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Abstract

Heart failure is a pressing worldwide public-health problem with millions of patients having 

worsening heart failure. Despite all the available therapies, the condition carries a very poor 

prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address 

molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important 

given that most patients with heart failure have viable dysfunctional myocardium, in which an 

improvement or normalization of function might be possible. Although the pathophysiology of 

heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to 

improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial 

electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic 

substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this 

Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure 

are presented, along with an overview of emerging treatments with the potential to improve the 

function of the failing heart by targeting mitochondria.

Heart failure (HF) is associated with substantial clinical burden and economic costs 

worldwide. The disease is particularly prevalent in elderly individuals, in whom the 

incidence and associated costs are projected to double over the next 20 years1,2. Economic 

costs associated with the management of patients with HF is estimated at >US$30 billion 

annually in the USA alone, and accounts for roughly 2–3% of total healthcare spending 

globally3,4. Despite these enormous costs, mortality from HF remains high. Death from HF 

within 5 years of diagnosis is common despite current optimal medical therapy. Mortality 

and rehospitalization within 60–90 days after discharge from hospital can be as high as 15% 

and 35%, respectively5. These event rates have largely not changed over the past 15 years, 

despite implementation of evidence-based therapy5. HF rehospitalization rates also remain 

high, with care typically focused on symptomatic relief. Patients with HF are often 

designated as having either reduced ejection fraction (HFrEF), or preserved ejection fraction 

(HFpEF). Patients with HFpEF also have poor prognosis after the first diagnosis6. 

Regardless of the HF aetiology, novel treatments that improve intrinsic cardiac function 

remain elusive.

Advances in the treatment of ischaemic and valvular heart disease have clearly improved 

patient survival. The residual cardiac dysfunction and associated comorbidities, however, 

have led, in the long-term, to the development of HF with attendant poor quality of life. 

Commonly prescribed HF medications, although beneficial in promoting some symptom 

relief, often do not fully address the underlying causes of progressive left ventricular 

dysfunction7. Most standard-of-care pharmacological approaches to HF act by reducing 

workload on the failing heart and, in doing so, attempt to rebalance energy supply and 
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energy demand, albeit to a lower level (FIG. 1). Hallmarks of current therapies include 

modulation of neurohormonal abnormalities, unloading the heart (that is, vasodilatation), 

and/or reducing the heart rate — all important determinants of reducing myocardial oxygen 

consumption8. β-Blockers, ivabradine, and antagonism of the renin–angiotensin–aldosterone 

system all act in concert to reduce myocardial energy requirements and attenuate or prevent 

further adverse cardiac remodelling. Although these therapies have improved survival in 

patients with chronic ambulatory HFrEF over the past 2–3 decades, death and poor quality 

of life continue to adversely affect this ever-increasing patient population. This unmet need 

is probably not going to be met by drugs that modulate neurohormonal abnormalities and 

lower heart rates, because further intervention along these axes is likely to be 

counterproductive as hypotension and bradycardia become limiting factors. The search for 

more effective and complementary therapy for this patient population must be focused on 

improving the intrinsic function of the viable, but dysfunctional, cardiac unit — the 

cardiomyocytes3,9. The novel therapy must be haemodynamically neutral (no decrease in 

blood pressure or heart rate) and must target the myocardium as the centrepiece of the 

therapeutic intervention10.

The vast majority of phase III trials in patients with HF conducted in the past decade have 

been negative, arguably for the same reasons discussed above11,12. Furthermore, a relative 

underinvestment in cardiovascular drug development, as well as strategic abandonment by 

pharmaceutical companies of new therapies for which the risks are perceived to be higher 

than the rewards, have also contributed to slow development of drugs for HF13. Moreover, 

the development of effective therapies for HFpEF is imperative to treat this patient 

population, but the variability in HFpEF phenotypes (such as age, and the presence of 

diabetes mellitus or hypertension), and the difficulty in establishing reliable preclinical 

models of HFpEF, also hinder progress. Despite these obstacles, ample opportunity exists to 

improve HF treatments, provided the focus is directed towards cardiomyocytes and their 

intrinsic function.

A roundtable meeting was held in Stresa, Italy on 23 October 2015 to discuss the 

multifaceted problem of insufficient energy production in HF, and the role it has in 

progressive left ventricular dysfunction. This meeting was attended by academics, clinicians, 

and representatives from the pharmaceutical industry. The meeting focused on mitochondrial 

dysfunction as the source of energy deprivation in HF, and how correction of mitochondrial 

dysfunction using emerging novel therapies might lead to functional improvement of the HF 

phenotype. This Consensus Statement summarizes the findings from that roundtable 

discussion.

Bioenergetics of the beating heart

Aristotle considered the heart to be the body’s furnace, radiating energy in the form of 

heat14. Given the astounding energetic cost of cardiac function, this concept is not so far 

from the truth. Humans produce and consume roughly their body weight in ATP (about 65 

kg) every single day15. The heart accounts for only ~0.5% of body weight, but is responsible 

for roughly 8% of ATP consumption. This high energy flux is dynamic: the heart stores only 

enough energy to support pumping for a few heart beats, turning over the entire metabolite 
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pool approximately every 10 s even at resting heart rates16. As the most metabolically active 

organ in the body, the heart possesses the highest content of mitochondria of any tissue. 

Mitochondria comprise 25–30% of cell volume across mammalian species17,18, with only 

the myofilaments being more densely packed within cardiac myocytes. The high 

mitochondrial content of cardiomyocytes is needed to meet the enormous energy 

requirement for contraction and relaxation (which is also an active process). About 90% of 

cellular ATP is utilized to support the contraction–relaxation cycle within the myocardium19. 

ATP-dependent release of actin from myosin is required for both contraction (as myosin 

heads cycle through cross-bridges with actin) and relaxation. Cellular sequestration of 

calcium back into the sarcoplasmic reticulum during diastole also requires a tremendous 

amount of ATP. Cells sustain the energy requirements necessary to support cardiac function 

through remarkable metabolic supply–demand matching20,21 (FIG. 1). Bioenergetic 

homeostasis is accomplished almost exclusively through an ‘energy grid’ comprised of a 

mitochondrial network and their associated phosphate- transfer couples. Cardiac 

mitochondria must operate at high efficiency levels to respond instantaneously to the 

energetic needs of contractile units, a demand that is ever-changing and necessitated by the 

body’s dynamic requirements for oxygen-bearing blood.

Myocardial energy requirements are more pronounced during physical activity, when 

demands for energy increase to maintain cardiac function commensurate with the needs of 

the body. However, other mitochondrial abnormalities besides energy deprivation during 

physical activity can contribute to the pathologies seen in patients with HF. Mitochondrial 

abnormalities in HF are not only a question of reduced capacity to generate ATP (even 

though that capacity is reduced at rest in HF compared with resting normal), but can also be 

directly linked to cardiomyocyte injury and death and, therefore, to disease progression. 

Abnormal mitochondria are a major source of reactive oxygen species (ROS) production, 

which can induce cellular damage. Abnormal mitochondria can promote programmed cell 

death through the release of cytochrome c into the cytosolic compartment and activation of 

caspases. Therefore, mitochondria directly influence ongoing cell injury and death. 

Mitochondrial abnormalities have also been implicated in aberrant cellular calcium 

homeostasis, vascular smooth muscle pathology, myofibrillar disruption, and altered cell 

differentiation, all important issues in cardiovascular disease, including HF.

Mitochondria in cardiomyocytes

Mitochondria are primarily located within subsarcolemmal, perinuclear, and intrafibrillar 

regions of the cardiomyocyte. Although they are symbiotic partners with the other cellular 

compartments, mitochondria are in many ways discrete entities. Mitochondrial dynamics in 

the form of fission, fusion, and autophagy are highly regulated processes that are essential 

for energy production and structural integrity of the organelles22–29. Altered mitochondrial 

biogenesis, fragmentation, and hyperplasia have been observed in studies of human30 and 

animal models31,32 of HF. These effects seem to be caused by altered expression of proteins 

that regulate mitochondrial dynamics33. As many of these factors are ‘master regulators’ of 

mitochondrial metabolism, these changes might be directly related to the decreased capacity 

to oxidize fatty acid substrates often seen in HF34,35.
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Mitochondria have their own DNA (mtDNA) and a genetic code that is distinct from the 

host-cell nuclear DNA. mtDNA is circular in shape, analogous to DNA found in lower 

organisms, and a primitive fingerprint leftover from bacterial origin. Evolutionary selection 

pressures have led to mitochondria ‘outsourcing’ almost all their protein-making needs to 

their cellular hosts. The overwhelming majority (>99%) of mitochondrial proteins come 

from nuclear-encoded DNA. These proteins are synthesized via cellular protein synthesis 

machinery, and are actively imported into mitochondria through mitochondrial membrane 

transporters36. mtDNA encodes 13 protein subunits found within three of the electron 

transport protein complexes, and a handful of ribosomal and transfer RNAs37. These 

proteins are made in specialized ribosomes or ‘mitoribosomes’, which are physically 

attached to the mitochondrial inner membrane38.

Many inherited familial cardiomyopathies (both adult and paediatric) are associated with 

mtDNA mutations39. In humans, mitochondria are maternally inherited40, owing to high 

mitochondrial density in the egg and the active degradation of mitochondria in the sperm 

during fertilization41. The proximity of mtDNA to sites of mitochondrial ROS generation, 

poor repair mechanisms, and a lack of protective histones combine to make mtDNA 

particularly susceptible to oxidative injury and mutation.

Mitochondrial genetics contribute to cardiomyopathies by expressing mutant proteins that 

influence energy homeostasis. With 1,000–10,000 genes per mitochondria (polyploidy), 

mitochondrial genetics operate on population-based (instead of Mendelian) principles37. 

Mutated mtDNA is found alongside nonmutated copies, leading to mitochondrial 

‘heteroplasmy’. The extent of heteroplasmy in mutated mtDNA influences the susceptibility 

to inherited mitochondrial disease42. Mutated mtDNA can be found in 1 in 200 individuals, 

a frequency that is 20-fold higher than the incidence of mitochondrial disease. This 

mismatch indicates that healthy individuals often harbour mutated mtDNA that has no 

observable phenotypic consequences until a certain mutation threshold is reached37. 

Although very early in preclinical development, various innovative approaches to reduce the 

extent of heteroplasmy using genome editing might ultimately lead to effective therapy for 

HF caused by genetic mitochondrial disease43–45. Given that mitochondrial abnormalities, 

such as increased ROS production, altered mitochondrial energetics, and impaired 

mitochondrial ion homeostasis, are observed in genetic mitochondrial diseases as well as 

HF, innovative approaches that target mitochondrial dysfunction might share efficacy across 

these diseases.

Heart failure is a bioenergetic disease

The ‘myocardial power grid’ consists of mitochondrial ATP supply that transfers energy 

throughout the cell along intracellular phosphotransfer buffering systems (FIG. 2). 

Mitochondria utilize carbon sources from food substrates, which are catabolized and passed 

through the Krebs cycle and are then channelled through a series of redox reactions along 

the inner mitochondrial membrane. The oxidation of these substrates creates a proton 

electrochemical gradient, predominantly in the form of mitochondrial membrane potential 

(ΔΨm)46. Protons that reenter the mitochondrial matrix through complex V (mitochondrial 

ATP synthase) liberate energy that phosphorylates ADP, regenerating ATP. Newly 
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synthesized ATP is rapidly transferred out of mitochondria and energy is subsequently 

distributed throughout the cell via reversible phosphate exchange networks, primarily 

catalysed by creatine kinase and adenylate kinase-associated reactions16,47.

The evidence that HF involves impaired cellular energy production and transfer is 

considerable (TABLE 1). Among studies that have directly examined energetics in human 

HF, all but three noted some form of bioenergetic impairment in the failing heart. This 

decrement in bioenergetics is reflected by a decrease in cellular ATP, phosphocreatine (PCr), 

or the PCr/ATP ratio. Impaired bioenergetics affect patients with HFrEF and those with 

HFpEF (TABLE 1).

Although it is difficult to tell from the heterogeneous patient population included in TABLE 

1, the progression to HF is likely to be associated with a gradual decline in bioenergetic 

reserve capacity that ultimately reaches a critical threshold, after which endogenous 

mechanisms can no longer compensate for faltering energy supply48. Attempts to improve 

bioenergetics in HF tend to focus on mitochondrial energy production as a target, because 

direct augmentation of myocardial creatine with oral creatine supplementation is thwarted 

by a decreased capacity to transport creatine into the failing cardiomyocytes49. Skeletal 

muscles also show mitochondrial dysfunction in HF, contributing to the exercise intolerance 

that characterizes the HF state50. Abnormal mitochondrial function has also been reported in 

patients with renal insufficiency51, and in patients with insulin resistance52. Given that 

patients with HF often manifest both renal insufficiency and insulin resistance, treating 

mitochondrial dysfunction in HF derives benefits that go beyond improving cardiac function 

(FIG. 3).

Several interventions are currently being tested in clinical trials to stimulate mitochondrial 

biogenesis in HF. These include epicatechin and resveratrol, which are naturally-occurring 

polyphenols found in foods such as red wine, green tea, and dark chocolate. Preclinical HF 

models suggest that these molecules are biologically active53–55, and some success in 

improving cardiac function has been reported in small trials of patients with myocardial 

infarction56. Larger trials in patients with HF are required.

Mitochondrial substrate selectivity

Substrate utilization in the failing heart has been extensively reviewed previously57–60. 

Overall, altered substrate metabolism seems to be centrally involved in HF, although the 

direction of the metabolic alterations is complex and is likely to depend on the particular 

stage of HF progression and differences in the availability of substrate (whether the heart is 

in a ‘fed’ or ‘fasted’ state)58,59.

The heart utilizes different substrates simultaneously to produce energy. Mitochondrial fatty 

acid oxidation (FAO) is the predominate substrate used in the healthy adult human heart, 

being responsible for 60–80% of cardiac ATP production, followed by lesser contributions 

from glucose, lactate, and ketone bodies61. However, the heart can shift the relative 

contribution of these substrates in an effort to adapt to varying physiological conditions. 

Under conditions of low oxygen content, such as ischaemia and HF, ATP content is thought 
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to decrease by as much as 40%3. In HF, fatty acid oxidation and the oxidative capacity of the 

mitochondria decline, and can no longer maintain sufficient levels of ATP, especially during 

conditions of increased cardiac workload such as exercise. The failing heart shifts its 

predominant fuel source from mitochondrial FAO toward glycolytic pathways. This switch 

is most apparent in late and end-stage HF57, and is 30% more energetically efficient in the 

failing heart, because more ATP is produced per mole of oxygen during carbohydrate 

oxidation62. Numerous studies investigating FAO, glucose oxidation, and (to a lesser extent) 

ketone body oxidation have aimed to establish a metabolic phenotype, underlying molecular 

mechanisms, and potential therapeutic targets of the failing heart.

The reduction in fatty acid uptake and FAO that occurs during HF might be owing to 

dysregulated molecular mechanisms responsible for fatty acid metabolism. For example, the 

level of peroxisome proliferator-activated receptor-α (PPARα), a transcription factor highly 

expressed in the heart and responsible for fatty acid transport into the mitochondria and 

peroxisomes, has been reported to be downregulated in both animal models and humans 

with HF63,64. Similarly, tissue from animals and humans with HF has reduced activity of the 

transcription factor responsible for mitochondrial biogenesis, PPAR-γ co-activator 

(PGC)-1α64,65. Because these transcription factors have a critical role in the regulation of 

cardiac mitochondrial energy production, these data suggest that decreased PPARα and 

PGC-1α activity might be an important precursor leading to impaired FAO during HF. 

Therefore, further inhibition of FAO to increase glycolytic flux via PPARα and/or PGC-1α 
is a plausible therapeutic target. Small-molecule regulators of PGC-1α are needed, and 

animal models overexpressing the transcription factor are inherently problematic, ostensibly 

owing to increased mitochondrial biogenesis-induced cardiomyopathy66. Similarly, PPARα 
antagonists in animal models of HF have yielded inconclusive data67, whereas clinical 

PPARα ligands are reportedly safe, but their efficacy in a HF population is currently 

unknown61. Although the safety of PPARα ligands is promising, further evidence 

demonstrating their efficacy in both animal models and humans with HF is needed.

Levels of circulating free fatty acids might be higher in the failing heart than under healthy 

conditions owing to hormonal stimulation. The rise in serum catecholamine levels increases 

plasma free fatty acid concentrations, and subsequently stimulates FAO68. As a result, 

reducing the availability of circulating free fatty acids via transient adrenergic antagonists 

might be a viable therapy to inhibit FAO and increase glycolytic ATP production. 

Traditionally, β-adrenergic receptor antagonists are used in HF owing to their negative 

ionotropic effects that reduce cardiac workload and spare oxygen by decreasing sympathetic 

activity68. Many, such as carvedilol, have been clinically shown to lessen infarct size after 

ischaemia by decreasing sympathetic activity, followed by inhibition of mitochondrial fatty 

acid uptake and increased glucose oxidation69.

Malonyl-CoA endogenously regulates fatty acid concentrations by controlling the activity of 

carnitine O-palmitoyltransferase (CPT) 1, a rate-limiting enzyme in mitochondrial fatty acid 

uptake68. When intracellular levels of malonyl-CoA are increased, CPT1 is inhibited and 

mitochondrial fatty acid uptake is stopped70. The intracellular concentration of malonyl-

CoA is dependent on the balance between its synthesis via acetyl-CoA carboxylase and 

degradation via malonyl-CoA decarboxylase. Therefore, the upregulation of acetyl-CoA 
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carboxylase or inhibition of malonyl-CoA decarboxylase would increase intracellular 

malonyl-CoA levels, and prevent mitochondrial uptake of free fatty acids to reduce FAO. As 

expected, inhibiting malonyl-CoA decarboxylase in animal models has reportedly improved 

cardiac function after ischaemia, reduced cardiac FAO, and increased glycolytic flux71,72. 

Studies of malonyl-CoA decarboxylase inhibitors in patients with HF are needed.

Trends in glucose oxidation across the spectrum of HF are more variable, particularly among 

animal models of HF58. Compensatory substrate switching towards glucose use has been 

observed in both animal models and humans59, with a higher contribution coming from 

glycolysis. Stimulating mitochondrial glucose oxidation, either directly or by inhibiting fatty 

acid catabolism, has been suggested as a viable therapeutic strategy to compensate for the 

energetically ‘starved’ failing heart59.

Ketone body metabolism also seems to be altered in HF. Ketones are formed in the liver via 

fatty acid metabolism, and provide a small substrate pool for oxidation within the 

myocardium. In conditions such as diabetes or starvation, ketone catabolism is upregulated 

in response to lowered insulin availability and higher fatty acid levels57,73. Studies have 

reported increased ketone utilization in the severely failing heart in humans73,74. Further 

research is needed to understand the role of ketone oxidation in the failing myocardium, and 

to determine whether targeting ketone metabolism is a plausible therapy to improve 

energetics in HF.

Novel insights into the regulation of metabolic substrate demand in the heart have been 

provided through studies of microRNAs and acetylation of mitochondrial lysine residues. 

Alterations in microRNA levels through any number of upregulation and downregulation 

events can alter substrate utilization in the heart75. Alterations in protein levels modulated by 

microRNA expression have been proposed to have important implications for glycolysis, β-

oxidation, ketone metabolism, the Krebs cycle, and the electron transport chain (ETC)75. For 

example, increased levels of ROS can alter calcium handling in HF by modifying microRNA 

that leads to inhibition of sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA) 2a 

transcription75. Post-translational modification via lysine acetylation has been suggested to 

have an important role in metabolic enzyme regulation in the mitochondria59.

Overactivation of the SNS

As all substrates converge on mitochondria, understanding the specific abnormalities that 

occur in HF is central to the development of new treatments. ROS production increases in 

many aetiologies of HF, a phenomenon that might be directly related to increased 

sympathetic nervous system (SNS) tone76. Sustained sympathetic drive and chronically 

elevated circulating catecholamines — processes that are normally transient to mediate acute 

increases in cardiac output — are commonly observed in patients with HF (particularly 

HFrEF)77,78. Chronic stimulation of β-adrenergic receptors has been directly linked to 

mitochondrial ROS production through adrenergic receptor-mediated second messenger 

signalling79,80. ROS-mediated initiation of mitochondria-dependent cell death cascades has 

been repeatedly observed after chronic sympathetic activation, leading to overall declines in 

mitochondrial function81–86. These processes can be amplified by the formation of 
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aminochromes, catecholamine metabolites known to impair mitochondrial redox balance87. 

Attenuation of HF pathology with β-blockers and rennin–ngiotensin–aldosterone 

antagonism has resulted in substantial clinical improvements88, and is likely to relieve some 

of the mitochondrial dysfunction that accompanies increased sympathetic tone. The capacity 

to complement these existing background therapies with compounds that directly target 

mitochondrial dysfunction is a potentially promising novel paradigm (FIG. 1).

Increased ROS production

Cellular ROS production occurs when ROS formation outpaces or exhausts compensatory 

signals and overwhelms endogenous scavenging systems89–91. ROS are produced at several 

different sites within cells, both within and outside of mitochondria (reviewed in detail 

previously92–95). Mitochondrial ROS production occurs at various sites along the inner 

mitochondrial membrane as well as in the mitochondrial matrix by components of the ETC 

and the Krebs cycle, respectively96 (FIG. 4). ROS production is typically low under normal 

physiological conditions93, and is kept in check by intracellular and intramitochondrial 

scavenging systems. Pathological ROS levels in the heart typically occur when ROS 

production outpaces endogenous scavenging capacity. ROS (and other associated reactive 

intermediates) can damage proteins and lipids, trigger cell-death cascades, and evoke 

synchronized collapses in the cellular energy grid97,98. Heightened mitochondrial ROS 

production and downstream ROS-mediated damage has been reported in patients with HF as 

well as in preclinical models of the disease31,99–101.

Although ROS are typically associated with pathological states, ROS levels in the heart per 
se are best characterized by the term ‘hormesis’: small amounts can evoke adaptive 

signalling and create beneficial, compensatory responses. Modest production of ROS has 

been shown to mediate beneficial myocardial signalling involved in physiological responses 

such as (transient) sympathetic drive102, many preconditioning paradigms103, cardiac 

mitochondrial quality control104, and exercise105. Exercise training is known to augment 

endogenous ROS-scavenging mechanisms in the heart105–107, restore bio-energetic 

efficiency in porcine models of HFpEF108, and improve symptoms and quality of life in 

trials involving patients with HFrEF109,110 or HFpEF111. Consistent with the ROS hormesis 

concept, several studies have noted that administration of high doses of ROS scavengers can 

abolish the beneficial effects of exercise112,113, including humans taking oral vitamin C or E 

supplements114.

Mitochondrial production of ROS depends on the mitochondrial membrane potential. 

Increased expression of mitochondrial uncoupling proteins in HF115 might be a 

compensatory mechanism to reduce ROS by ‘uncoupling to survive’116, whereby a 

reduction in mitochondrial membrane potential is postulated to lower ROS emission from 

mitochondria. This view is popular and almost dogmatic, but the decrease in ROS 

production by uncoupling is a prominent effect during mitochondrial state 4 respiration (no 

ADP). Heart mitochondria, however, are never respiring in state 4. Pathological ROS 

production in cardio-myocytes is likely to be more closely linked to decreased or collapsed 

membrane potential and/or depletion of the NADPH pool117–119, whereby ROS production 
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overwhelms endogenous scavenging through mitochondrial membrane-dependent 

mechanisms89.

The repeated lack of benefits of ROS scavenging compounds in clinical trials of patients 

with HF11,120,121 continues to plague cardiovascular drug development, suggesting that 

oxygen radical scavenging per se is not a plausible mechanism of action for long-term 

improvements in HF. Lack of tissue permeability, poor intra-cellular targeting, and 

ineffective therapeutic doses might contribute to the poor translation of benefits of anti 

oxidants to date. This approach to therapy, however, might ultimately succeed when novel 

scavenging compounds that overcome permeability and targeting problems, such as XJB-5–

131 (REFS 122,123), mitoTEMPO124,125, and EUK8/EUK134 (REFS 126–128), are tested 

in humans.

Abnormalities of mitochondrial ETC

Decrements in individual electron transport complexes, particularly complex I and/or IV 

activity, have been observed in animal models129 and humans35 with HF. Electron transport 

system proteins seem to aggregate into functional supercomplexes130–132, and a loss of 

mitochondrial supercomplexes, which is postulated to have a causal role in mitochondrial 

ROS generation133, has been noted in HF134.

Several approaches are being developed to improve the efficiency of the ETC in HF. The 

coenzyme Q (ubiquinol/ubiquinone CoQ) pool comprises a redox-cycling coenzyme found 

in the ETC. CoQ is typically synthesized de novo and undergoes a two-electron reduction 

from substrates fed into complexes I and II, and is then oxidized as it donates electrons into 

complex III. As a redox cycler, the ubiquinol/ubiquinone couple can both accept and donate 

electrons, depending on the redox potential135. Incomplete, one-electron reduction of CoQ 

produces semiquinone, itself a highly reactive radical. A reduced CoQ pool could potentially 

feed electrons ‘backwards’ towards complex I, which results in reverse electron transfer and 

ROS generation136. Decreased circulating CoQ has been observed in patients with 

HF137,138, with an inverse correlation observed between plasma CoQ and mortality139. In 

the Q-SYMBIO trial140, the efficacy of CoQ was tested in a small (n = 420), double-blind, 

placebo- controlled study in patients with HF and showed a reduction in mortality after 2 

years of treatment. Although the Q-SYMBIO trial was fairly small, the promising findings 

triggered interest in the development of other CoQ analogues that more effectively target 

mitochondria. New quinone conjugates that are tethered to lipophilic, cationic 

triphenylphosphonium moieties, such as MitoQ, SkQ, and other plastoquinones, might 

improve the delivery of CoQ to mitochondria141–143, and have shown some promise in 

preclinical models of HF144. A potential problem with the use of these compounds is that 

they are self-limiting, in that they can depolarize mitochondria and inhibit mitochondrial 

respiration at high concentrations145. Several short-chain synthetic CoQ analogues are also 

in development, including EPI-743 (REF. 146) and idebenone147. These compounds have 

shown promise in small trials of genetic mitochondrial disease148,149, but have not yet been 

tested in larger trials of human HF.
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Aberrant mitochondrial membrane phospholipids in HF are integrally involved in ETC 

dysfunction. A membrane phospholipid integral to optimal function of the ETC and whose 

content and composition are altered in HF is cardiolipin. Cardiolipin resides in the inner 

mitochondrial membrane (FIG. 4) and, unlike most phospholipids that have two acyl tails, 

cardiolipin has four acyl chains. In mammalian hearts, these chains are enriched with 

linoleic acid (18:2)4. Cardiolipin decrements are observed in both paediatric150 and 

adult151,152 patients with HF. Cardiolipin is essential for the activity of ETC complexes, 

membrane transporters, mitochondrial ion homeostasis, and ROS production153. Given that 

most mitochondrial complexes associated with energy production are oligomers composed 

of many subunits, cardiolipin is proposed to act as molecular ‘glue’ holding these subunits 

together154–156. Approaches that target cardiolipin are likely to improve electron transport 

across the ETC and, in doing so, might be beneficial in treating HF.

A compound that targets cardiolipin in the mitochondria that is currently in clinical 

development is the cell-permeable peptide MTP-131 (also called elamipretide or Bendavia). 

An analogue of MTP-131 (SS-31) was serendipitously discovered by Szeto and Schiller in 

attempts to identify small peptides with opioid-receptor binding properties157. MTP-131 has 

no discernible opioid-receptor activity158, but was found to localize to the inner 

mitochondrial membrane159, reduce myocardial ischaemia– reperfusion injury112,160,161, 

improve renal function51,162, and restore skeletal muscle function163. MTP-131 is not a 

direct ROS scavenger164, and is postulated to act by interacting with cardiolipin165 to 

interrupt the vicious cycle of ROS-mediated cardiolipin oxidation and subsequent loss of 

energetics119,166. MTP-131-mediated improvements in mitochondrial energetics have been 

observed across a number of different tissues in animal models of disease, including the 

myocardium161,163,164. Of note, MTP-131 can improve mitochondrial bioenergetics by 

improving respiratory supercomplex formation (D. A. Brown, unpublished work).

MTP-131 is currently being investigated in several phase II clinical trials. Preclinical studies 

in mouse models of HF have demonstrated efficacy using MTP-131. In a mouse model of 

HF induced by aortic constriction, MTP-131 improved left ventricular function, reduced 

hypertrophic remodelling, and restored mitochondrial function167. In complementary 

studies, MTP-131 administration substantially reduced maladaptive remodelling, preserved 

cardiac function, lowered β-adrenergic- mediated calcium overload, and restored 

mitochondrial protein expression168–170. A substantial improvement in cardiac function with 

MTP-131 has been demonstrated in a porcine model of HFpEF171 and a canine model of 

HFrEF172. Beneficial improvements in ejection fraction were associated with improved 

activity or expression of mitochondrial complexes I, IV, and V, and a normalization of 

cardiolipin levels172. As the HF syndrome influences many different tissues (FIG. 3), the 

evidence that MTP-131 also improves skeletal muscle function, exercise capacity, and renal 

function adds to the promise of this emerging therapy51,163,173,174.

Blockers of the MPTP

The mitochondrial permeability transition pore (MPTP) is a nonspecific pore that opens in 

response to increased calcium levels and oxidative challenge, and is associated with ROS 

production, apoptotic cell death, and mitochondrial dysfunction. Increased proclivity of 
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MPTP opening occurs in both acute and chronic heart disease, and numerous preclinical 

studies have demonstrated efficacy in cardiac pathology with MPTP blockers, such as 

cyclosporin, NIM811, and TRO40303 (reviewed previously175–179). Although the opening 

of the MPTP has historically been thought of as a pathological event leading to cell death, 

studies now suggest that transient MPTP opening might be a physiological ‘reset’ 

mechanism to prevent mitochondrial calcium overload. Rare, transient openings of the 

MPTP have been observed in individual mitochondria of primary cardiomyocytes180. Small, 

brief MPTP openings were found to be more frequent in HF cardiomyocytes, and were 

associated with transient mitochondrial depolarization and mitochondrial calcium release. If 

opening of these pores might be a normal compensatory mechanism akin to ‘pressure release 

valves’, the concept of treating HF by blocking them becomes increasingly difficult. 

Ongoing uncertainty regarding the molecular identity of the MPTP further complicates the 

development of novel therapies that act on the pore176,181–185. The MPTP seems to be 

comprised of ATP synthase (complex V) dimers and to be gated by mitochondrial matrix 

calcium content via cyclophillin D186,187.

Clinical studies have failed to demonstrate efficacy in most188,189, but not all190,191, studies; 

however, most of these studies focused on reducing acute cardiac ischaemia– reperfusion 

injury and not in limiting left ventricular dysfunction in HF. Chronic administration of 

cyclosporin has been linked with renal pathology and immunosuppresfsion192,193, and 

cyclosporin was found to evoke systemic hypertension in porcine models of HFpEF194. 

Accordingly, cyclosporin is not an appropriate approach for the long-term management of 

HF. Further work with alternative MPTP blockers is needed to determine whether inhibiting 

or delaying MPTP opening is a clinically plausible approach to alter the progression of HF.

Cellular/mitochondrial ion homeostasis

Aberrant handling of several different ions within the mitochondria has been observed, 

mostly in animal models of HF. Heightened levels of free iron can increase ROS through 

Fenton chemistry. Changes in cellular iron handling have been noted in HF7,195, and orally-

available iron chelators such as deferiprone seem to redistribute iron from tissues, including 

the mitochondrial space, into the circulation196. Although a potential exists to treat HF by 

chelating cellular iron, no study to date has shown functional improvements of the failing 

heart, although several clinical trials are currently underway.

Impaired cellular calcium handling that leads to decrements in excitation–contraction 

coupling is noted across HF aetiologies, and contributes to poor cardiac mechanics and to 

arrhythmogenesis197–200. Mitochondria can directly influence cellular calcium dynamics, 

because many of the membrane-bound pumps required for cytosolic calcium release and 

removal are energy- dependent and ROS-dependent. Altered calcium handling has been 

implicated in HFpEF, in which abnormal calcium dynamics impair relaxation. Short-term 

administration of ivabradine to slow the heart rate led to modest benefits in patients with 

HFpEF, ostensibly by providing more time for calcium- dependent relaxation201. The vast 

majority of calcium resequestration into the sarcoplasmic reticulum, obligatory for diastolic 

relaxation, occurs through SERCA2a, which has been shown to be downregulated in 

HF202–204. Overexpressing SERCA2a has shown promise in animal models of HF205,206, 
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although several barriers (such as the development of neutralizing antibodies) still exist 

before gene transfer realizes its full translational potential207. Furthermore, increased ROS 

can oxidize proteins associated with the ryanodine receptor calcium-release channel, which 

can lead to calcium leaking out of the sarcoplasmic reticulum during diastole208. Increased 

intracellular sodium levels in HF209–212 also contribute to poor calcium handling through 

mechanisms involving sodium–calcium exchange. Given that calcium is central to 

maintaining bioenergetic supply–demand matching21,213, sodium overload alters cellular 

and mitochondrial calcium fluxes and impairs bioenergetic supply– demand matching in 

HF214. Although very early in development, inhibitors of the mitochondrial sodium– 

calcium– (lithium) exchanger215, such as CGP-37157, have been shown to improve cardiac 

function in preclinical models of HF216,217. Inhibiting the sarcolemmal sodium– calcium 

exchanger might also be a promising approach, as demonstrated in a preclinical model of 

HFpEF218.

Another compound in clinical development to improve cardiac efficiency in HF is 

omecamtiv mecarbil (CK-1827452). This drug increases the calcium sensitivity of the 

myofilaments219, which prolongs the duration of systole in animal models and in human 

HF220–222. Two substantial phase IIb, double-blind, randomized studies comparing 

omecamtiv mecarbil and placebo have been conducted. In the ATOMIC-HF trial223, 

omecamtiv mecarbil was administered for 48 h intravenously to patients with acute HF. 

Overall, the study was neutral (with some evidence of a symptomatic benefit at higher 

doses), but suggested omecamtiv mecarbil was safe. In the COSMIC-HF trial224, an oral 

formulation of omecamtiv mecarbil was associated with improvements in cardiac function 

over 20 weeks, with an effect that persisted for 4 weeks after stopping the drug, suggesting 

that improved function had produced favourable structural remodelling. Despite the promise 

of omecamtiv mecarbil, concerns about elevated levels of serum troponin225, metabolic 

inefficiency226, and impaired cardiac relaxation227 must be assuaged by larger clinical trials 

to understand fully whether this approach can improve prognosis in HF.

Conclusions

The vast majority of HF trials over the past decade have been neutral, and event rates remain 

unacceptably high. Perhaps most alarming, no proven therapies exist for patients with 

worsening chronic HF or HFpEF — populations that collectively comprise the majority of 

the total HF population. Moreover, although systemic blockade of maladaptive 

neurohormonal responses has improved outcomes in HFrEF, these agents also lower blood 

pressure and/or heart rate, and development of new haemodynamically active drugs for 

stepwise addition to existing therapies raises safety and tolerability concerns. Therefore, an 

ideal novel therapy would be haemodynamically neutral and target the myocardium as the 

centrepiece of the therapeutic mechanism. In this context, overwhelming evidence from both 

preclinical and clinical studies indicates bioenergetic insufficiency in HF. Studies using 

preclinical models of the disease continue to advance our understanding of the cellular and 

molecular mechanisms that contribute to poor bioenergetics of the failing heart. 

Considerable potential exists to fill this unmet need, mitigate the economic burdens, and 

reduce symptoms in patients with HF by focusing on the development of new therapeutic 

modalities that target mitochondrial abnormalities in HF.
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Figure 1. Energy supply–demand matching in health and heart failure
The delicate balance between cardiac demands for energy and supply of energy is tipped in 

heart failure, in which energy supply cannot match demand. Next-generation therapeutics 

can improve on existing standard-of-care therapies by bolstering mitochondrial energy 

production. ACE, angiotensin-converting enzyme; ARB, angiotensin II-receptor blocker; 

ETC, electron transport chain; HFpEF, heart failure with preserved ejection fraction; HFrEF, 

heart failure with reduced ejection fraction; ROS, reactive oxygen species.
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Figure 2. Impaired mitochondrial capacity and function in heart failure
Decreased capacity of mitochondria to generate and transfer energy within heart cells results 

in energy deficits, which influences all cellular processes that require energy, most notably 

the processes of contraction and relaxation.

Brown et al. Page 27

Nat Rev Cardiol. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Mitochondrial contribution across multifaceted symptoms of heart failure
Aberrant mitochondrial energy production is involved in many symptoms commonly found 

in patients with heart failure, including skeletal muscle dysfunction and renal pathologies. 

LV, left ventricular.
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Figure 4. Impaired mitochondrial energy production along the inner membrane
Enzyme complexes responsible for energy production are packed into the mitochondrial 

inner membrane, often with the help of phospholipids such as cardiolipin. Failing 

mitochondria often display altered morphology, decreased ATP-generating capacity, 

heightened production of reactive oxygen species (ROS), abnormal cardiolipin levels, and 

impaired supercomplexes.
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Table 1

Bioenergetic changes in human heart failure

Patient characteristics (n) ATP PCr PCr/ATP Notes

NYHA class II (29), class III (8)228 NR NR ↓ Decrease in PCr/ATP ratio in patients with HFpEF

NYHA class I (10), class III (8), class IV (1)229 NR NR ↓ Decrease in PCr/ATP ratio in HCM correlated with presence of 
fibrotic
areas in myocardium of left ventricle

LVH (20); LVH and CHF (10); no LVH (10)230 ↓ ↓ ↓ Decrease in ATP flux through CK; 30% decrease in PCr/ATP 
ratio

NYHA class I (1), class II (7), class III (7),
class III–IV (1), class IV (1)231

↓ ↓ NR —

HCM gene mutations in MHC7 (16), TNNT2 
(8),
or MYBPC2 (7) (31)232

NR NR ↓ 30% reduction in patients with HCM compared with controls; 
reduction
similar in all groups

HHD (NYHA class 0 [10]) = = ↓ • No change in ATP in AS or HHD; 35% decrease 
in ATP in DCM

• 28% decrease in PCr in AS, 51% in DCM, no 
change in HHD

• 25% decrease in PCr/ATP ratio in HHD

AS (NYHA class II [7], class III [3]) = ↓ NR

DCM (NYHA class II [1], class III [9])233 ↓ ↓ NR

AS (10); five followed up234 NR NR ↓ Decrease in PCr/ATP before aortic valve repair

HHD (11)235 NR NR ↓ —

Chronic mitral regurgitation (22)236 NR NR ↓ —

HCM (14)237 NR NR ↓ —

DCM (43 total; 6 restrictive cardiomyopathy, 10
normal systolic and diastolic function; 24 cold
preserved from transplantations)238

↓ NR NR Decrease in ATP in DCM

AI (9; NYHA class average 2.44) or
AS (13; NYHA class average 2.77)239

NR NR ↓ • Significant reduction in PCr/ATP ratio in 
patients with AS; trend towards a reduction in 
patients with AI

• Significant decrease in PCr/ATP ratio for all 
patients in NYHA class III, but not those in class 
I or II

DCM (23; NYHA class average 2.7)240 NR NR ↓ —

AS (41)241 ↓ ↓ NR —

Severe AS (27)242 NR NR ↓ Hand-grip strength tests (marker of cardiac health) employed 
in patients

HCM (19)243 NR NR ↓ —

DCM and CHF (NYHA class I [1], class II [3],
class III [4])244

NR NR = No change with dobutamine infusion

DCM (9), HCM (8)245 NR NR ↓ Decreased PCr/ATP ratio in HCM, but not DCM

CAD (14), DCM (19 total; NYHA class II [4],
class III [4], class II–III [7], class III–IV [4])246

NR NR ↓ • Decreased PCr/ATP ratio in DCM

• Trend for decreased PCr/ATP ratio in CAD

• Relationship exists between severity of HF and 
decrease in PCr/ATP ratio

DCM (19), ICM (11)247 = NR NR • No change in ATP levels in DCM biopsies
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Patient characteristics (n) ATP PCr PCr/ATP Notes

• Lower ATP levels in ICM, but not significantly 
different

Aortic valve disease (6), AI (8)248 NR NR ↓ Decreased PCr/ATP ratio in patients being treated for heart 
failure

DCM (20)249 NR NR ↓ —

DCM (6), severe LVH (6), mild LVH (5)250 NR NR = No change in PCr/ATP ratio in LVH or DCM

AI, aortic insufficiency; AS, aortic stenosis; CAD, coronary artery disease; CHF, congestive heart failure; CK, creatine kinase; DCM, dilated 
cardiomyopathy; HCM, hypertrophic cardiomyopathy; HFpEF, heart failure with preserved ejection fraction; HHD; hypertensive heart disease; 
ICM, insertable cardiac monitor; LVH, left ventricular hypertrophy; NR, not reported; PCr, phosphocreatine.
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