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Abstract: Various bi-directional associations exist between oral health and gastro-intestinal diseases.
The oral microbiome plays a role in the gastro-intestinal carcinogenesis and fusobacteria are the
most investigated bacteria involved. This paper aims to review the current knowledge and report
the preliminary data on salivary levels of Fusobacterium nucleatum, Porphyromonas gingivalis and
Candida albicans in subjects with different gastro-intestinal conditions or pathologies, in order to
determine any differences. The null hypothesis was “subjects with different gastro-intestinal diseases
do not show significant differences in the composition of the oral microbiota”. Twenty-one subjects
undergoing esophagastroduodenoscopy or colonscopy were recruited. For each subject, a salivary
sample was collected before the endoscopy procedure, immediately stored at —20 °C and subse-
quently used for genomic bacterial DNA extraction by real-time PCR. Low levels of F. nucleatum and
P. gingivalis were peculiar in the oral microbiota in subjects affected by Helicobater pylori-negative
chronic gastritis without cancerization and future studies will elucidate this association. The level
of C. albicans did not statistically differ among groups. This preliminary study could be used in the
future, following further investigation, as a non-invasive method for the search of gastrointestinal
diseases and associated markers.

Keywords: oral microbiota; oral dysbiosis; chronic gastritis; microbiome; Fusobacterium nucleatum;
Porphyromonas gingivalis; Candida albicans; salivary markers; RT-PCR

1. Introduction
1.1. Oral Microbiota: An Overview

The mouth is the opening tract of the digestive system, and its unhealthy state has been
bi-directionally associated with various systemic and gastro-intestinal diseases [1-5]. For
example, atrophic glossitis and angular cheilitis may underlie Plummer—Vinson syndrome—
a sideropenic dysphagia secondary to iron deficiency associated with gastric ulcerations [6]
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as well as pernicious anemia, which is due to the failure of the gastric cells to produce the
intrinsic factor responsible for the absorption of vitamin B12 in the intestine [7]. Addition-
ally, the oral manifestations of a number of chronic bowel diseases, such as Crohn’s and
coeliac diseases, are well documented and oral signs and/or symptoms can be assumed to
be related to these diseases [8-10].

The existence of an oral-gut axis has also been confirmed by the discovery of an
association between intestinal bowel diseases (IBD) and pathogens of oral origin [11-14] as
well as recent evidence that the administration of gut-derived probiotics can be useful in
the prevention of dental caries [15]. This suggests that improving the condition of the gut
microbiota may lead to a simultaneous improvement in the operational taxonomic units
(OTUs) of bacteria residing in the oral cavity.

As defined by Berg et al. [16], the human microbiota is made up of all types of mi-
croorganisms (archaea, eukaryotes, bacteria and viruses), that live on and in the human
body, each housed in specific ecological niches, including oral ones [17]. Instead, the
term “microbiome” refers to all of their genomic material and products [18]. Ever since
research into the oral microbiome began [19], new associations have been continuously
identified between alterations in the composition of the oral microbiome and various gas-
trointestinal diseases. This is possible due to the development and use of high-throughput
culture-independent technologies, such as reverse transcriptase-polymerase chain reaction
(RT-PCR) [20] and next generation sequencing (NSG) [21], both capable of identifying
microorganisms and their genes, even when they are not cultivable [22]. The “microbiome
project” aims to identify the microbiome components of the entire human body [19] and
the effects of various dysbiosis on human health. Approximately 700 species of prokary-
otes have been identified in the oral microbiome. These species belong to 185 genera
and 12 phyla, of which approximately 54% are officially named, 14% are unnamed (but
cultivated) and 32% are known only as uncultivated phylotypes [9]. The 12 phlya are
Firmicutes, Fusobacteria, Proteobacteria, Actinobacteria, Bacteroidetes, Chlamydiae, Chloroflexi,
Spirochaetes, SR1, Synergistetes, Saccharibacteria (TM7) and Gracilibacteria (GN02) [23]. In
addition, the oral cavity also contains diverse forms of microbes such as protozoa, fungi
and viruses. Entamoeba gingivalis and Trichomonas tenax are the most commonly found
protozoa and are mainly saprophytic. The Candida species is the most prevalent fungi
seen associated with the oral cavity. Ghannoum et al. [24] carried out culture-independent
studies on 20 healthy hosts and reported 85 fungal genera. The main species observed
were those belonging to Candida, Cladosporium, Aureobasidium, Saccharomycetales, Aspergillus,
Fusarium and Cryptococcus [25]. Of particular interest, Candida albicans is a dimorphic yeast
that is occasionally found in healthy mouths as a saprophyte [26] but can infect oral mucosa
after dysregulations of the normal oral flora, under local [27] and systemic circumstances,
both para-physiological (pregnancies, elderly, early childhood) and iatrogenic (prolonged
steroids and/or antibiotics therapies) [28] as well as in dysmetabolic/dysimmune patholo-
gies (diabetes, obesity and/or immunodeficiencies) [29-31]. In all these situations, the
antagonistic bacterial-fungal relationship favors the switch of C. albicans to its infectious
phenotype, with carcinogenic potential, as has been reported for other microbial species
such as papillomaviruses [32] in particular conditions [33].

Under physiological conditions, the microorganisms of the core microbiota are quali-
tatively and quantitatively arranged in three different ecological niches/intraoral habitats
as follows: Group 1 includes microorganisms at the level of the keratinized gingiva, the
hard palate and the buccal mucosa; Group 2 comprises those on the tongue, tonsils, throat
(posterior wall of the oropharynx) and in the saliva; and Group 3 comprises those in sub-
and supra-gingival plaque [34,35] (Figure 1).
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Figure 1. The oral microbiota of a healthy mouth. On top, the percentage composition of phyla in the various niches (G1-G3)
of the oral microbiota. G1, Group 1: keratinized gingiva, hard palate and the buccal mucosa; G2, Group 2, tongue, tonsils,
throat and saliva; G3, Group 3, sub- and supra-gingival plaque. On the bottom, details on the percentage composition of
phyla (left) and genera mainly present in salivary microbiota (right). The genera are represented in descending percentages,
and color bars reflect the phyla they belong to. The organisms inhabiting saliva account for 99.9% of all bacteria in the oral

cavity and are usually planktonic organisms.

Oral dysbiosis consists of a qualitative and quantitative imbalance of the composition
of the oral microbiota. The specific predominance of some pathogenic microorganisms over
others is associated with specific oral and systemic diseases. Fusobacterium nucleatum and
Porphyromonas gingivalis are the bacteria most frequently and variably investigated and are
mainly known to be responsible for periodontal diseases, although they can also be found
in subjects without periodontitis [36,37]. Scientific literature reports that their presence
is associated with the onset and/or worsening of a wide range of systemic diseases [38],
such as osteoporosis [5], cardiovascular diseases [39,40], rheumatoid arthritis [41] and
neurodegenerative diseases such as Alzheimer’s and Parkinson’s [42,43].

1.2. Oral Dysbiosis and Gastrointestinal Diseases

The term “gastritis” refers to a series of acute or chronic inflammations of the stomach,
secondary to endogenous or exogenous irritants, which determine a reparative and/or
reactive response of the gastric mucosa. The etiology of acute gastritis (AC) recognizes
numerous causes, such as drugs, caustic agents, radiations and traumas, while chronic
gastritis (CG) is mainly sustained by Helicobacter pylori infections or autoimmunological
triggers, and is dichotomized in H. pylori-related and H. pylori-unrelated gastritis [44]. The
severity and persistence of inflammation in CG or the onset of ulcers, mainly related to
H. pylori infections and non-steroidal anti-inflammatory drugs (NSAIDs), are associated
with the risk of developing dysplasia of varying degrees and gastric cancers [45].

Furthermore, Cui et al. [46] analyzed the diversity of the oral microbiome of subjects
with and without gastritis and found that the levels of 11 species decreased and 10 increased
in patients with gastritis.

With regards to the gastro-intestinal system, F. nucleatum and P. gingivalis can reach
the stomach directly during swallowing, but they and their toxins have also been found
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swallowing

in the colon and in the fecal microbiome, because they pass gastric juices alive and by
systemic dissemination from the ulcerated gingival pockets through the hematogenous
route [47,48].

For these reasons, recent literature has focused on the hypothesis that gastric and
colorectal cancers (CRC) and their precursors, such as gastritis and inflammatory bowel
diseases (IBDs), may also be associated with oral dysbiosis [49,50]; furthermore, oral
bacteria can colonize the gut microbiome, thus influencing intestinal and extra-intestinal
health by altering the permeability of the intestinal mucosa and perpetuating chronic
inflammatory states, both locally and systemically, with the hematogenous dissemination
of lipopolysaccharides (LPSs) and other toxins responsible for distant consequences [51] as
well as CRC and pancreatic cancers [49] (Figure 2).
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Figure 2. Oral bacteria and intestinal diseases. Oral bacteria can reach the intestines and stomach both through swallowing
(a) and through the bloodstream (b). (c) At the level of the colon mucosa, they can compete with the local flora and establish
intestinal dysbiosis. Pathogenic bacteria and their toxins alter the permeability of the basement membrane, perpetuate
chronic inflammation and promote carcinogenesis. (d) Uncontrolled cell cycles reduced apoptotic efficiency and barrier
damage results, thus leading to (e) chronic inflammatory diseases and the onset of cancers.

Zhang et al. [52] suggested three mechanisms of action of oral microbiota in the
pathogenesis of cancer. The first is related to the state of chronic inflammation induced,
especially by anaerobic species in particular, such as Porphyromonas, Prevotella and Fu-
sobacterium. These pathogens are, in fact, able to stimulate the production of important
mediators of the inflammatory process, such as the cytokines interleukin (IL)-13, IL-6, IL-17,
IL-23, and Tumor Necrosis Factor « (TNF-«). The consequent harmful effects develop
mainly on fibroblasts, epithelial and endothelial cells, and components of the extracellular
matrix, with an increase in the expression of the metalloproteases MMP-8 and MMP-9 and
a consequent increase in cell proliferation, mutagenesis, initiation of angiogenic processes
and oncogenesis [53,54].

A second mechanism of action involves the ability of oral bacteria to influence cell
proliferation, rearrangement of the cytoskeleton, activation of the transcription factor NF-
kB and inhibition of apoptosis. For example, it has been shown that P. gingivalis can inhibit
apoptosis by influencing different pathways, reducing the expression levels of proapoptotic
molecules such as p53 [54,55] and Bad [54,56], inhibiting the activation of caspase-9 [55]
and increasing the production of anti-apoptotic factors, such as Bcl-2 [54,57].

The third mechanism involves the oral pathogens’ production of many carcinogenic
substances. These include reactive oxygen (ROS) and nitrogen (RNS) species [58,59],
mainly produced by species such as Streptococcus oralis, S. mitis, S. sanguinis, S. gordonii,
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S. oligofermentans [60], Lactobacillus fermentum, L. jensenii, L. acidophilus, L. minutus and
Bifidobacterium adolescentis [61]. ROS and RNS production induces NADPH oxidase and
nitric oxide synthase (NOS), respectively, along with their reactive oxygen and nitrogen
species, which have been identified in various tumor types [62,63].

Other species, such as Porphyromonas gingivalis, Prevotella intermedia, Aggregatibacter
actinomycetemcomitans and Fusobacterium nucleatum, produce volatile sulphur compounds
(VSC), including hydrogen sulphide (H2S), methyl mercaptan (CH3SH), dimethyl sulphide
((CH3) 25), (CH3SS), (CH3SS), and (CH3SS), whose presence is often associated with the
onset of cancer [64-66].

Some species are able to produce more acids (e.g., Peptostreptococcus stomatis aciduric
produces acetic, butyric, isobutyric, isovaleric, and isocaproic acids) [67] that can add
to the acidic and hypoxic microenvironment of tumors, thereby increasing metastatic
efficiency [68,69]. Furthermore, various oral microbial species, such as S. gordonii, S. mitis,
S. oralis, S. salivarius and S. sanguinis streptococci [70], metabolize alcohol to acetaldehyde,
which is indisputably carcinogenic.

Cordero et al. [71] reported that the relationship between oral hygiene and intestinal
inflammation, which are mutually involved through signaling pathways, are linked to
tumor-promoting inflammation. In fact, during the inflammatory process, the massive
presence of pathogens or the simple imbalance of the oral microbiota play an important
role in the onset of CRC from a chronic inflamed bowel, such as in cases of IBD. The
authors based this hypothesis on the evidence that part of the gut microbiota comes from
the oral one. Thus, as stated by Flemer et al. [49], “the oral microbiota in colorectal cancer
is distinctive and predictive”. After profiling the microbiota from oral swabs, colonic
mucosae and stools in individuals with CRC, colorectal polyps and healthy controls, they
concluded that (i) oral bacteria were more abundant in CRC than in healthy controls,
(ii) that the oral microbiome of healthy controls was different from those with CRC, and
(iii) that F. nucleatum was most abundant in CRCs.

Numerous studies have also reported a significant increase in F. nucleatum in the
gastric microbiome of subjects with gastric cancers and gastritis.

In 2013, Salazar et al. [72] conducted a clinical study to measure the levels of periodon-
tal pathogenic bacteria in dental plaque and salivary samples from subjects with gastric
precancerous lesions via quantitative RT-PCR. They found a high but not statistically signifi-
cant increase in P. gingivalis and therefore, they hypothesized that high levels of periodontal
colonization by pathogens may be associated with an increased risk of precancerous gastric
lesions. In 2017, Coker et al. [73] identified differences in microbial diversity and richness
between gastric cancers and various types of gastritis, thus indicating the presence of micro-
bial dysbiosis in gastric carcinogenesis. Specifically, Prevotella intermedia and F. nucleatum,
together with Prevotella oris and Catonella morbi, were significantly enriched in the gastric
cancer microbiome compared to precancerous stages and they formed an increasingly
strong co-occurrence network with disease progression.

The recent works of Yamamura et al. [74] and Hsieh et al. [75] have reinforced these cor-
relations. Yamamura et al. [74] detected a significant increase in the mount of F. nucleatum
DNA in oesophageal and gastric cancers as well as CRCs. Hsieh et al. [75] profiled gastric
bacterial species in patients with gastritis and gastric cancer and found that F. nucleatum,
along with Clostridium colicans, was frequently abundant in gastric cancer patients, sup-
porting a specific gastric cancer signature.

Regarding C. albicans, the scientific literature has so far paid little attention to the study
of its relationship with systemic health, limited to the role of candidiasis in a few systemic
diseases, and has not yet considered its possible gastro-intestinal implications [76,77]. The
main findings on oral bacteria associated with gastrointestinal disease are reported in
Table 1.
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Table 1. Oral bacteria associated with gastrointestinal diseases.
G-i Diseases Oral Bacteria/Fungi Main Findings Ref.
Streptacocci, Eusobacteria significantly higher in gastritis vs. [46]
healthy controls
Veillonella parvula, Corynebacterium matruchotii, Kingella
oralis, Atopobium rimae, Aggregatzbacter ay.hrophzlus, decreased in gastritis patients vs.
Streptococcus sanguinis, Acinetobacter lwoffii, Prevotella [46]
. i : . . healthy control
Gastriti amnii, Prevotella bivia, Cardiobacterium hominis and
astritis . . .
Oribacterium sinus
Streptococcus infantis, Treponema vincentii, Leptotrichia
unclassified, Canipy lochtgr re'ctus, Cum;? ylpbacter showae, increased in gastritis patients vs. healthy
Capnocytophaga gingivalis, Leptotrichia buccalis, . [46]
. . control (mainly Campylobacter spp.)
Campylobacter concisus, Selenomonas flueggei and
Leptotrichia hofstadii
Campylobacter concisus positively associated with th'e. [46]
precancerous cascade of gastritis
) I . increased in dental plaque of subjects
Gastric Porphyromonas gingivalis, Treponema denticola with gastric precancerous lesions [72]
Precancerous — - - -
lesions Actinobacillus actinomycetemcomitans, Treponema denticola significantly associated Wlth gastric [72]
precancerous lesions
Tannerella forsythia 51gruf1cant.1y inversely assoculited with [72]
gastric precancerous lesions
Tannerella forsythia, Porphyromonas gingivalis associated with higher risk of [52]
oesophageal cancers
Streptococeus anginosus higher in Qesophageal cancer tissues than [52]
in oral cancer tissues
higher in oesophageal cancer tissues than
. matched normal mucosa; significantly
Oesophageal and Fusobacterium nucleatunm associated with tumor stage and [521
Gastric Cancers cancer-specific survival
Neisseria spp., Candida glabrata potential rolg n alcohol—related [52]
carcinogenesis
Parvimonas micra, Peptostreptococcus stomatis, C g .
; ) . significantly increased
Prevotella intermedia, Fusobacterium nucleatum, Prevotella . . .
. . . in gastric cancer compared with [73]
oris, Gemella and Catonella morbi, Streptococcus anginosus,
. . L precancerous stages
Dialister pneumosintes, Slackia exigua
Bacteroidetes significantly increased in IBDs [51]
Proteobacteria and Actinobacteria increased in IBDs [51]
Inﬂammatory Campulobacter concisus increases the mucosal permeability by [51]
bow?Ichllsse):ases Py affecting the tight junctions in IBDs
s
Fusobacterium nucleatum overrepresented in IBDs [51]
Candida albicans isolated from the intestine more [51]

frequently in IBD patients
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Table 1. Cont.

G-i Diseases Oral Bacteria/Fungi Main Findings Ref.
Haemophilus spp., Prevotella spp., Alloprevotella less abundant in CRC than [49]
Lachnoanaerobaculum, Neisseria and Streptococcus spp. healthy controls

Fusobacterium nucleatum, Parvimonas micra,
Peptostreptococcus stomatis, Dialister pneumosintes

tumor-associated bacteria [49]

Peptostreptococcus, Parvimonas, Fusobacterium

more abundant in CRC than in

healthy controls [4]

induces inflammatory
Fusobacterium nucleatum response and promotes [52]
CRC development

CRC

Treponema denticola, Prevotella intermedia increases the CRC risk [52]

causes inflammation and promotes tissue

P ingivali . 2
orphyromonas gingivalis degenerative processes [52]
Fusobacterium nucleatum associated with CRC regional lymph [55]
node metastases
Fusobacterium nucleatum, Selenomonas, Prevotella, increased in CRC; induces colon cancer [71]
Parvimonas micra, Peptostreptococcus stomatis growth and progression
Lachnospiraceae can protect against CRC [71]

Fusobacterium nucleatum sustains both the [47]
biofilm and the CRC tumorigenesis

In the light of the above review of the literature, the aim of this study was to establish
a possible association of the salivary levels of F. nucleatum, P. gingivalis and C. albicans
with various gastro-intestinal conditions and/or pathologies, in order to highlight any
differences and their possible clinical significance and correlations. The null hypothesis
was “subjects with different gastro-intestinal diseases do not show significant differences
in the composition of the oral microbiota”.

2. Materials and Methods
2.1. Patients

All the procedures in the present study involving human participants were performed
after approval from the Internal Ethics Committee (protocol number #68 /2020, Comitato
Etico Universita della Campania “Luigi Vanvitelli”—Azienda Ospedaliera Universitaria
“Luigi Vanvitelli”—AORN “Ospedale dei Colli”), and in accordance with the 1964 Helsinki
declaration and its later amendments.

A series of consecutive subjects referred to the Digestive Endoscopy Unit of the Uni-
versity of Campania “Luigi Vanvitelli”, Naples, Italy, were considered. The exclusion
criteria were as follows: recent antimicrobial therapy and/or use of oral antiseptic (less
than two weeks prior the enrollment) and presence of chronic and/or acute confound-
ing infections, such as HCV, HBV and HIV, established by serological tests exhibited by
each patient invited to participate. All the subjects who agreed to participate, gave their
informed written consent for their anamnestic data and a salivary sample to be collected
before the scheduled endoscopic procedure, which was performed in accordance with the
standards protocols.

For subjects with clinical suspicion of gastric diseases, a complete esophagastroduo-
denoscopy (EGDS) was performed, while patients with suspected CRC or a past history
of CRC underwent colonoscopy (CS) for post-cancer follow-up. When necessary, one or
more biopsies were performed simultaneously with the endoscopic procedure to analyze
suspicious lesions with a conventional histology.

Two healthy subjects, who underwent CS for hemorrhoids and had no pathological
findings or other gastrointestinal symptoms, were considered as the control group.
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Saliva was collected by asking the patient to spit once per minute into a sterile Ep-
pendorf, mainly two hours after the last brushing of teeth in the morning and prior to the
endoscopic procedure, until the appropriate amount (5 mL) was obtained. The study was
double-blinded—both the examiner collecting the saliva and microbiologist dealing with
the samples were blinded to the gastro-intestinal conditions of the patients.

2.2. Saliva Analysis for Microbiota Evaluation

Salivary samples frozen at —20 degree Celsius were used for genomic bacterial DNA
extraction with the Qiaamp DNA mini kit (Qiagen, Germantown, MD, USA) according to
the manufacturer’s instructions.

Real-time PCR was carried out to detect the presence of periodontal pathogens with
the LC FastStart DNA Master SYBR Green kit (Roche Diagnostics, Penzberg, Germany) in
a 20 pL final volume using 2 pL of DNA, 3 mM MgCl,, and 0.5 mM sense and antisense
primers (Table 2).

Table 2. Primer sequence and amplification conditions.

Gene Primers Sequence Conditions ProductSize (bp)
Fusobacterium mucleatun 5-AGAGTTTGATCCTGGCTCAG-3/ 5” at 95 °C, 16” at 55 °C, 8” at 107
5'-GTCATCGTGCACACAGAATTGCTG-3 72 °C for 40 cycles
Porvhvromonas eineionlis 3 -TCTAGATGACTGATGGTGAAAACC-3 57 at95°C, 5" at52°C, 4" at 198
Py 83 5'-ACGTCATCCCCACCTTCCTC-3/ 72 °C for 40 cycles
Condida albicans 5-TTTATCAACTTGTCACACCAGA-3  10” at 95 °C, 10” at 58 °C, 15” -
e arieat 5-GGTCAAAGTTTGAAGATATACGT-3' at 72 °C for 30 cycles

After amplification, the melting curve analysis was performed by heating to 95 °C
for 15 s with a temperature transition rate of 20 °C s~!, cooling to 60 °C for 15 s with
a temperature transition rate of 20 °C s~!, and then heating the sample at 0.1 °C s~! to
95 °C. The results were then analyzed using the LightCycler software (Roche Diagnostics,
Penzberg, Germany) [78,79].

The standard curve of each primer pair was established with serial dilutions of the
DNA,; all PCR reactions were run in triplicate.

2.3. Statistical Analysis

Significant differences among the groups were assessed using the t-student test and
Excel (ver.16.16® 2018 Microsoft). The data were expressed as means =+ standard deviation
(SD) of three independent experiments.

3. Results

Opverall, 21 subjects were considered (13 women, eight men; mean age 58.86 & 13.49 years).
All seven subjects with CG were negative for H. pylori; the six ex-CRC subjects and the
four healthy controls did not report any pathological findings. Four subjects reported
histological findings of CRC.

The mean levels of F. nucleatum, P. gingivalis and C. albicans in each patient and in each
group are detailed in Table 3. With regard to C. albicans, it was discontinuously found and
statistical differences were not reported, neither between groups (Table 3), nor between
subjects with (n = 5; mean levels of C. albicans: 82.9 &+ 156.86) and without removable
dentures (n = 16; mean levels of C. albicans: 20.00 &= 51.00); hence, its analysis was excluded
from further examinations. Moreover, no differences were found in F. nucleatum and
P. gingivalis amounts between denture wearers and non-wearers.
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Table 3. Datasets of the subjects enrolled.

Id. Age Sex En. Pg. C.a. En. per Group Pg. per Group C.a. per Group
Patient  (Years) (ng/dL) (pg/mL) (pg/mL) (Mean + SD) (Mean £ SD)  * (Mean =+ SD)
2 49 F 0.10 0.03 156
3 50 F 0.02 0.05 0
G 6 68 F 2.40 0.04 0
Grou 8 23 F 4.20 3.20 71.5 1.10 = 1.62 0.57 £1.17 39.36 £ 57.80
P 10 47 F 0.00 0.15 12
30 55 F 0.93 0.08 0
44 46 F 0.08 0.44 36
17 67 M 40.50 29.75 0
22 58 M 3.85 1.4 0
Ex-CRC 24 66 F 1.37 8.75 0
Group 27 63 M 95.00 0.01 325 31.62 £ 34.40 7.78 £11.37 14.08 £ 15.76
48 71 F 28.50 6.75 22.5
50 62 M 20.50 0.000 29.50
20 80 M 9.50 0.05 365.5
CRC 29 63 M 1.50 0.03 0
Group 31 87 F 995 3.70 0 9.13 + 6.03 2.88 + 3.68 91.25 £ 182.50
39 63 M 16.25 7.75 0
9 49 F 56.50 296.50 0
Healthy 42 54 F 85.00 10.25 0
control 45 51 M 67.50 78.00 0 65.06 £+ 14.92 110.19 £ 127.37 0
34 64 F 51.25 56.5 0
En. Fusobacterium nucleatum; P.g. Porphyromonas gingivalis; C.a. Candida albicans. * t-student test revealed no significant differences between
any paired groups.

The levels of F. nucleatum were statistically the lowest in the CG group compared to
any other group, while, unexpectedly, they were significantly higher in the control group
than in the CRC group, and no significant differences were reported between the healthy
subjects and the ex-CRC patients (Table 4).

Table 4. Correlations between groups: F. nucleatum levels.
CG Group Ex-CRC Group CRC Group Healthy Group
Sample size 7 6 4 4
Mean En. values 1.10 31.62 9.13 65.06
Standard Deviation 1.62 34.40 6.03 14.92

CG vs. ex-CRC *p < 0.05
CGvs. CRC*p<0.05
CG vs. Healthy * p < 0.05
Healthy vs. CRC * p < 0.05
Healthy vs. Ex-CRC n.s. (p = 0.11)
CRC vs. ex-CRC ns. (p = 0.24)

t-student test

* Statistically significant at p < 0.05; n.s.: Not Significant.

The lowest levels of P. gingivalis were found in the CG group with a statistically
significant difference as compared to the healthy controls. The latter group showed higher
but not statistically relevant amounts of P. gingivalis compared to the CRC and ex-CRC
subjects, and the CRC group showed higher mean amounts than the CRC group (Table 5).
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Table 5. Correlations between groups: P. gingivalis levels.

CG Group Ex-CRC Group CRC Group Healthy Control
Sample size 7 6 4 4
Mean P.g. values 0.57 7.78 2.88 110.19
Standard Deviation 1.17 11.37 3.68 127.37

t-student test

CG vs. ex-CRCns. (p =0.12)
CGyvs. CRCnss. (p=0.15)
CG vs. Healthy * p < 0.05

Healthy vs. CRC n.s. (p = 0.14)
Healthy vs. Ex-CRC n.s. (p = 0.07)
CRC vs. ex-CRC ns. (p = 0.44)

* Statistically significant at p < 0.05; n.s.: Not Significant.

4. Discussion and Conclusions

Periodontitis is a biofilm-induced chronic condition which involves inflammation and
destruction of periodontal tissue [80] by oral bacteria and is considered a global disease
burden [81], being sixth among the most prevalent human diseases [82]. Many studies in
the last 20 years have shown the existence of a clear association between periodontitis and
the onset of other chronic systemic inflammatory diseases [83] due to the inflammatory
state and activation of the immune response triggered by periodontal pathogens, following
the onset of oral microbiota dysbiosis [84].

Diseases associated with periodontitis include diabetes [85], head and neck cancer [86],
pulmonary disease [87], survival of dental implants [88] and cardiovascular diseases [89].
In recent years, there has been a growing interest in the existence of an oral-gut axis and its
related pathologies. Yu et al. reported a significantly positive association between peptic
ulcer and periodontal disease [90]. The presence of periodontal disease has often been
detected in patients with IBD [91], and it has also been shown, conversely, that patients with
IBD suffer from a more severe degree of periodontal disease [92]. Wei et al. [93] reported
that chronic periodontitis (CP) was potentially correlated with oral H. pylori in adults, and
that it may be a possible risk factor for CP. Boylan et al. and Byun et al. showed an increased
risk of gastric and duodenal ulcer among patients with periodontal disease [94,95], while
Umeda et al. suggested that patients with periodontitis who harbor H. pylori in the oral
cavity should be closely monitored [96]. However, the pathway underlying the correlation
between periodontitis and H. pylori-related chronic gastritis/peptic ulcer is not completely
understood and needs to be studied more thoroughly.

Another study stated that the salivary microbiota can affect the development of the
intestinal microbiota, as saliva flows through the gastrointestinal tract, allowing the bacteria
present in it to easily reach the intestine. It has in fact been shown, through a study aimed
at assessing the metatranscriptome and metagenome of the human gut microbiota, that the
DNA of bacteria belonging to the salivary microbiota is detectable in the gut even in low
concentrations [97].

This review provides preliminary data on the assessment of salivary levels of
F. nucleatum, P. gingivalis and C. albicans in patients with CG and with a history of CRC.

Twenty-one subjects were enrolled: nine had undergone EGDS and 12 CS. In each
subject the levels of F. nucleatum, P. gingivalis and C. albicans were measured by RT-PCR
and correlated with their endoscopic and histologic diagnosis, to establish any differences
between the groups.

C. albicans was found intermittently, and no statistical differences were reported either
between groups or between subjects with and without removable dentures (as well as the
amounts of F. nucleatum and P. gingivalis). The finding of C. albicans was not associated with
clinical signs of oral candidiasis, thus suggesting a carrier state of some subjects, without
any correlation with their gastrointestinal conditions.

Levels of F. nucleatum were the lowest in the CG group and the highest in the control
group. The ex-CRC patients showed relatively, but not significantly, higher levels than
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those of CRC group. This last finding contradicted the literature reporting the increase of F.
nucleatum in stool samples from CRC subjects and its association with colon carcinogen-
esis and chronic cancer-related inflammation [48]. If we hypothesize that these marked
differences may be related to the source of the sample (saliva instead of feces), it would be
reasonable to exclude salivary tests for CRC screening, but further comparative studies
should clarify this point better.

The lowest levels of F. nucleatum and P. gingivalis were found in the CG group, with
statistically significant differences in F. nucleatum compared to each group, and P. gingivalis,
as compared to healthy subjects. In contrast, subjects with ex-CRC revealed a different
profile in which there were relative high concentrations of F. nucleatum and low P. gingivalis,
as compared to patients with CRC.

Another key feature of the CG group was that all subjects were H. pylori-negative.
Literature reports that H. pylori-positive individuals have a significant increase in the
amount of F. nucleatum in the oral cavity, as H. pylori selectively adheres and co-aggregates
with Fusobacteria [98]. Therefore, it is reasonable to speculate that low levels of F. nucleatum
can influence or be influenced by the lack of H. pylori. What is still unclear is whether
H. pylori-negativity should be considered a consequence of low levels of F. nucleatum, or
whether the low levels of F. nucleatum are due to a lack of H. pylori.

In the first case, the expression of H. pylori could be considered to be directly correlated
to the quantity of F. nucleatum and, therefore, it could be hypothesized as indirectly reducing
H. pylori by acting on the salivary reduction of F. nucleatum with oral hygiene protocols
to directly rebalance the composition of the oral microbiota and, indirectly, the gastric
one. This intervention could reduce the need for antibiotic therapies for the eradication of
H. pylori by abolishing their adverse effects and drug-resistances. Conversely, if the low
levels of F. nucleatum were a consequence of the lack of H. pylori, it would be possible to
indirectly estimate the presence/absence of H. pylori in CG by measuring the amount of
F. nucleatum in the oral cavity. In any case, although these doubts are still to be clarified,
and these hypotheses require confirmation through larger clinical studies, the hypothesis
of considering the measurement of F. nucleatum as a predictor of the presence of H. pylori in
CGs and their cancerization has been corroborated by various studies [98-101].

Furthermore, the microbial diversity in subjects with gastritis H. pylori-negative com-
pared with those with gastritis H. pylori-positive, was proven by several studies [101] as
well the fact that saliva and stomach aspirates share similar bacterial composition and
significantly highest abundance of Fusobacteria, compared to other gastro-intestinal sites.
Particularly, Fusobacteria were found to be more abundant in the stomach than salivain a
series of subjects with gastritis H. pylori-negative [102]. On this basis, it is reasonable and
follows Zhao et al. [102] that, if the saliva is the main source for the gastric microbiome, a
correlation between H. pylori and oral bacterial species may exist and may influence and/or
be influenced by each other [102].

The consistency of this study was strongly affected by the small sample size; thus, it
must be considered as just “exploratory” and in need of improvement. Unfortunately, this
was due to the interruption of recruitment after the outbreak of the COVID-19 pandemic,
in March 2020.

The intestinal and oral environments are infinitely complex, and the microbiota of
these environments is a key element in maintaining homeostasis, so saliva should be
considered as a means of monitoring the intestine for future research in gastrointestinal
tract diseases.

However, the preliminary results encourage and recommend further cohort studies
on patients suffering from CG, in order to establish whether the salivary quantification of
F. nucleatum and P. gingivalis can actually serve as a non-invasive marker for monitoring
the onset of H. pylori or cancerization.
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