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The goal of sensory neuroscience is to understand how the brain creates its myriad
of representations of the world, and uses these representations to produce perception
and behavior. Circuits of neurons in spatially segregated regions of brain tissue have
distinct functional specializations, and these regions are connected to form a functional
processing hierarchy. Advances in technology for recording neuronal activity from
multiple sites in multiple cortical areas mean that we are now able to collect data that
reflects how information is transformed within and between connected members of this
hierarchy. This advance is an important step in understanding the brain because, after
the sensory organs have transduced a physical signal, every processing stage takes the
activity of other neurons as its input, not measurements of the physical world. However,
as we explore the potential of studying how populations of neurons in multiple areas
respond in concert, we must also expand both the analytical tools that we use to make
sense of these data and the scope of the theories that we attempt to define. In this article,
we present an overview of some of the most promising analytical approaches for making
inferences from population recordings in multiple brain areas, such as dimensionality
reduction and measuring changes in correlated variability, and examine how they may
be used to address longstanding questions in sensory neuroscience.

Keywords: neuronal populations, hierarchical processing, neural computation, sensory coding, inter-area
communication

INTRODUCTION

The cortex contains a multitude of representations of sensory information that are anatomically
segregated by sensory modality (e.g., somatosensory vs. auditory), and by specialty within a
modality (e.g., visual motion vs. visual form). Following recent advances in technology, large-scale
recordings of neuronal population activity now extend across the boundaries of cortical areas. This
presents an opportunity to understand the nature of inter-area neural processing. Many inter-
neuronal and inter-area phenomena exist on timescales of milliseconds. In order to characterize
this short-timescale activity requires electrophysiological approaches, which allow action potentials
and local field potentials (LFPs) to be recorded. Although the largest simultaneous recordings
of the functional activity of neuronal ensembles are now conducted with cellular-resolution
imaging, and while cell-type specific genetic promoters promise recordings from neurons with
known classes (Luo et al., 2008), in this article we will focus on experiments involving extracellular
electrophysiological measurements, because these afford the temporal resolution required to
address the analytical questions we pose. We mainly consider cortico-cortical processing in
non-human primates, but these advances are complemented by substantial work in other species,
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and involving sub-cortical areas, which will be necessary to
bridge the gap between understanding circuit architecture and
large-scale network dynamics. Cortico-cortical processing is a
good first frontier in multi-area population analysis as cortical
architecture is well-characterized and similar between brain
areas. Further, we mainly consider questions pertinent to data
sets with population recordings from multiple brain areas
simultaneously, but draw inspiration from analytical methods
applied to either population recordings from one brain area, or
recordings of two units in different areas.

WHY AND HOW SHOULD WE MAKE
SIMULTANEOUS MULTI-AREA
POPULATION RECORDINGS?

The transition from recording from a single site at one time
to recording population activity was a meaningful one for
systems electrophysiology (Brown et al., 2004; Yuste, 2015).
Recording from populations allows us to ‘‘embrace single-
neuron heterogeneity’’ (Cunningham and Yu, 2014), and reveals
structure in the signals across multiple neurons that we would
not be able to recover any other way, such as their correlated
variability (Zavitz et al., 2016; Bondy et al., 2018), and how
population representations change within a subspace over time
or depending on context (Churchland et al., 2012). Recording
simultaneously from two or more neurons has advanced theories
relating to how different types of ‘‘noise,’’ or inter-trial variability,
affect stimulus discrimination (Zohary et al., 1994; Shadlen and
Newsome, 1998; Cohen and Kohn, 2011; Kohn et al., 2016),
and how decisions are generated based on the accumulation of
evidence (Yates et al., 2017).

Recording from multiple areas can reveal temporal
correlations between the two areas (Wong et al., 2016),
giving insight into inter-area connectivity. Beyond this, by

making simultaneous multi-area population recordings,
we are able to make inferences about how population
representations in one area influence the representations in
another on a trial-by-trial basis (Zandvakili and Kohn, 2015),
and how inter-area communication changes depending on
external factors such as attention (Ruff and Cohen, 2016).
Multi-area population recordings are thus able to address
two classes of questions: how representations are changed
between cortical areas, and how communication is facilitated
(Figure 1). Here, representations are defined as the structure
of neuronal activity in an ensemble, and communication as
a recoding process (Pitkow and Angelaki, 2017), in which
the representation of information within the recipient area is
measurably changed. A similar architecture is outlined in Fries
(2015).

Most sensory neuroscience is predicated on developing an
understanding of how a physical stimulus produces an observed
neuronal response. However, beyond the level of our sensory
receptors, neurons do not directly respond to sensory stimuli.
Rather, they change their membrane potential and generate
action potentials in response to precise patterns of inputs,
received from a population of synaptically-connected neurons.
By recording from connected brain areas, we can use the
recordings from the source area to gain a better understanding
of the true inputs to the recipient brain area, and how they are
transformed in the downstream area.

PROMISING ANALYTICAL APPROACHES

There are three major classes of analyses that have allowed
researchers to draw novel conclusions about information
processing between simultaneously recorded areas: lower-
dimensional representations; pairwise correlated variability
(‘‘noise’’ correlations or ‘‘correlation structure’’); and measures

FIGURE 1 | Illustration of the representation-communication framework for neuroscientific questions. (A) A pattern of activity within an area or population of neurons
is captured as firing rates over a specified time window. In this rendering, each circle represents a neuron, and the color represents that neuron’s instantaneous
activity, which continually changes over time. We measure representations not in an instant, but typically in a rate code, by integrating spiking activity over a time
window ranging from tens to hundreds of milliseconds. (B) The rates of n neurons in Area X are collectively a multidimensional “representation” that varies over time.
This representation may be as concrete as the joint firing rates across the population, or may be abstracted through dimensionality reduction. (C) An area X may be
inferred to communicate with area Y if the representation within area X modulates the representation in area Y in a systematic way.
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of spike-timing precision. The most valuable observations we
derive from these analyses are often not their immediate outputs,
but instead how these outputs change depending on other
contextual variables such as the stimulus, behavior, or cognitive
state.

Lower-Dimensional Representations
Across a population of neurons, there is both diversity and
redundancy in neuronal responses, and it can be difficult to gain
any understanding of how sensory information is represented
when the number of dimensions describing the data equals
the observed number of neurons (Figure 2A). Dimensionality
reduction techniques such as principal components analysis
allow covariation between neurons to be collapsed (Figure 2B),
and the resulting visualization can show how population
representations shift as a function of time and stimulus
properties (Figure 2C). By translating data into a reduced
format, we can form intuitions and hypotheses about what
would otherwise be an intractably large data set that may
bear little relationship to stimulus variables at first examination
(Cunningham and Yu, 2014). In this ‘‘state space’’ the
aggregate population activity at any point in time may be
represented by a single point (Figure 2B). This style of

representation permits comparison across stimulus or behavioral
characteristics independently of the often heterogeneous and
complex selectivity of the neurons (as in Churchland et al.,
2012; Mante et al., 2013). Dimensionality reduction can be
achieved in a number of ways (principal components analysis,
factor analysis, Gaussian process factor analysis, among others),
with different methodological advantages but similar outcome: a
reduced space in which to consider the variability of neuronal
responses. Traditionally, the focus is on how this variability
relates to the stimulus or behavior. With multi-area recordings,
it is also appropriate to consider how the variability of neuronal
responses in one area relates to the responses of a connected
population.

In a typical experiment in which multiple factors can vary
(e.g., stimulus value, animal behavioral state, motor outcome),
the variability in neuronal responses across trials of the same
type is the most interesting to the experimenter. Unsupervised
approaches will operate on the data blind to these experimental
manipulations or outcomes, and the components they extract
may not isolate the impact of experimental variables of
interest (Kobak et al., 2016). To address this shortcoming,
a layer of supervision can be added to isolate experimental
variables, e.g., hierarchical decomposition (Repucci et al., 2001;

FIGURE 2 | Procedures for analyzing high-dimensional neural data in a biologically informative way. (A) Illustration of dimensionality in multichannel recordings.
Time-varying data are collected simultaneously from populations of neurons. These are typically spiking rates over some time window. The rates exist in a space that
has the same dimensionality as the number of channels recorded. However, neuronal responses are typically not unique or independent, so it is likely that pairs of
neurons have correlated firing rates (here, channels 1 and 7). This allows for dimensionality techniques (here, principal components analysis) to capture most of the
variability in a reduced number of dimensions. (B) Population response trajectories to different stimulus conditions can be traced through this reduced space over
time. (C) Firing rates of neurons, left, often relate to more than one experimental variable (here, stimulus and behavior, gray bars). The high-dimensional responses of
many neurons may be reduced with supervision so that they are also de-mixed, and the independent stimulus and behavior selective responses are clear.
(D) One-way representations change between brain areas is that they allow different variables to become more easily, or linearly, separable. In this example, one
stimulus attribute is separable in Area X (color), while both shape and color are separable in Area Y, depending on the decision line (dashed).
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Maddess et al., 2006), demixed PCA (Kobak et al., 2016),
and tensor component analysis (Williams et al., 2017). This
means that the recovered components are those that best
explain individual and paired factors of interest (Brendel et al.,
2011; Kobak et al., 2016). We illustrate a simplified account
of mixed ‘‘stimulus’’ and ‘‘behavior’’ signals in a population,
and how these components may appear once demixed in
Figure 2D. Although poorly explored thus far, we anticipate
that this approach will be particularly valuable for analyzing
multi-area data sets, because it will enable quantification of
how the representations change together on a trial-by-trial
basis.

Dimensionality reduction works by collapsing across shared
variability that arises from variations in both the ‘‘signal’’
(i.e., tuning similarities) and the ‘‘noise’’ (i.e., trial-by-trial
variations in responses to the same signal). To learn more
about the nature of population representations and inter-area
communication, we can examine the noise correlations in
isolation.

Noise Correlations
The spiking activity of neurons varies from trial to trial,
even under identical stimulation conditions. In pairs of
simultaneously recorded neurons, this variability tends to be
shared: if one neuron fires at an above-average rate, others
are likely to as well (Zohary et al., 1994). Because this shared
variability is not related to the stimulus or signal, it is termed
‘‘noise’’ or ‘‘spike-count’’ correlations, and is quantified by the
Pearson’s correlation coefficient between the spike counts of the
two cells across repetitions of the same stimulus (Cohen and
Kohn, 2011). The strength of the measured correlation depends
on a number of factors, including the two neurons’ mean firing
rate (de la Rocha et al., 2007), separation in cortical tissue
(Smith and Kohn, 2008; Solomon et al., 2015; Rosenbaum et al.,
2017), and similarity in tuning properties (Kohn and Smith,
2005).

The pattern of spike-count correlations we are able to observe
can reflect global modulations in activity that affect the whole
population (Goris et al., 2014) or synaptic architecture, which
can describe either structural architecture like connectivity
patterns (Hu et al., 2012) or functional architecture like
moment-to-moment connectivity (Haider and McCormick,
2009). Functional architecture, and spike-count correlations, are
changed by recruiting (Snyder et al., 2014) or adapting (Zavitz
et al., 2016) different subpopulations of neurons. The magnitude
and structure of pairwise correlated variability across populations
of neurons relates to behavior (Gutnisky et al., 2017; Ni et al.,
2018), how well stimulus parameters are represented (Moreno-
Bote et al., 2014; Kohn et al., 2016; Zylberberg et al., 2016; Zavitz
et al., 2017), and reflects the task the animal is performing (Bondy
et al., 2018).

To measure spike-count correlations, spikes are typically
counted in bins with sizes ranging from tens of milliseconds
to one or two seconds. However, information is also present
in the precise timing of spikes from a neuron, either relative
to the LFP or the timing of spikes from other neurons. While
longer bins increase the overall spike count and the reliability of

the measure, the behavioral relevance of these timescales is not
clear.

Spike-Timing Precision
The precise timing relationships in the activity of groups of
neurons, measured as synchrony or coherence, can inform us
about coordinated spiking activity and communication (Jia et al.,
2013; Zandvakili and Kohn, 2015). Synchronized firing across a
diverse group of neurons may be an important way to encode
complex stimuli (Singer et al., 1997), and pairs of neurons can
coordinate firing at timescales as short as 1 ms (Palm et al., 1988).
There is evidence that different information is encoded in spikes
aligned with different phases of specific frequencies in the LFP
(Womelsdorf et al., 2012; Wong et al., 2016) and neural activity
with precise delays between populations of neurons and across
cortical layers may even be critical to the process of information
transmission (Bastos et al., 2015).

Spiking synchrony may be measured with a cross-
correlogram—correlations in instantaneous spiking between
neurons at a range of time delays. While spiking activity is
best understood as a point-process in the time domain, the
LFP is a continuous process in the time-frequency domain,
characterized in terms of how the power and phase across
different frequency bands change over time. A common way of
relating these discrete and continuous processes is coherence,
a frequency-dependent measure of signal correlation, that
may be examined between spikes and the LFP recorded on
the same or different electrodes (Jarvis and Mitra, 2001).
These measures have been used to understand how pairs
of neurons communicate within (Dean et al., 2012; Hagan
et al., 2012) and between (Jia et al., 2013; Wong et al., 2016)
cortical areas. Although their use has not yet been expanded
to large-scale recordings, given that spikes are commonly
described as the outputs of a neuron and the LFP represents
the net synaptic input to the region near the electrode, these
approaches correlating spiking and the LFP are some of
the most direct for examining how communication occurs
across area boundaries. There are not any widely adopted
population measures of timing precision, and this presents a
fruitful area for future development. The process of identifying
assemblies of neurons that fire in concert (Singer et al.,
1997) could be expanded to include more detailed temporal
characterization.

VIABLE AVENUES OF INQUIRY

How Do Brain Areas Communicate With
One Another?
Information is flexibly and efficiently routed throughout the
brain. Here, we define communication as signal propagation
that produces a change in the representation by a recipient area.
Part of the challenge for achieving inter-area communication is
related to signal transmission: a signal must be able propagate
reliably throughout the system without excessive attenuation
or amplification (Shadlen and Newsome, 1998; Joglekar et al.,
2018; van Vugt et al., 2018). This relies on inter-area anatomical
connections as well as the network structure within an
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area (Joglekar et al., 2018). However, there is substantial
evidence that successful inter-area communication also requires
physiological coordination on millisecond time-scales (Fries,
2005, 2015).

Inter-area information transmission has been assessed using
coherence measures across the V1-V2 boundary (Jia et al.,
2013), and by the likelihood of spikes in a recipient area
given the state of a source area (Zandvakili and Kohn, 2015).
The quality of signal transmission has been measured by
the number of spikes elicited in the recipient area following
of electrostimulation of the source area (Ruff and Cohen,
2016). These approaches demonstrate an effect of state on a
recipient area, or propagation, but they do not demonstrate
that communication has occurred. This could be achieved with
an additional analysis demonstrating improvement in coding
in the recipient brain area. This may be done directly by
assessing perception in an awake behaving animal or decoding
the spiking activity in the anesthetized preparation; or indirectly
by measuring representations or spike-count correlations. These
early studies had a small number of electrodes in the recipient
area, so such analyses would have been limited, but will be
increasingly possible as recording capabilities improve. Changes
in noise correlations between areas can also be interpreted
as changes in the communication efficacy between areas. If
correlations between areas increase, they share more trial-to-trial
variability, which means signal transmission is enhanced, but it
is unknown whether this also enhances the representation in the
recipient brain area.

Within a single brain area, inferences may be made about
the relationship between cortical state and coding efficacy by
conditioning the data, or sorting population activity into states
based on a variable of interest (e.g., up and down states
based on firing rate; Arandia-Romero et al., 2016; Gutnisky
et al., 2017), or behavioral outcome or strategy (Gilad et al.,
2018). Recent work adapts this approach to two connected
populations of neurons by estimating how the state of one
area impacts coding in a recipient area, demonstrating how we
might test the efficacy of neural communication more directly
(Palmigiano et al., 2017). In simulations, they measured the
relative phase of gamma bursts in two areas, and condition
based on which area is leading. This enabled them to show
that spiking activity in the leading area predicts spiking activity
in the following area, suggesting that gamma bursts produce
states that are conducive to spike transmission. However, the
results of conditioning data should be interpreted with caution,
as the variable chosen for conditioning will have multiple
covariates.

How Are Representations Transformed
Between Areas?
Understanding population responses in terms of a
low-dimensional representation has provided traction especially
in our understanding of how neurons with complex selectivity
represent stimuli and guide behavior. In the context of multi-area
recordings, this approach stands to help us understand how
representations of the same factors shift from one area to
another, and how shifts in the trial-by-trial activity in an

upstream area produce better or worse representations in a
downstream area. It also provides a way to look at how different
areas reshape the same information in order to ‘‘untangle’’
it, or increase the linear separability of a biologically relevant
variable (Figure 2D; DiCarlo and Cox, 2007; DiCarlo et al.,
2012; Pagan et al., 2013). In future work, dimensionality
reduction may be combined with data conditioning in order
to determine how the representation in a recipient area
depends on the state of a simultaneously recorded source
area.

This problem extends to reasoning about how different areas
contribute to different aspects of a complex task. Yates et al.
(2017) combined measurements of behavior and the spike-count
correlations within and between areas MT and LIP, with models
of the two areas. They were able to dissect a perceptual decision-
making task into several components that are partially shared
between MT and LIP, but did not find any evidence of single-
trial coupling between these two areas, which is inconsistent with
theories that LIP integrates the information inMT. Simultaneous
population recordings in multiple areas alone permit this kind
of trial-by-trial assessment of how information is transferred
and transformed, and will be useful for separating hierarchical
computations from computations that are apparent at many
stages of the hierarchy.

How Do Global Factors Modulate
Inter-Area Cortico-Cortical
Communication?
Variability in the responses of neurons, as measured with spike-
count correlations, can be partly explained by modulating factors
such as anesthetic state, attention, and arousal (Goris et al.,
2014; Rabinowitz et al., 2015). It is unclear how these ‘‘global’’
factors interact with local factors (such as adaptation or stimulus
context), and what the scale of the modulations induced by
these global factors truly is. By recording population activity in
multiple areas, we will be able to determine the scope of local and
global factors, for example, to determine how far local network
changes propagate through the cortical hierarchy. Sub-cortical
systems play a significant role in modulating cortical processing
(Sherman, 2016). Expanding simultaneous multi-area cortical
recordings to include related subcortical systems, potentially in
small brains with large, multi-contact probes (Jun et al., 2017),
may be profoundly informative for learning why cortical states
tend to shift, both ‘‘spontaneously’’ and in a task-dependent way
(Ruff and Cohen, 2018).

CONCLUSION

We are able to measure larger populations than ever, but
characterizing many predicted theoretical effects requires
recording from exceedingly large-scale populations (hundreds
or thousands of neurons). While most electrophysiology is
currently constrained to monitoring hundreds of neurons,
imaging approaches are able to monitor thousands but have poor
temporal resolution. Improved temporal resolution of imaging
and higher-yield electrophysiology experiments will move the
field forward substantially.
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Population size aside, dimensionality reduction requires
repeating each trial a large number of times (and indeed, the
number of necessary repetitions increases with the number
of cells simultaneously recorded). The recording stability
required for these measurements can be difficult to obtain in
an anesthetized preparation and the timescale is potentially
impossible in awake animals until recordings can be reconciled
with carefully quantified natural behaviors. In single-area
recordings, the limits of the anesthetized preparation are
reasonably well-understood, but it is not yet clear if inter-area
dynamics are as consistent as basic sensory representations
between the anesthetized and awake states. Modest increases
in population size, along with the technological advances
that permit us to characterize each cell more completely
(e.g., laminar profile, genetic markers, morphology, receptive

field substructures, connectivity) will let us make stronger
inferences about the varied roles different cells play in
shaping population activity, and thus perception, cognition, and
behavior.
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