
F1000Research

Article Status Summary

Referee Responses

, Westmead MillenniumJames Chong 

Institute for Medical Research Australia

, Victor Chang CardiacRichard Harvey

Research Institute Australia

Latest Comments

No Comments Yet

2

1

COMMENTARY

Tissue-resident Sca1+ PDGFRα+ mesenchymal progenitors are
the cellular source of fibrofatty infiltration in arrhythmogenic

 cardiomyopathy [v1; ref status: indexed, http://f1000r.es/17s]

Ben Paylor , Justin Fernandes , Bruce McManus , Fabio Rossi1 1 2 1

Biomedical Research Center, University of British Columbia, Vancouver , V6T 1Z3, Canada1

James Hogg Research Centre, University of British Columbia, Vancouver, V6Z 1Y6, Canada2

Abstract
Arrhythmogenic cardiomyopathy (AC) is a disease of the heart involving
myocardial dystrophy leading to fibrofatty scarring of the myocardium and is
associated with an increased risk of both ventricular arrhythmias and sudden
cardiac death. It often affects the right ventricle but may also involve the left.
Although there has been significant progress in understanding the role of
underlying desmosomal genetic defects in AC, there is still a lack of data
regarding the cellular processes involved in its progression. The development
of cardiac fibrofatty scarring is known to be a principal pathological process
associated with ventricular arrhythmias, and it is vital that we elucidate the role
of various cell populations involved in the disease if targeted therapeutics are to
be developed. The known role of mesenchymal progenitor cells in the
reparative process of both the heart and skeletal muscle has provided
inspiration for the identification of the cellular basis of fibrofatty infiltration in AC.
Here we hypothesize that reparative processes triggered by myocardial
degeneration lead to the differentiation of tissue-resident Sca1+ PDGFRα+
mesenchymal progenitors into adipocytes and fibroblasts, which compose the
fibrofatty lesions characteristic of AC.
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Introduction
Arrhythmogenic cardiomyopathy (AC) is a heterogeneous disease 
of the heart associated with an increased risk of both ventricular 
arrhythmias and sudden cardiac death. Although the exact patho-
genesis of this disease is unknown, mutations in genes coding for 
the five major proteins of the desmosome; namely plakoglobin, 
desmoplakin, plakophilin-2, desmoglein1 and desmocollin-22, have 
been strongly implicated. The penetrance of these desmosomal mu-
tations in AC patients has been estimated to be between 40 and 90% 
by different studies3–5, making identification of at-risk individuals 
by clinical genotyping difficult. As such, there is currently no sin-
gle test to diagnose AC, although improved quantitative functional 
parameters associated with the disease as well as identification of 
pathogenic mutations in first-degree relatives have improved both 
the sensitivity and specificity of current diagnostic criteria6. Cur-
rent therapeutic and management paradigms rely on symptomatic 
impact including anti-arrhythmic drugs and lifestyle modifications, 
and it is hoped that probing the link between desmosomal gene de-
fects and the progression of AC will lead to more effective disease-
targeted therapies7.

The name, arrhythmogenic cardiomyopathy, has gradually evolved 
since the initial classification of this disease in 1982 when it was 
called “right ventricular dysplasia”8 as it was thought to be caused by 
a developmental defect of the heart before birth. It was soon deter-
mined that the symptoms and signs were in fact a progressive cardiac 
disease, and thus dysplasia was replaced with “cardiomyopathy”9. 
Clinically, since the main symptoms that appear during the progres-
sion of the disease are right ventricular arrhythmias, the term ar-
rhythmogenic right ventricular cardiomyopathy (ARVC) became the 
most commonly used name. With a growing body of evidence dem-
onstrating left ventricular involvement in this disease10,11, the current 
terminology of arrhythmogenic cardiomyopathy (AC) was adopted 
in 20107. Several disease patterns are encompassed by this defini-
tion; including right dominant, left dominant and biventricular AC6,7.

Pathophysiological mechanisms of arrhythmogenic 
cardiomyopathy
While several etiopathogenic theories for the development of AC 
have been proposed12,13, including dysontogenic (dysplasia)14, apop-
totic15,16 and transdifferentiative17 processes, it is most widely accept-
ed today that degenerative and dystrophic mechanisms underlie its 
progression7. This latter model, proposed well before the discovery 
of associated desmosomal-mutations, draws from histopathological 
similarities between AC and skeletal-muscular dystrophies, which 
are both characterized by progressive muscle damage with associat-
ed replacement with fibrofatty connective tissue. Experimental data 
have demonstrated that cardiomyocyte death, either by apoptosis or 
necrosis, is the primary initiating trigger that eventually is followed 
by fibrofatty replacement of functional myocardium18,19. The molec-
ular pathways that underlie the progressive loss of cardiomyocytes 
in AC continue to be investigated (reviewed in Shirokova and Niggli 
(2012)20), with the ultimate goal of developing targeted preventives 
or therapies. It should be noted that while the presence of fibrofat-
ty tissue is pathognomonic for this disease, Burke et al.21 suggest 
that the fibrofatty infiltration is most likely secondary to associated 
desmosomal gene mutations. Progressive loss of cardiomyocytes 

due to mutated desmosomal gene products may activate reparative 
processes and lead to progressive accumulation of diffuse fibrofatty 
tissue, with concomitant alterations in cardiac electrophysiologi-
cal and contractile function. Although it is widely accepted that a 
key pathological link between desmosomal mutations and the often 
fatal ventricular arrhythmias of this disease is the development of 
the characteristic fibrofatty infiltrate, the cellular source of the fibro-
blasts and adipocytes that compose this connective tissue currently 
remains unclear. Two recent studies in murine models of the disease 
have implicated cardiac progenitor cell (CPC) populations as the 
most likely candidate, but noted that further work was necessary to 
clearly identify the cells involved22,23.

The hypothesis
We propose that reparative processes in the heart triggered by myo-
cardial dystrophy lead to the differentiation of tissue-resident cardiac 
Sca-1+ PDGFRα+ mesenchymal progenitors into both fibroblasts and 
adipocytes, resulting in the characteristic fibrofatty lesion observed  
in AC.

Cellular source of fibrofatty infiltration in 
arrhythmogenic cardiomyopathy
Recent human genetic analyses of AC patients24 have identified the 
causative role of desmosomal mutations in its progression and have 
aided in the clinical diagnosis of the disease, but it has been the 
development of numerous in vivo transgenic murine models of AC25 
that have greatly furthered our fundamental understanding of the 
disease.

Utilizing lineage tracing and genetic fate mapping, Lombardi et al. 
showed recently that second heart field CPCs are a source of adi-
pocytes23 in a murine model of AC. Through use of a series of con-
ditionally expressed reporter strains, which concomitantly delete 
the desmosomal protein desmoplakin in cardiac myocyte lineages 
and permanently activate yellow fluorescent protein expression in 
the deleted cells, this group elegantly demonstrated a contribution 
of second heart field CPCs to adipogenesis. Further, they provided 
strong evidence implicating perturbations in Wnt/Tcf712 signaling 
as a molecular mechanism underlying this progression. Although 
these experiments have provided compelling data to support the 
molecular mechanisms governing the development of fibrofatty 
scar tissue in AC, other than demonstrating the involvement of 
Isl-1+ second heart field progenitors, the lineage tracing strategies 
were unable to provide substantive evidence as to the identity of 
cells involved in fibrofatty scar development. Further, they were un-
able to conclude that the second heart field CPCs are the sole cel-
lular source since the Cre-drivers used (Nkx2.5, Mef2C, α-MyHC) 
are unable to distinguish the involvement of pericytes, fibroblasts 
or circulating cells.

It was demonstrated long ago that CPCs identified using the marker 
Sca-1 can give rise to adipocytes in vitro26, yet evidence implicat-
ing Sca-1+ CPCs as the cellular source of adipocytes in models 
of AC in vivo is still lacking. Lombardi et al.22 have identified a 
role for Sca-1+ CPCs in the enhanced adipogenesis of AC mice 
harbouring mutations in the desmosomal protein plakoglobin. They 
did not, however, perform the strict lineage tracing experiments 
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required to quantitatively assess the relative contribution of CPCs 
to the adipogenesis in their models. The long standing dogma of 
AC being primarily a right ventricular disease was supported by 
demonstration of the involvement of second-heart field progenitors, 
but this proposed model of AC fails to accommodate recent reports 
of similar pathological processes in the left ventricle17,27. Indeed, 
data demonstrating that fibrofatty scarring and functional deteriora-
tion occur in both ventricles in AC argues that the progenitor cell 
subset responsible for generation of fibroblasts and adipocytes in 
this disease is distributed throughout the heart. If such is true, a 
population of subepicardial progenitors may be a good candidate28. 
Such a notion is strongly supported by recent studies demonstrating 
that both the murine29 and human30 heart harbour a population of 
pro-epicardially-derived tissue-resident mesenchymal progenitors, 
which express Sca1 and PDGFRα. These studies demonstrated 
the broad trans-germ layer differentiative capacity of this cardiac-
resident progenitor population29 and characterized their presence in 
both fetal and diseased human myocardium30, but did not thorough-
ly investigate their role in regeneration and repair of the heart. The 
notion that the heart harbours a population of Sca1+ PDGFRα+ 
mesenchymal progenitors able to generate both fibroblasts and adi-
pocytes aligns with the hypothesis that this population is the most 
significant cellular source of fibrofatty infiltration in AC.

Although fibrofatty replacement of the myocardium is the hallmark 
feature of AC, the consistent observation of small lymphocytic foci 
in the disease31–33 further supports the involvement of cardiac-resident 
Sca1+ PDGFRα+ mesenchymal progenitors in its progression, as 
these progenitors have been recently shown to contribute in vivo 
to lymph node stroma34 and follicular dendritic cells35. Thus, the 
milieu of chronic myocardial inflammation may trigger their dif-
ferentiation not just into adipocytes and myofibroblasts, but also 
possibly in cells capable of attracting and supporting lymphocytes.

Although studies in murine models of AC employing the strict line-
age tracing methods required to determine the cellular source of ad-
ipocytes have yet to be performed, studies in skeletal muscle (SM) 
further support our hypothesis in implicating Sca1+ PDGFRα+ 
tissue-resident mesenchymal progenitors. Recent studies36,37 ac-
complish the prospective isolation and purification of a popula-
tion of SM resident Sca1+ PDGFRα+ mesenchymal progenitors, 
which were further shown to be the sole SM-derived population 
with fibro-adipogenic potential. Additional evidence from mdx 
mice, a murine model of Duchenne muscular dystrophy38, strongly 
supports the notion that tissue-resident Sca1+ PDGFRα+ cells are 
the principal cell population involved in the generation of fibro-
fatty scars in situations of chronic muscle damage. Interestingly, 
a robust regenerative capacity of SM was demonstrated by these 
studies, and others39,40, to be at least partly due to paracrine roles 
of these tissue-resident mesenchymal progenitors. In light of this 
evidence, the therapeutic potential of modulating proliferation and 
differentiation of cardiac Sca1+ PDGFRα+ progenitor cells in 
situations of acute or chronic damage is certainly intriguing. With 
a large body of clinical evidence demonstrating the beneficial ef-
fects of transplanting bone-marrow derived mesenchymal stromal 
cells (MSCs) into patients afflicted with a variety of cardiovas-
cular disorders41, and numerous data highlighting the similarities 

between MSCs derived from different tissues42, the identification 
of a tissue-resident counterpart presents an attractive candidate 
for pharmacological modulation. Such manipulation could lead 
to therapeutic benefits, similar to those observed with exogenous 
delivery of similar cells but devoid of the adversities stemming 
from ex vivo manipulations, including (but not limited to) trans-
plantation, immunogenicity issues and challenges involved in the 
use of good manufacturing practice facilities for clinical-grade cell 
preparations.

Research required to evaluate the hypothesis
In order to unequivocally demonstrate the contribution of cardiac-
resident Sca1+ PDGFRα+ mesenchymal progenitors to fibrofatty 
scarring in AC, a number of questions must be addressed.

First, a more thorough characterization of these progenitor cells 
must be performed to determine both their functional role in health 
and disease, as well as determine the homogeneity of this population. 
It is very possible that within this phenotypic identity, several func-
tionally different cellular subsets are present, and the unravelling of 
these hierarchies could provide significant insight into cellular pro-
cesses in the regenerating or degenerating myocardium. Dularoy  
et al.43 identified a fibrogenic subpopulation within PDGFRα+ Sca1+  
progenitor in the SM using ADAM12+, highlighting heterogeneity, 
and supporting the need to further distinguish between functional 
subsets of this mesenchymal population. It will also be highly im-
portant to determine whether the desmosome plays a direct role 
in PDGFRα+ Sca1+ progenitor cell function, or whether the ar-
rhythmogenic reparative disorder observed in AC is to be ascribed 
solely to continued loss of cardiomyocytes due to desmosomal 
gene defects.

Second, further lineage tracing experiments using several inducible 
Cre-drivers such as PDGFRα-CreER in combination with either 
previously described25 or novel models of AC will allow identifica-
tion of the role of this population in AC.

Finally, the limitations of the murine Sca-1 (Ly6A/E) as a marker of 
tissue-resident progenitors should be addressed since there is cur-
rently no known human homolog for this gene. Such is the case de-
spite the hypothesis that a broad range of functions mediated by this 
marker are probably assumed by other Ly6 proteins in humans44.

Consequences of the hypothesis
With no current treatment available for AC, it is highly attractive to 
consider that manipulation of molecular mechanisms underlying the 
development of the cardiac fibrofatty infiltration could mitigate both 
functional deterioration as well as survival of AC patients. Clini-
cal trials in patients suffering from Duchenne muscular dystrophy 
utilizing anti-fibrotic strategies (NCT01521546) may provide valu-
able insight into the beneficial effects of preventing development of 
fibrofatty scars in the functional myocardium45. Additionally, with 
several recent reports describing in vivo reprogramming of cardiac 
fibroblasts into functional cardiomyocytes46–48, it could be postulat-
ed that targeting of existing fibrofatty scars could be therapeutically 
beneficial. With a growing recognition of functional and theoretical 
overlap between fibroblasts and mesenchymal stem cells49,50 there is 
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a strong possibility that the beneficial effects seen in recent cardiac 
studies are due to reprogramming of these tissue-resident progenitor 
cells. Recent technical advances involving patient-specific induced 
pluripotent stem cells (iPSCs)51 as well as further development of 
aforementioned reprogramming strategies may enable novel target-
ed approaches to specific cell populations with enhanced transdif-
ferentiative capacities, and could provide a basis for next-generation 
therapy of AC.

Conclusion
In summary, recent evidence demonstrating that the heart harbours 
a population of Sca-1+ PDGFRα+ mesenchymal progenitors pro-
vides new directions for defining the cellular source of the fibro-
fatty infiltrate that is characteristic of AC. A growing understanding 
of the role of tissue-resident mesenchymal progenitors in numer-
ous other tissues, most notably SM, offers strong support for our 
hypothesis. Potential avenues for novel targeted therapeutics may 
emerge to benefit patients with AC.
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This is an excellent synthesis of the literature surrounding the history, clinical manifestations, genetic
basis and aetiology of arrhythmogenic cardiomyopathy (AC), and in particular, proposes a role for the
resident Sca1+ PDGFRα+ interstitial population that includes mesenchymal (MSC-like) progenitor cells in
the fibrofatty infiltrates that develop during the disease. This hypothesis piece notes carefully the
limitations of conclusions arising from published studies using animal models that hint at a role for second
heart field cardiomyocyte progenitors in the development of disease. Of importance, is whether the
fibrofatty infiltrates are the primary or secondary target of the mutations in desmosomal component genes
that underpin the disease. The piece is scholarly, and well written. A dimension not explored extensively
is the possibility that the fibrofatty cells arise from the epicardium of the adult heart, which has been
shown by a number of groups to become activated after injury. Activated epicardium re-expressed genes
involved in the fetal epicardial program and reveals a latent lineage reserve that can contribute fibroblasts
and smooth muscle cells to the infarct zone of a chronically injured ischaemic heart. While the
Sca1+ PDGFRα+ interstitial mesenchymal cells and epicardial cells share a lineage relationship in
development, an additional challenge in the lineage mapping studies proposed is to distinguish whether
fibrofatty infiltrates in AC arise from one or the other, or both, of these cellular compartments.
Nonetheless, the ideas explored in this article overlap with interesting and important issues in cardiac
developmental and stem cell biology, and with the potential for targeting fibrofatty progenitor cells as a
therapy in arresting the progression of AC in the clinical setting. An excellent work that should be a
reference point for future studies.
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This is a considered hypothesis for cellular origins of the fibro-fatty myocardial scarring underlying the
poorly understood clinical disease - Arrhythmogenic Cardiomyopathy. The authors are a group with
considerable experience investigating fibroadipogenic and skeletal muscle progenitor cells. 
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The title is perhaps too strongly worded. Whilst the hypothesis is sound and intriguing, there is
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The title is perhaps too strongly worded. Whilst the hypothesis is sound and intriguing, there is
currently little or no data proving that the title/hypothesis is true. This is appropriately discussed in
the manuscript.
The abstract does represent a suitable summary of the work.
The article content provides a thorough review of data supporting the proposed hypothesis. If the
hypothesis were proven true this would be a substantial advance for this field and for clinical
cardiology
The conclusions are sensible and justified.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.
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