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Lithium beyond psychiatric indications: the 
reincarnation of a new old drug
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Abstract  
Lithium has been used in the treatment of bipolar disorders for decades, but the exact 
mechanisms of action remain elusive to this day. Recent evidence suggests that lithium 
is critically involved in a variety of signaling pathways affecting apoptosis, inflammation, 
and neurogenesis, all of which contributing to the complex pathophysiology of various 
neurological diseases. As a matter of fact, preclinical work reports both acute and long-
term neuroprotection in distinct neurological disease models such as Parkinson’s disease, 
traumatic brain injury, Alzheimer’s disease, and ischemic stroke. Lithium treatment reduces 
cell injury, decreases α-synuclein aggregation and Tau protein phosphorylation, modulates 
inflammation and even stimulates neuroregeneration under experimental conditions of 
Parkinson’s disease, traumatic brain injury, and Alzheimer’s disease. The therapeutic impact 
of lithium under conditions of ischemic stroke was also studied in numerous preclinical in 
vitro and in vivo studies, giving rise to a randomized double-blind clinical stroke trial. The 
preclinic data revealed a lithium-induced upregulation of anti-apoptotic proteins such as 
B-cell lymphoma 2, heat shock protein 70, and activated protein 1, resulting in decreased 
neuronal cell loss. Lithium, however, does not only yield postischemic neuroprotection but 
also enhances endogenous neuroregeneration by stimulating neural stem cell proliferation 
and by regulating distinct signaling pathways such as the RE1-silencing transcription factor. 
In line with this, lithium treatment has been shown to modulate postischemic cytokine 
secretion patterns, diminishing microglial activation and stabilizing blood-brain barrier 
integrity yielding reduced levels of neuroinflammation. The aforementioned observations 
culminated in a first clinical trial, which revealed an improved motor recovery in patients 
with cortical stroke after lithium treatment. Beside its well-known psychiatric indications, 
lithium is thus a promising neuroprotective candidate for the aforementioned neurological 
diseases. A detailed understanding of the lithium-induced mechanisms, however, is 
important for prospective clinical trials which may pave the way for a successful bench-
to-bedside translation in the future. In this review, we will give an overview of lithium-
induced neuroprotective mechanisms under various pathological conditions, with special 
emphasis on ischemic stroke. 
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Introduction 
Lithium has been commonly used in the treatment of bipolar 
disorders for decades. However, evidence suggests that 
lithium also exerts neuroprotection in distinct neurological 
diseases such as Parkinson´s disease (PD), traumatic brain 
injury (TBI), Alzheimer´s disease (AD), and ischemic stroke (IS) 
(Ren et al., 2003; Zhu et al., 2010; Forlenza et al., 2014; Zhao 
et al., 2019). The latter is one of the leading causes of death 
and the most common cause of disability worldwide (Campbell 
und Khatri, 2020). Since stroke therapy is limited to acute 
intervention and restricted to only a small number of patients, 
a variety of research groups strives to find new therapeutic 
approaches that modulate the disease progress and lead to 
acute and long-term neuroprotection (Zhou et al., 2018). 
However, the translational approach of neuroprotective stroke 
agents from experimental research to clinical application 
has failed until recently (Neuhaus et al., 2017). Moretti and 
colleagues identified three main reasons for this, i.e., (1) 

fundamental differences between animal models and humans, 
(2) the poor quality of many experimental studies, and (3) 
the lack of clinical studies covering human variables such as 
comorbidities and age (Moretti et al., 2015). The advantage 
of applying a well-known drug like lithium as an adjuvant 
neuroprotective drug are therefore evident. In this review, 
we will give an overview on observed neuroprotective effects 
of lithium under conditions of different neurological diseases 
with a special focus on IS. 

Search Strategy and Selection Criteria 
The literature included in the present review was found on 
PubMed and Google Scholar databases between October and 
November 2020, using one of the following search terms: 
neuroprotection stroke, lithium Parkinson’s disease, lithium 
traumatic brain injury, lithium Alzheimer’s disease, lithium 
stroke and lithium cerebral ischemia.
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The History of Lithium, Current Clinical 
Applications, and Known Signaling Pathways
Lithium is an elementary light metal, which is only used 
as lithium salt because of its high intrinsic reactivity. First 
evidence of using lithium as therapeutic drug goes back to the 
19th century (Shorter, 2009). It was not before the 20th century, 
however, that the Australian psychiatrist John F. Cade came off 
with the first randomized double-blind study that suggested 
therapeutic benefits of lithium as a mood stabilizer (Shorter, 
2009). Since then lithium is used as a first-line medication in 
the treatment of bipolar disorders (Manji und Lenox, 1998). 
Further indications known for lithium imply various psychiatric 
and neurological diseases such as acute depression, manic 
episodes, and cluster headache. 

Although lithium is a commonly used drug, the precise 
mechanisms of action remain elusive. To our current 
understanding, lithium acts as a pleiotropic substance, which 
regulates a variety of cellular regulation proteins (Malhi et 
al., 2013). In particular, the lithium-induced inhibition of the 
glycogen synthase kinase 3 beta (GSK3β) was identified as 
a central aspect of the mood-stabilizing effect. The GSK3β 
pathway is, among other, involved in the regulation of 
apoptosis and neuronal plasticity (Jaworski et al., 2019). 
Regarding its relevance in bipolar disorders, de Sousa and 
colleagues demonstrated a correlation of inactivated GSK3β 
and symptoms during a depressive episode (de Sousa 
et al., 2015). The importance of this pathway is further 
illustrated by the fact that the selective inhibition of the 
GSK3β pathway showed anti-depressive and anti-maniac 
effects (Martinowich et al., 2009). Moreover, long-term 
lithium treatment has been shown to elevate the levels of 
the brain-derived neurotrophic factor (Emamghoreishi et 
al., 2015; Abdanipour et al., 2019). The expression levels 
of brain-derived neurotrophic factor, in turn, correlate 
with the severity of symptoms in patients suffering from 
depression and bipolar disorders (Fernandes et al., 2015). 
With regard to neurotransmitters, lithium treatment affects 
both the GABAergic and the dopaminergic system, which 
play a pivotal role in patients with psychiatric disorders (Ago 
et al., 2012; Wakita et al., 2015). Given the fact that lithium 
affects multiple signaling pathways, a plethora of studies 
were conducted to open new fields for lithium treatment. As 
such, novel evidence suggests lithium to have a therapeutic 
potential beyond the current clinical applications. 

Preclinic Neuroprotective Effects of Lithium 
In the last decade, a variety of preclinic studies have 
demonstrated the neuroprotective potential of lithium in 
distinct neurological settings such as PD, TBI, and AD (Figure 
1). Herein, we will only give a brief overview of the current 
knowledge related to lithium and these diseases.

Using a rodent PD model, Zhao et al. (2019), for instance, 
observed a decrease of aggregated α-synuclein due to lithium 
treatment, yielding improved behavioral test performance. 
In addition, the loss of neurons located in the pars compacta 
was significantly reduced (Zhao et al., 2019). The authors 
also identified modulated miRNA expression patterns, which 
might serve as a biological equivalent of lithium-induced 
neuroprotection in preclinical PD models. Moreover, the 
combination of valproate and lithium ameliorates motoric 
behavior and has been shown to enhance the number of 
dopaminergic neurons as well as dopamine metabolites in PD 
mice (Li et al., 2013). Transplanting lithium-preincubated stem 
cells in PD rodents, Qi et al. (2017) demonstrated a regulation 
of the Wnt signaling pathway that gave rise to a significant 
incline of cognitive functions and motor coordination in these 
animals.

Similar to preclinical PD models, lithium pre-treatment in 

TBI mice leads to a reduction of tissue injury and an increase 
of memory performance and spatial learning (Zhu et al., 
2010). These interesting observations were associated with 
a decreased expression of the pro-inflammatory interleukin-
1β (Zhu et al., 2010). Similar results were obtained by Yu et 
al. (2011), showing that lithium treatment results in reduced 
neurodegeneration and neuroinflammation. The latter was 
associated with better behavioral outcomes as indicated by 
minimized anxiety-like behavior and ameliorated short-term 
and long-term motor coordination (Yu et al., 2011). Likewise, 
Ciftci and colleagues observed neuroprotective effects 
after lithium treatment, leading to reduced depressed-like 
behavior in mice after cold-induced TBI (Ciftci et al., 2020). 
Since the GSK3β pathway is also activated in TBI, inhibition 
of that pathway due to lithium likely contributed to the 
aforementioned cellular protection (Shim und Stutzmann, 
2016). 

Extracellular beta-amyloid plaques and neurofibrillary tangles 
consisting of hyperphosphorylated tau proteins are key factors 
in the pathophysiology of AD (Weller und Budson, 2018). 
Interestingly, several preclinical studies showed a lithium-
induced decrease of tau protein hyperphosphorylation 
via inhibition of GSK3β, leading to diminished cognitive 
impairment in rodents (Nakashima et al., 2005; Engel et al., 
2006; Sudduth et al., 2012). Cognitive deficits such as spatial 
learning and memory functions were also found to be reduced 
due to lithium-regulated levels of β-catenin (De Ferrari et al., 
2003). Beside these preclinic data, a meta-analysis suggests 
a protective effect of lithium treatment in patients with AD 
and mild cognitive impairment (Matsunaga et al., 2015). 
Nevertheless, the significance of the latter is limited due to 
the low number of patients enrolled. As a matter of fact, these 
data stress the outstanding potential of lithium treatment for 
various neurological diseases. 

Lithium and Ischemic Stroke 
Beside the neurological  diseases mentioned in the 
previous paragraph, lithium has also shown itself to be a 
promising candidate for the treatment of IS. The complex 
pathophysiology of IS is characterized by both acute 
and delayed neuronal damage. In the acute stage, both 
hypoxia and the lack of nutrients lead to neuronal loss 
by acute cell death, triggering mechanisms that result 
in neuroinflammation and apoptosis. The latter leads to 
delayed brain injury, additionally affected by subsequent 
vessel reperfusion. The current therapy of IS at the acute 
stage of the disease is limited to systemic thrombolysis and 
mechanical thrombectomy. Hence, researchers have been 
working on finding neuroprotective adjuvant treatment 
paradigms in order to modulate the long-term post-stroke 
disease progression. This approaches have, however, failed 
until recently (Neuhaus et al., 2017). We herein provide an 
overview of promising preclinical and clinical studies and 
also give brief information on the current understanding of 
mechanism underlying lithium-induced neuroprotection in IS. 
A schematic summary of lithium-induced signaling pathways 
under IS conditions is provided in Figure 2. 

Preclinical stroke studies 
Nonaka and Chuang for the first time demonstrated that 
lithium pre-treatment leads to decreased infarct size and 
reduced neurological deficits in stroke rats (Nonaka und 
Chuang, 1998). The authors suggested an inhibition of 
activated NMDA receptors by lithium treatment to be an 
important mechanism in this context (Nonaka und Chuang, 
1998). These observations were confirmed in a follow-up study 
by Xu et al. (2003) who claimed anti-apoptotic mechanisms to 
be responsible for the lithium effect. In detail, apoptosis was 
diminished in the penumbra of the ischemic cortex, where 
caspase-3 activity and activated protein 1 expression were 
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significantly decreased (Xu et al., 2003). The relevance of 
lithium-regulated apoptosis was further confirmed in another 
study by Bian et al. who observed a decreased pro-apoptotic 
p53 expression and an up-regulated anti-apoptotic B-cell 
lymphoma 2 as well as an increased heat shock protein 70 
(HSP70) expression in the ischemic brain (Bian et al., 2007). 
Interestingly, the importance of HSP70 as a therapeutic 
target in IS has just been recognized in recent years after the 
aforementioned publication by Bian and colleages (Kim et 
al., 2018). Although the majority of preclinical stroke studies 
applies models of unilateral focal cerebral ischemia, some 
studies rather focus on global cerebral ischemia models. 
Analyzing the therapeutic potential of lithium under the 
latter conditions confirmed the robust neuroprotective 
effect of lithium (Yan et al., 2007b). As a matter of fact, pre-
treatment of lithium yielded better neurological recovery 
and enhanced levels of neurogenesis in the hippocampal 
region, albeit neuronal and astrocytic differentiation patterns 
were not affected by lithium directly (Yan et al., 2007b). The 
aforementioned effects do not solely depend on the GSK3β 
pathway, but involve other signaling pathways such as the 
pro-survival mitogen-activated protein kinase/extracellular 
signal-regulated kinases pathway as well (Yan et al., 2007b). 
The mitogen-activated protein kinase/extracellular signal-
regulated kinases pathway, in turn, has already been shown to 
play an important role in the pathophysiology of IS in various 
preclinical models (Sawe et al., 2008). Another study by Yan 
and colleagues that focused on the behavioral outcome after 
transient global cerebral ischemia revealed an improved 
motor recovery and enhanced memory performance after 
lithium pre-treatment (Yan et al., 2007a). These observations 
were further confirmed by Bian and colleagues who noticed 
reduced ischemia-induced behavioral deficits in lithium-
treated gerbils (Bian et al., 2007).

Whereas the aforementioned studies focused on clinically 
irrelevant lithium pre-treatment, additional studies were 
conducted investigating the therapeutic potential of post-
stroke lithium administration. Likewise, lithium post-treatment 
lead to decreased infarct volume and reduced neurological 
deficits in a rat ischemia/reperfusion model (Ren et al., 
2003). Moreover, this neuroprotection was again associated 
with decreased levels of apoptosis and an up-regulation of 
HSP70 (Ren et al., 2003). Additionally, lithium-reduced spatial 
learning and memory deficits in ischemia-reperfusion mice 
(Fan et al., 2015). Decreased memory deficits and lower 
oxidative-nitrosative stress levels in the prefrontal cortex 
and hippocampus were observed in a rat model of global 
cerebral ischemia (Ozkul et al., 2014). Whereas other studies 
analyzing the impact of lithium on post-stroke outcome 
refrained from long-term observations, Li et al. (2011) studied 
survival periods of up to seven weeks after stroke induction. 
Better outcome of neonatal rodents treated with lithium 
was attributed to reduced levels of activated microglia and 
decreased concentrations of both interleukin-1β and CC-
chemokine-ligand-2 (Li et al., 2011). Surprisingly, lithium 
treatment did not only stimulate neural stem/progenitor cell 
proliferation in the ischemic brain but also in the non-ischemic 
brain. The latter may be an important factor for long-term 
neuroprotection under stroke conditions (Li et al., 2011). 

Lithium is not only effective when given during the acute 
stage of IS, but also when administered at subacute time 
points. Evidence for successful subacute treatment paradigms 
under IS conditions comes from Xie et al. (2014), who exposed 
neonatal rats to cerebral ischemia followed by a delayed 
lithium treatment paradigm starting on day five for two 
consecutive weeks. The authors demonstrated that lithium 
decreased tissue loss and normalized motor hyperactivity 
as well as anxiety-like behavior twelve weeks after cerebral 
ischemia. From a mechanistic point of view, the authors 
observed a regulation of post-stroke neuroinflammation, as 

indicated by normalized serum levels of the pro-inflammatory 
cytokines interleukin-1α, interleukin-1β, and interleukin-6 (Xie 
et al., 2014).

Although the aforementioned authors switched their 
experimental paradigm from prestroke to poststroke 
treatment, the therapeutic window of lithium was unknown 
until recently. Hence, our group systematically investigated 
this aspect, demonstrating that long-term neuroprotection 
for as long as eight weeks was achieved when mice received 
lithium no later than six hours after stroke onset (Doeppner 
et al., 2017). The long-term neuroprotection was assessed by 
improved neurological outcome in distinct neurobehavioral 
tests focusing on motor recovery (Doeppner et al., 2017). 
Interestingly, application of lithium under these experimental 
settings not only modified postischemic microglial activity, 
but also implied a novel GSK3β independent mechanism by 
which miR-124 expression levels were increased, resulting 
in enhanced RE1-silencing transcription factor degradation 
(Doeppner et al., 2017). 

To this date, the detailed mechanisms underlying lithium-
induced regulation of poststroke inflammation, apoptosis, and 
neuroregeneration still remain largely unknown. However, 
recent evidence suggests that lithium might not only affect the 
brain parenchyma but also the endothelium itself. Previous 
in vitro experiments under non-hypoxic conditions showed 
a lithium-induced stabilization of endothelial cells (ECs) due 
to decreased myosin light chain phosphorylation (Bosche et 
al., 2016a, b). The same authors also suggested that lithium 
prevents the early posthypoxic Ca2+ overload in ECs by 
inhibiting the inositol-3-phosphate-sensitive Ca2+ release from 
the endoplasmic reticulum, which is an important factor for 
ischemic/hypoxic EC injury (Bosche et al., 2013). As such, we 
recently addressed the question whether or not lithium might 
indeed affect EC injury under stroke conditions in vivo (Haupt 
et al., 2020). Since ECs are a key compound of the blood-brain 
barrier (BBB), a lithium-induced impact on such ECs might 
reverse the early poststroke breakdown of the BBB. The latter is 
known to significantly contribute to cell injury during the first 
hours of cerebral ischemia (Jiang et al., 2018). Indeed, lithium 
treatment resulted in a stabilization of the BBB in stroke mice, 
leading to a modulated leukocyte infiltration into the brain 
parenchyma (Haupt et al., 2020). These observations were a 
consequence of a downstream inhibition of MMP-9 activity as 
the central aspect of lithium-induced BBB stabilization (Haupt 
et al., 2020). 

Clinical stroke studies
In addition to the aforementioned preclinical studies, 
data from two clinical trials are available investigating the 
retrospective risk of patients treated with lithium (Lan et al., 
2015) as well as examining the prospective motor recovery in 
stroke patients receiving lithium treatment (Abdollahi et al., 
2014). The latter remains the only prospective randomized 
double-blind clinical trial for which eighty stroke patients were 
enrolled. Patients with a first-time ever stroke were randomly 
allocated to the treatment or control group. Starting with 
the treatment paradigm two days after stroke, the patients 
received 300 mg of lithium twice daily or placebo on thirty 
consecutive days (Abdollahi et al., 2014). The authors of the 
study, however, observed no significant difference with regard 
to motor recovery, as measured by the Modified National 
Institutes of Health Stroke Scale and hand subsection of Fugl-
Meyer Assessment. Interestingly, a subgroup of patients that 
suffered from cortical stroke displayed a significantly better 
motor recovery when treated with lithium in comparison 
to the placebo group (Abdollahi et al., 2014). In detail, the 
absolute difference between the lithium group and the 
placebo group were about 10% of full function regaining 
based on hand subsection of Fugl-Meyer Assessment. This 
suggests an improved neurological recovery after cortical 
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stroke due to early lithium treatment under clinical conditions 
in man. Likewise, a population-based retrospective study on 
1885 patients with bipolar disorders that were treated with or 
without lithium observed a significant decrease of stroke risk 
in the lithium group (Lan et al., 2015). Interestingly, the risk 
reduction was associated with both the cumulative lithium 
dosage and the exposure time. Although these two studies 
are in part promising, the data included is highly limited with 
a low number of patients in total. 

Conclusion and Perspective 
Lithium has been shown to exert pleiotropic neuroprotective 
effects in distinct neurological diseases by triggering a variety 
of pro-survival mechanisms. The downstream targets of these 
mechanisms predominantly affect the regulation of apoptosis, 
inflammation, and neurogenesis. The individual signaling 
pathways depend on the pathophysiology of each disease. 
The preclinical data for IS suggests an implication of a variety 
of mechanisms that may be responsible for lithium-induced 
neuroprotection. Although some of these signaling pathways 
have already been unveiled, a great deal of questions remains 
unanswered. However, gaining a deeper understanding of 
these mechanisms is fundamental for a successful bench-
to-bedside translation. Likewise, obtaining more clinical 
evidence under settings of IS and other neurological diseases 
is important in order to verify the therapeutic potential of 
lithium beyond its current indications.
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