformity indicated that PTC macronodules 
exhibited greater homogeneity in size zone volumes relative 
to MTC macronodules. These differences may be attributable 
to differences in cell origin. Medullary thyroid carcinoma 
cells are derived from parafollicular C-cells of the thyroid, 
and PTC cells originate from thyroid follicular or parafollicu-
lar epithelial cells. Zhou et al2 additionally reported that while 
both MTC and PTC macronodules are prone to undergoing 
calcification, this process occurs through distinct mecha-
nisms. Specifically, in MTC, calcification is a consequence of 
amyloid deposition, whereas in PTC, it is a result of grit, 
resulting in distinct imaging results.22,23

Shape2D_Sphericity and firstorder_Skewness exhibited 
relatively limited diagnostic accuracy (AUC < 0.7), while the 
remaining 3 texture feature values exhibited good diagnostic 
accuracy (AUC > 0.7). Cut-off values indicated that while 
these 3 texture features exhibited high specificity, they exhib-
ited markedly lower sensitivity, making them less valuable as 
screening tools but more useful when attempting to distinguish 
between MTC and PTC macronodules.

When a combined indicator model based on these five radi-
omics indicators was constructed to more reliably differentiate 
between MTC and PTC macronodules, a predicted probabil-
ity of ⩾.355 was considered indicative of a great chance of a 
given nodule being an MTC nodule while a predicted proba-
bility of <.355 suggested that a nodule was more likely to be 
diagnosed as a PTC nodule. This combination indicator 
achieved better sensitivity, higher diagnostic accuracy, and good 
specificity as compared to the individual radiomics features 
assessed above, with the selected cut-off value exhibiting high 
specificity but relatively low sensitivity. As such, this combined 
indicator can be used to supplement ultrasonographic findings 
when differentiating between MTC and PTC macronodules.

Through logistic regression analyses, two independent fac-
tors were found to be of value when differentiating between 
MTC and PTC micronodules. The glrlm_RunEntropy param-
eter indicated that PTC micronodules exhibited greater texture 
pattern heterogeneity relative to MTC micronodules. This may 
be because PTC cells exhibit more interstitial fibers than do 
MTC cells. The glszm_SizeZoneNonUniformity parameter 
indicated that PTC micronodules exhibited homogeneity in 
size zone volumes than did MTC micronodules. This may be 
because MTC cells are highly abundant in the mesenchyme, 
exhibit poorly defined nucleoli with few mitoses, and can be 
separated into fibrovascular and/or amyloid subsets.

The above two independent factors associated with the dif-
ferential diagnosis of MTC and PTC micronodules have larger 
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AUC values. The glrlm_RunEntropy feature exhibits high 
specificity but relatively low sensitivity, whereas the glszm_
SizeZoneNonUniformity parameter exhibits higher sensitivity 
but relatively low specificity, necessitating a more comprehen-
sive approach to sample evaluation. A combined indicator 
based on the above two radiomics featured was also used to 
differentiate between MTC and PTC micronodules. When 
the predicted probability was ⩾.133, patients were more likely 
to be diagnosed with MTC, whereas they were otherwise more 
likely to be diagnosed with PTC. This combination indicator 
achieved better sensitivity, specificity, and higher diagnostic 
accuracy than either individual radiomics feature, with an 
AUC > 0.7. The sensitivity and specificity at the chosen cut-
off level were also relatively high, indicating that such com-
bined indicators offer great clinical promise as a means of 
diagnosing MTC and PTC micronodules.

There are several limitations to this study. For one, the 
extracted radiomics features herein were derived from 2D 
images, and no color doppler or ultrasound-based elasticity 
images were available. Second, owing to the rarity of MTC and 
the small number of cases, independent validation of these 
results was not performed. Future large-scale analyses will thus 
be needed to validate and expand upon these findings.

Despite these limitations, this project has multiple key 
strengths. For one, there have been few studies assessing the 
distinctive radiomics features of MTC and PTC tumors of dif-
ferent sizes as a means of differentiating between these tumor 
types, and our data thus highlight a novel approach to such 
differentiation. Second, we conducted a correlation analysis 
assessing the relationship between radiomics features and 
pathology. We additionally established combined radiomics 
indicator models that were even more reliable as tools for dif-
ferentiating between these MTC and PTC tumors based on 
ultrasonographic imaging findings. These combined indicator 
models offer great potential for future clinical application as 
they may enable the more reliable prediction of patient clinical 
outcomes, guiding diagnostic and treatment strategies in an 
optimized manner.

Conclusions
In summary, the results of this study highlight the ability of dif-
ferent radiomics features to reliably differentiate between MTC 
and PTC tumors. Specifically, the shape2D_Sphericity, first-
order_Skewness, glrlm_RunLengthNonUniformity, glszm_
GrayLevelNonUniformity, and glszm_SizeZoneNonUniformity 
features exhibited independent diagnostic value in the evaluation 
of MTC and PTC macronodules, with a combined radiomics 
indicator consisting of these 5 features exhibiting superior diag-
nostic efficiency relative to any single indicator. Similarly, the 
glrlm_RunEntropy and glszm_SizeZoneNonUniformity radi-
omics features were found to exhibit independent diagnostic 
value when differentiating between MTC and PTC micronod-
ules, with a combined indicator consisting of both of these 

features exhibiting diagnostic efficiency superior to that of either 
feature individually. In conclusion, radiomics features can facili-
tate the differentiation of MTC and PTC nodules of different 
sizes based on ultrasound imaging findings.
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