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Abstract: Image inpainting networks can produce visually reasonable results in the damaged regions.
However, existing inpainting networks may fail to reconstruct the proper structures or tend to
generate the results with color discrepancy. To solve this issue, this paper proposes an image
inpainting approach using the proposed two-stage loss function. The loss function consists of different
Gaussian kernels, which are utilized in different stages of network. The use of our two-stage loss
function in coarse network helps to focus on the image structure, while the use of it in refinement
network is helpful to restore the image details. Moreover, we proposed a global and local PatchGANs
(GAN means generative adversarial network), named GL-PatchGANs, in which the global and local
markovian discriminators were used to control the final results. This is beneficial to focus on the
regions of interest (ROI) on different scales and tends to produce more realistic structural and textural
details. We trained our network on three popular datasets on image inpainting separately, both Peak
Signal to Noise ratio (PSNR) and Structural Similarity (SSIM) between our results, and ground truths
on test images show that our network can achieve better performance compared with the recent
works in most cases. Besides, the visual results on three datasets also show that our network can
produce visual plausible results compared with the recent works.
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1. Introduction

Image inpainting is to restore the complete visual effects by generating the alternate structures
and textures in the missing areas of images. It is an important part of many image editing operations,
such as image target removal, image restoration, and image denoising [1–3]. The quality of filling
damaged region determines the final image inpainting result, and the main challenge of image
inpainting is to generate the feasible structure and realistic texture.

Image inpainting technology has been proposed for several decades. The image inpainting
algorithms can be divided into three categories: propagation-based algorithm [4,5], search-based
algorithm [3,6,7], and learning-based algorithm. The first one is proposed to deal with the small
object removal, such as noise, rain, and scratch, which is realized by expanding the information in the
existing region to the damaged region, so it may fail to restore the image with large damaged regions.
The second one is realized by searching the similar image blocks in the information area and copying
them to the damaged area. However, it is usually difficult to restore the complex structure and rich
details because no semantic information of image is utilized.

With the development of deep learning technology, especially the convolutional neural network
(CNN) and generative adversarial network (GAN) [8], the deep learning-based algorithm [9–11]
has been widely used to deal with more complex situations. In recent years, many works [12–14]
treated the image inpainting as a conditional generation problem by learning the mapping
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function between the input corrupted image and ground truth one. These methods perform well
owning to learning meaningful semantics to produce a consistent structure for the missing regions.
However, these methods may fail to effectively separate structure and texture information, so the
results tend to be boundary crossing smooth or texture distortion. To solve this problem, some image
inpainting approaches [15–19] were proposed using the two-stage networks. These methods restore the
proper image structure in stage 1, and then use the reconstructed information in stage 2 to generate the
final result. However, these methods [18,19] are usually time-consuming owning to the pre-processing
of dataset before training. Besides, two stages of networks [17–19] usually need to be trained separately;
thus, the end-to-end training cannot be achieved and the training complexity is increased. In addition,
some methods may fail to select an appropriate intermediate state, which will result in the misleading
or less available information in state 2 of network.

To solve these problems, this paper proposes a two-stage loss function. For different network
stages, the Gaussian convolution kernel with different parameters is utilized for image filtering.
For example, in the coarse network, some image details are filtered to make the network much easy
to focus on the image structure, while, in the refinement network, only noises are filtered to better
recover the image details. In addition, inspired by Reference [13,20], a global and local PatchGANs
structure is proposed, in which different discriminators are used to supervise the regions on different
scale and achieve more realistic results.

In this paper, we improved the coarse-to-fine network [16] using our proposed two-stage loss
function and GL(Global and Local)-PatchGANs. The qualitative and quantitative experiments
on several public datasets demonstrate that our method achieves competitive results against the
state-of-the-art ones. The main contributions of our paper are summarized as:

• A two-stage loss function is proposed for image inpainting to make the network easy to restore
plausible structure in coarse network and generate vivid texture in refinement network.

• A practical patch-based GL-PatchGANs discriminator, which focuses on the generated images on
different scales, is proposed to achieve the more feasible image structures and details.

• Experiments on multiple public datasets show that our method achieves competitive results
compared with the state-of-the-art ones.

2. Related Work

2.1. Image Inpainting Based on Deep Learning

With the development of deep learning technology, the learning-based image inpainting
algorithms have been widely used and have achieved better performance owing to the full use
of semantic information of images. For example, Pathak et al. [12] applied CNN and GAN to
image inpainting and used the encoder-decoder structure to extract image features and restore the
damaged regions. The early image inpainting network can only restore the square damaged area,
so Iizuka et al. [13] utilized global and local discriminators to supervise whole image and square
restored area, respectively. Yu et al. [15] proposed the contextual attention to search for the relationship
among the dispersed similar feature blocks and used different masks to represent the damaged areas;
thus, the image inpainting network could restore the damaged areas with arbitrary shape. Liu et al. [14]
proposed the partial convolution to overcome the deficiency of vanilla convolution in image inpainting
networks, which updates the masks with the change of damaged regions. Yu et al. [16] used the soft
mask to instead the binary mask in the network to better represent the restored situation of image.
Besides, Xie et al. [21] reversed the masks in the encoder network and put them in the decoder
network to realize the update of damaged region. In addition, Yang et al. [22] considered the structure
information in image generation network to produce the realistic structural images. Yu et al. [23]
proposed the region normalization for image inpainting and conducted the batch normalization in the
damaged and undamaged areas, respectively.
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2.2. Existing Two-Stage Networks

Yu et al. [15] first proposed the two-stage network using the L1 loss between the result and
ground truth. At stage 1, the rough results were obtained and used as the input of stage 2 to obtain the
final results. Besides, Nazeri et al. [17] proposed EdgeConnect method. At stage 1, the image contours
were restored and used for the assistance of stage 2 to obtain the final result. Song et al. [18] proposed
segmentation prediction and guidance network and took the image after semantic segmentation as
the intermediate state of two-stage network. Ren et al. [19] first recovered the structural image by
removing the high-frequency components and then used the appearance flow to obtain the final result.

These two-stage networks can gradually restore images owning to adopting the intermediate
stage. However, many networks need to be trained separately, which will increase the time consuming
in training process. To solve this problem, this paper proposed a two-stage loss function and used it in
the coarse and fine networks, respectively.

3. Proposed Approach

This section details our proposed approach. First, the proposed two-stage loss function is
discussed. Second, a global and local markovian discriminator, named GL-PatchGAN, is proposed.
Last, an improved coarse-to-fine generative adversarial network architecture for image inpainting
is presented.

3.1. Proposed Two-Stage Loss Function

It is very important to select the proper intermediate state in the coarse-to-fine networks, which can
largely improve the quality of the restored images. Inspired by Reference [17,22], a loss function based
on Sobel operator is proposed in the two phases of network in this paper.

Given the network prediction result Iout, and the ground truth image Igt, our two-stage Sobel loss
is defined as:

Igauss
out = G(Iout) Igauss

gt = G(Igt), (1)

Isobel_y
out = Sy(Igauss

out ) Isobel_y
gt = Sy(Igauss

gt ), (2)

Isobel_x
out = Sx(Igauss

out ) Isobel_x
gt = Sx(Igauss

gt ), (3)

Lsobel = ‖Isobel_y
out − Isobel_y

gt ‖1 + ‖Isobel_x
out − Isobel_x

gt ‖1, (4)

where G is a Gaussian filtering operation for noise removal. In order to obtain the image information
on different scales of two stages, different Gaussian kernels are used in our network. Sx and Sy are the
horizontal and vertical Sobel convolution kernels, respectively. Sobel kernels have strong ability to
catch the gradient of images, so they are used in our loss function to extract the image structure in
coarse network and to obtain the image contour in refinement network.

In order to better recover the image structure and texture components, other edge extraction
operators, such as Laplace, Robert, and Prewitt operator, are also performed in the loss function,
and the comparison experiments are conducted on CelebA-HQ [24] dataset. The networks setup is
identical except the operators in loss function.

As shown in Table 1, the loss function based on Sobel operator performs better than others due to
the following reasons. Compared to the Sobel operator, the Robert one has smaller kernel size, as well as
a smaller receptive field. The Laplace operator only uses a single convolution kernel to process images
and does not extract the horizontal and vertical gradient of images, respectively. Besides, the Prewitt
operator tends to smooth images when extracting image gradient. Therefore, we apply the Sobel
operator on loss function in this paper for better performance.
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Table 1. Comparison results of networks with different operators in loss function in terms of different
ratios of mask on CelebA-HQ.

Mask (%) Sobel Laplace Robert Prewitt

PSNR+ 10–20 32.42 31.34 31.88 31.96
20–30 29.16 27.99 28.65 28.68
30–40 26.77 25.63 26.38 26.31
40–50 24.91 23.70 24.52 24.48

SSIM+ 10–20 0.980 0.975 0.978 0.978
20–30 0.960 0.949 0.956 0.956
30–40 0.934 0.916 0.923 0.928
40–50 0.901 0.875 0.894 0.895

In this paper, the proposed loss function is utilized in two stages, as well as the Gaussian
convolution kernel with different sizes and standard deviations. In coarse network, the Gaussian
kernel with strong filtering ability is used, while, in refinement network, the Gaussian kernel with
relatively slight filtering ability is utilized. Thus, the network tends to focus on the image structure in
coarse network and focus on the details of the restored image in refinement network.

Gaussian convolution kernels with different parameters will lead to different results. Suppose s
and σ are the size and the standard deviation of Gaussian convolution kernel, respectively. The larger
the s is, or the smaller the σ is, the stronger the filtering ability will be; thus, more detailed information
tends to be eliminated. However, stronger filtering ability will also blur the images. To achieve the
best parameters, we compared the results of convolution kernels with different sizes at different
stages of network. The experiments were performed on 2000 test images taken from the dataset
CelebA-HQ [24] with 10–20% irregular masks. The visual comparison results are shown in Figure 1,
while the quantitatively evaluate results are shown in Table 2.

The first row of Figure 1 are the original and input images, while the second and the third row
show the inpainting results at stage 1 and stage 2 with different parameters, respectively. We can
see from Figure 1 and Table 1 that the best inpainting result can be achieved using the parameters
s = 5, σ = 1 at stage 1, and s = 3, σ = 1 at stage 2. Therefore, the parameters above are selected in the
subsequent experiments for better inpainting effects.

(a) GT (b) Input



Sensors 2020, 20, 6193 5 of 14

(c) s = 5, σ = 1 (d) s = 5, σ = 1 (e) s = 3, σ = 0.5 (f) s = 3, σ = 0.5 (g) s = 5, σ = 0.5 (h) s = 5, σ = 0.5

(i) s = 3, σ = 1 (j) s = 3, σ = 2 (k) s = 3, σ = 1 (l) s = 3, σ = 2 (m) s = 3, σ = 1 (n) s = 3, σ = 2

Figure 1. Comparison of inpainting effects at stage1 and stage 2 with different parameters.

Table 2. Performance comparison of two-stage loss function using Gaussian convolution kernel with
different parameters at different stages.

Stage1 Stage2 PSNR+ SSIM+

without without 30.544 0.971
s = 5 σ = 1 s = 3 σ = 1 32.420 0.980
s = 5 σ = 1 s = 3 σ = 2 32.050 0.979

s = 3 σ = 0.5 s = 3 σ = 1 32.179 0.979
s = 3 σ = 0.5 s = 3 σ = 2 32.354 0.980
s = 5 σ = 0.5 s = 3 σ = 1 32.126 0.979
s = 5 σ = 0.5 s = 3 σ = 2 32.315 0.980

To verify the effectiveness of our proposed loss function, we performed the experiments with or
without it at different stages, and the results are shown in Figure 2. where Figure 2a–f are the ground
truth images, input masked images, the results without and with our loss function at stage 1, and the
results without and with our loss function at stage 2, respectively. We can see from Figure 2 that the
network with our proposed loss function achieves better restoration effects on structural information,
as shown in Figure 2c,d. The reason is that our loss function is beneficial to focus on the image contour
at stage 1. In addition, the network with our proposed loss function better recovers the image details
at stage 2, as shown in Figure 2e,f, because the selected Gaussian kernels in loss function is beneficial
to remove slight noise and preserve the good texture images.
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(a) GT (b) Input (c) Stage1 (without) (d) Stage1 (our) (e) Stage2 (without) (f) Stage2 (our)

Figure 2. Comparison of inpainting results with or without our loss function at different stages.

Given an input image with hole Iin, initial binary mask M (0 for holes), the network prediction Iout,
and the ground truth image Igt, our pixel reconstruction loss at two stages of network is defined as:

Ll1 = ‖Iout − Igt‖1. (5)

Since adversarial loss is widely used to improve the visual quality of restored images,
PatchGAN [25] is also used in this paper as the global discriminator Dg and the local discriminator Dl .
We denote its adversarial loss as:

LDg = EIgt [logDg(Igt)] +EIcomp log[1− Dg(Icomp)], (6)

LDl = EIgt [logDl(Igt)] +EIout log[1− Dl(Iout)], (7)

LD = 0.5LDg + 0.5LDl . (8)

The adversarial loss of our generator is defined as:

LGg = EIcomp log[1− Dg(Icomp)], (9)

LGl = EIout log[1− Dl(Iout)], (10)

LG = 0.5LGg + 0.5LGl , (11)

where Iout is the generated image, Icomp is the image after replacing the undamaged region with those
in original image, and E represents the mean of the requested item within the data range. Unlike other
two-stage networks, the adversarial loss is only used on the final result in this paper; thus, the network
parameters and training time can be reduced. Our final loss Ltotal is defined as

Ltotal = Ll1 + Lsobel + LG. (12)

3.2. Global and Local Markovian Discriminator (Gl-Patchgan)

PatchGAN [25] was commonly used in the previous inpainting networks for filling the holes with
any shapes. However, the essence of PatchGAN is to conduct the separate discriminations in different
image regions with fixed size and to obtain a discriminant matrix to complete the final discrimination.
The discriminator’s region of interest (ROI) in the restored image is mainly determined by the receptive
fields of each neuron in the output map. The larger the discriminator’s ROI is, the easier the network
tends to ignore the image detail. On the contrary, the smaller the discriminator’s ROI is, the more
likely the network causes global dissonance, such as the improper eye color or the spot in a face.
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To solve this problem, we use the global and local discriminators of different parameters to obtain
the discriminant matrices with different sizes instead. Inspired by the global and local GANs [13]
and DeblurGAN-v2 [20], we improve the final merged results by using the global discriminator to
produce more continuous results between the restored and undamaged regions. In addition, we deal
with the whole generated image using the local discriminator to make the image details more realistic.
Our proposed GL-PatchGAN discriminators are shown in Figure 3.

Figure 3. proposed GL-PatchGAN Discriminators framework.

Table 3 compares the ablation ability of the proposed GL-PatchGAN and the original PatchGAN
discriminators. In this experiment, the generator networks trained with two discriminators were
tested on 2000 images taken from the dataset CelebA-HQ, and the Peak Signal to Noise ratio (PSNR)
and Structural Similarity (SSIM) in terms of different masks was compared. We can see from Table 3
that the network trained with proposed GL-PatchGAN surpasses the network trained with original
PatchGAN discriminators in terms of different masks, meaning that it is helpful to improve the quality
of the restored images.

Table 3. Comparison of results of PatchGAN and our GL-PatchGAN discriminators for different masks.

Mask
Rate (%)

PatchGAN [16] GL-PatchGAN (Ours)

PSNR+ SSIM+ PSNR+ SSIM+

10–20 30.512 0.968 30.544 0.971
20–30 27.272 0.940 27.305 0.944
30–40 25.043 0.906 25.073 0.910
40–50 23.246 0.864 23.280 0.870

3.3. Our Model Architecture

This paper improved the coarse-to-fine network proposed by Yu [16] with the proposed two-stage
loss and GL-PatchGAN loss. Our proposed framework is shown in Figure 4.

In our proposed framework, the encoder-decoder network with the proposed loss function is
used in both coarse and refinement networks. As mentioned above, it is useful for the coarse network
to restore the overall image structure, and is helpful for the refinement network to restore the image
details. Besides, adversarial loss is applied in the refinement network to guarantee the realistic
inpainting result. Using the proposed GL-PatchGAN, the discriminator tends to attach importance to
both global appearance and local detail of final result.
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(a) Coarse Network (Stage 1)

(b) Refinement Network (Stage 2)

Figure 4. Overview of our framework.

In our coarse-to-fine network, coarse network firstly produces preliminary result with complete
contour. As the skeleton of images, proper contours tend to lead to plausible final results. In refinement
network, dilated convolution [26] and context attention [15] were used to search for the relationship
between long distance pixels. Besides, gated convolution [16] was used in both coarse network and
refinement network, which could overcome the ill-fitted for image hole-filling of vanilla convolution.
However, compared to some one-stage networks, coarse-to-fine network tend to add the network
parameters and training time.

Different from the existing two-stage networks, in which the separate training is necessary at
different stages, our network can achieve the end-to-end training. Moreover, our network can adjust
the middle inpainting state freely by changing the relative parameters; thus, the complexity of training
is reduced.

4. Experiments

To demonstrate the effectiveness of the proposed method, we performed experiments on the
internationally used datasets CelebA-HQ [24], Paris StreetView [12], and Places2 [27] with the irregular
image masks provided in Reference [14], where the irregular mask dataset contains 12,000 irregular
masks, in which the ratio of mask area ranges from 0–60%. The irregular mask dataset is divided into
6 sections, and each one contains 2000 mask images with the interval values of 0–10%, 10–20%, 20–30%,
30–40%, 40–50%, and 50–60%, respectively. Our model was trained on the double NVIDIA 2080TI
GPUs (11GB) and implemented in tensorflow1.13. The network was trained on the 256*256 images
with a batch size of 8, which were taken from the datasets CelebA-HQ [24], Paris StreetView [12],
and Places2 [27], respectively. The model was optimized using Adam optimize r [28] with β1 = 0.5 and
β2 = 0.999, and the learning rate was set to 0.0001. Our models were tested on the image with size of
256*256 on the NVIDIA 2080TI. As shown in Table 4, our model has limited network size, relative short
training and inference time. Therefore, our algorithm can be used in image object removal [1,29],
damaged image restoration [30,31], and other aspects.
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Table 4. Measurement of the computational complexity of the proposed network.

Training Time
Inference Time Network Size FLOPs

Paris StreetView CelebA-HQ Places2

1 day 2 days 3 days 19.12 ms 12M 95GFLOPs

4.1. Quantitative Results

Image inpainting lacks good quantitative evaluation metrics at present. Nevertheless, we compared
our results with those of the latest methods on 2000 test images in CelebA-HQ and 4000 images in the
test set of Places2. In the experiments, the irregular mask dataset in Reference [14] were used, and the
PSNR and SSIM values were compared, as shown in Tables 5 and 6, where CA [15] represents the
generative image inpainting results with Contextual Attention (CVPR2018), PC [14] is the results of Image
Inpainting for Irregular Holes Using Partial Convolutions (ECCV2018), EC [17] represents the results
of EdgeConnect (ICCV2019), GC [16] represents the results of Free-Form Image Inpainting with Gated
Convolution (ICCV2019), LBAM [21] is the results of Learnable Bidirectional Attention Maps (ICCV2019),
and RN [23] is the results of Region Normalization for Image Inpainting(AAAI2020). Among them, the data
of PC comes from Reference [23,32], while others are performed using the codes or pre-trained models
provided by their authors. We can see that the proposed network achieves much better metrics and
surpasses the latest ones in terms of different ratios of mask area, meaning that our proposed method is
more accurate.

Table 5. Comparison results of different methods in terms of different ratios of mask on CelebA-HQ.

Mask(%) CA [15] PC [14] EC [17] GC [16] LBAM [21] Ours

PSNR+ 10–20 25.07 31.13 30.25 31.61 30.68 32.42
20–30 21.89 29.10 27.69 28.30 27.59 29.16
30–40 19.69 23.46 25.55 25.96 25.36 26.77
40–50 18.08 22.11 23.76 24.13 23.64 24.91

SSIM+ 10–20 0.913 0.970 0.968 0.977 0.901 0.980
20–30 0.841 0.956 0.945 0.953 0.828 0.960
30–40 0.761 0.897 0.913 0.923 0.753 0.934
40–50 0.675 0.839 0.871 0.887 0.673 0.901

Table 6. Comparison results of different methods in terms of different ratios of mask on Places2.

Mask(%) CA [15] PC [14] GC [16] EC [17] RN [23] Ours

PSNR+ 10–20 24.45 28.02 26.65 27.46 28.16 28.45
20–30 21.14 24.90 24.79 24.53 25.06 25.12
30–40 19.16 22.45 23.09 22.52 22.94 22.88
40–50 17.81 20.86 21.72 20.90 21.21 21.21

SSIM+ 10–20 0.891 0.869 0.882 0.920 0.926 0.953
20–30 0.811 0.777 0.836 0.859 0.868 0.907
30–40 0.729 0.685 0.782 0.794 0.804 0.852
40–50 0.651 0.589 0.721 0.723 0.734 0.788

Our results are only a little lower than those of GC [16] on the images of dataset Places2 [27]
with mask of 30–50%. The reason is probably that our two-stage loss function pays more attention to
the image structure. However, the structures of some natural scenery images in Places2 [27] are too
abundant and not obvious.

4.2. Qualitative Comparisons

To verify the effectiveness of the proposed method, we compared our results with several
state-of-the-art ones on the datasets CelebA-HQ [24], Paris StreetView [12], and Places2 [27],
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respectively. Figures 5–7 show the automatic inpainting results of different methods on some
representative images. For all the learning-based methods, no post-processing was performed to
ensure fairness. We can see that, although CA [15] can copy the feature block from the undamaged
area to the damaged area in some cases, it does not pay much attention to the continuity of images.
Besides, EC [17] produces poor contour at stage 1, which further leads to the poor final results. GC [16]
and LBAM [21] can get smooth and plausible results; however, some artifacts still exist because
the continuity of colors and lines are not well preserved. This is mainly due to the fact that these
methods do not pay much attention to the structure information. Comparatively, our model performs
much better and produces more visually reasonable results with feasible structure, realistic textures,
and details. For example, our network produces more suitable eyes on the results of CelebA-HQ [24]
dataset compared with other works. Similarly, our network also produces proper building structure
and vivid textures of nature scenery on the results of Places2 [27] and Paris StreetView [12] datasets.
In particular, because our proposed loss function tends to focus on the image contour in the coarse
network, much plausible structure can be produced even for some complex images. Besides, with the
proposed GL-PatchGANs, our method can produce realistic results with seamless boundary transitions.
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(a) GT (b) Input (c) CA (d) EC (e) GC (f) Ours

Figure 5. Qualitative comparisons of different methods on CelebA-HQ [24] with irregular masks.

(a) GT (b) Input (c) EC (d) GC (e) LBAM (f) Ours

Figure 6. Qualitative comparisons of different methods on Paris StreetView [12] with irregular masks.
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(a) GT (b) Input (c) EC (d) GC (e) RN (f) Ours

Figure 7. Qualitative comparisons of different methods on Places2 [27] with irregular masks.

4.3. Limitation

Since our algorithm is conducted based on deep learning, it requires relatively long training time
and GPU computing power compared with the traditional algorithms. In addition, although our model
achieves better effects on most images with different irregular masks, we must admit that, in order to
improve the feature extraction ability, we increase the number of channels in some network modules,
which will lead to the increasement of network parameters. In addition, our proposed GL-PatchGANs
inevitably increases the parameters of the network. These operations will increase the training time in
some degree. We hope to overcome this problem in our future works.

5. Conclusions

This paper proposes an end-to-end image inpainting network using the proposed two-stage loss
function and GL-PatchGAN. Experimental results on the international datasets demonstrate that our
two-stage loss function can bring more attention to the image structure at coarse network and restore
more detailed image textures at refinement network. Besides that, our global and local PatchGANs
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are helpful to focus on different scales of regions and produce a more realistic structure and details
in a restored image. Both quantitative and qualitative results show the superiority of our proposed
method against the state-of-the-art ones.
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