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Abstract: Structural disorder has been shown to be responsible for profound changes of the interaction-
energy landscapes and collective dynamics of two-dimensional (2D) magnetic nanostructures.
Weakly-disordered 2D ensembles have a few particularly stable magnetic configurations with large
basins of attraction from which the higher-energy metastable configurations are separated by only
small downward barriers. In contrast, strongly-disordered ensembles have rough energy landscapes
with a large number of low-energy local minima separated by relatively large energy barriers. Conse-
quently, the former show good-structure-seeker behavior with an unhindered relaxation dynamics
that is funnelled towards the global minimum, whereas the latter show a time evolution involving
multiple time scales and trapping which is reminiscent of glasses. Although these general trends
have been clearly established, a detailed assessment of the extent of these effects in specific nanostruc-
ture realizations remains elusive. The present study quantifies the disorder-induced changes in the
interaction-energy landscape of two-dimensional dipole-coupled magnetic nanoparticles as a func-
tion of the magnetic configuration of the ensembles. Representative examples of weakly-disordered
square-lattice arrangements, showing good structure-seeker behavior, and of strongly-disordered
arrangements, showing spin-glass-like behavior, are considered. The topology of the kinetic networks
of metastable magnetic configurations is analyzed. The consequences of disorder on the morphology
of the interaction-energy landscapes are revealed by contrasting the corresponding disconnectivity
graphs. The correlations between the characteristics of the energy landscapes and the Markovian dy-
namics of the various magnetic nanostructures are quantified by calculating the field-free relaxation
time evolution after either magnetic saturation or thermal quenching and by comparing them with
the corresponding averages over a large number of structural arrangements. Common trends and
system-specific features are identified and discussed.

Keywords: nanomagnetism; disordered systems; magnetic order; dipolar interactions; theoretical models

1. Introduction

Two-dimensional (2D) magnetic nanoparticle ensembles have been the focus of a wide
range of experimental and theoretical research activity in past years. They constitute a most
challenging fundamental research object, in which reduced dimensionality, competing
interactions and disorder merge resulting in novel collective behaviors [1–9]. A common
feature of magnetic nanostructures is the increasing relevance of uncertainties and potential
defects in the manufacturing process. For instance, different fabrication processes can
yield very different structural arrangements of the magnetic nanoparticles (MNPs) ranging
from well-defined long-range order, as in many lithographic samples and auto-organized
materials, to highly-disordered samples, as in materials obtained from cluster-beam de-
position [10–13]. It is the main goal of this paper to quantify how the different structural
arrangements affect the properties of MNP ensembles.

The magnetic properties of 2D nanostructures are known to depend not only on
the size and composition of the nanoparticles (NPs), regarded as individual finite-size
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objects, but also on the filling factor, surface coverage and geometrical arrangement of
the NP ensembles made out of them [14–21]. From the single-particle perspective, a large
number of theoretical and experimental studies have revealed the strong size, structural
and composition dependence of cluster magnetism (see, for instance, Refs. [22–37] and
references therein). A microscopic understanding of the magnetic behavior of these nano-
objects is certainly important not only from a fundamental perspective, but also in view of
any knowledge-based nanomaterial development. Nevertheless, as far as the collective
behavior of NP ensembles is concerned, the details of the intrinsic cluster properties are
not so important, provided that the NPs have a non-vanishing net magnetization whose
orientation entirely defines the low-energy NP state. Therefore, the present paper pays
particular attention to the interactions among the NPs. Indeed, from this perspective,
different coupling regimes must be distinguished. In weakly-interacting 2D ensembles,
the surface coverage is low and the magnetic properties are dominated by local contri-
butions such as the magnetization and magnetic anisotropy of the particles themselves.
Consequently, the dynamics of NP ensembles is governed by local reorientations of the
magnetic moments of individual nanoparticles. The details of the structural arrangement
are not important from a qualitative perspective. A far more complex and challenging
situation is found in the strongly-interacting 2D ensembles to be considered in the present
study, since the surface coverage is high and the underlying structure plays an important
role [14–21]. In the strong-coupling regime, any change in the orientation of the magneti-
zation of only one particle inevitably induces changes in the magnetization directions of
the neighboring particles. Therefore, the single-particle viewpoint is no longer meaningful.
The cooperative many-body character of the ensemble conditions the overall magnetic
response. As a result, even the most basic elementary transitions, such as fluctuations
between two nearby metastable states, involve simultaneous and collective changes of the
magnetization directions of an important number of NPs [19–21]. Thus, the many-body
behavior of the whole nanostructures must be considered from the very beginning, which
renders the physical problem extremely exciting and challenging.

Previous experimental and numerical studies of strongly-interacting 2D ensembles of
magnetic nanoparticles have revealed a variety of fascinating physical phenomena, includ-
ing long-range-order phase transitions, continuous ground-state degeneracies, and order-
by-disorder effects [14–18]. In addition, remarkable non-equilibrium phenomena have
been observed such as dynamical slowing down, ergodicity breaking, memory effects,
and aging [38–43], More recently, it has been shown that many of these effects can be
understood as the consequence of profound qualitative changes in the interaction-energy
landscapes of these systems which are associated to the disordered structural arrangement
of the MNPs [44]. On the one hand, ensembles with a high point-group symmetry and
a small degree of structural disorder, such as weakly-disordered square and triangular
ensembles, have good structure-seeking energy landscapes with a clear global minimum,
long-range order and fast unhindered relaxation dynamics. On the other hand, strongly-
disordered ensembles show very rough and frustrated energy landscapes with a high
number of low-energy local minima separated by large energy barriers resulting and a
glass-like relaxation dynamics [44]. Hence, the structural arrangement and its disorder,
which is at least to some extent unavoidable in experiment, play a central role in the
equilibrium and non-equilibrium properties of these systems. Achieving a detailed micro-
scopic understanding of the correlation between the degree of structural disorder and the
nanostructure magnetic behavior is of utmost importance.

The intrinsic randomness of disordered systems implies a number of regularities
mostly related to the self averaging proper to macroscopic systems, which call for a
statistical description, and yet the statistical perspective alone does not provide sufficient
insight on the microscopic origin of a macroscopic behavior, for example, on the nature of
the relaxation dynamics. This is even more so in complex systems like those considered
in this paper, which involve many coupled degrees of freedom leading to a multitude of
metastable states, which are interconnected through an intricate network of elementary
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transitions. It is therefore of considerable interest to understand how disorder affects the
energy landscapes of magnetic NP ensembles, not only by considering different lattice
structures with different degrees of disorder, but also by contrasting different concrete
realizations of disordered nanostructures corresponding to the same global criteria (i.e.,
particle size, lattice geometry, coverage, degree of disorder, etc.). It is the purpose of
the present contribution to report on the results of such investigations. In this way, both
general trends as well as the extent of disorder-induced fluctuations in the interaction-
energy landscapes are identified.

The remainder of the paper is then organized as follows: in Section 2 the theoretical
background is presented by specifying the considered nanostructure model as well as the
different methods used for characterizing the energy landscapes. In Section 3 representative
realizations of weakly-disordered and strongly-disordered ensembles are investigated and
discussed in some detail by contrasting their kinetic networks, disconnectivity graphs and
Markovian relaxation dynamics. The paper is closed in Section 4 by summarizing the main
conclusions and by pointing out some relevant extensions and implications of this study.

2. Methods and Theoretical Background
2.1. Nanostructure Model

The two-dimensional ensembles of strongly interacting magnetic nanoparticles are
described by considering N non-overlapping spherical particles, which are contained in a
square unit cell with periodic boundary conditions. Since the particles are spherical-like,
their size is small, in the range of 5–10 nm, and the ferromagnetic exchange couplings
between the local atomic magnetic moments are strong, the particles can be treated as
superspins. Each particle k can be described by a single classical magnetic moment ~mk
with a fixed module [19–21,44]. Since the orientation of ~mk is defined by the polar and
azimuthal angles θk and ϕk, the magnetic configuration of the whole nanostructure is
characterized by the set of N pairs of angles {θk, ϕk} with k = 1, . . . , N. In this context,
it is important to recall that magnetism in thermal equilibrium can have very different
quantum origins. Consequently, depending on the considered material, different size and
structural dependent cluster properties are observed. Nevertheless, the present description
of the interaction energy of NP ensembles applies regardless of the intrinsic cluster details,
as long as the NPs are small enough to be regarded as a single magnetic domain and the
NP magnetic state is characterized by the orientations of the NP magnetizations. In the
following calculations we consider Fe particles having a diameter of φ = 3 nm, which are
known to be ferromagnetic at low temperatures. The NP magnetization is assumed for
simplicity to be bulk-like, which results in a total NP magnetic moment |~m| = 2.55× 103µB.
Further details on the structural arrangement of NPs in the 2D ensembles are given in
Section 3.

The spherical-like shape of the MNPs implies that the magnetic anisotropies are weak
and that higher order multipole corrections can be neglected for simplicity. Hence, we
focus on the dipole interactions. For any locations~rk and magnetic moments ~mk of the NPs,
the total dipolar energy of the system is given by

E =
µ0

8π ∑
k 6=l

[
~mk · ~ml

r3
kl
− 3(~mk ·~rkl)(~ml ·~rkl)

r5
kl

]
, (1)

where~rkl =~rk −~rl is the vector connecting the centers of particles k and l, rkl = |~rkl | the
corresponding distance, and µ0 the vacuum permeability. Extending the present classical-
energy expression to include other contributions phenomenologically (e.g., local magnetic
anisotropies, higher multipole moments, superexchange or Ruderman–Kittel–Kasuya–
Yoshida interactions, etc.) is straightforward.

In order to investigate the effects of structural disorder on the collective behavior
of ensembles of magnetic nanoparticles, we consider two different types of geometrical
arrangements of the MNPs: (i) weakly-disordered square-lattice structures and (ii) strongly-
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disordered structures. The weakly-disordered square structures are created by displacing
the particles from the sites of a perfectly periodic square lattice according to a Gaussian
distribution with zero mean and standard deviation σr. The strongly-disordered ensembles
are created by randomly placing the non-overlapping particles in the unit cell until the
desired surface coverage is reached. Illustrations of representative weakly-disordered and
strongly-disordered ensembles can be found in Section 3.

2.2. Energy Landscapes

The equilibrium and dynamic properties of classical systems are ultimately governed
by the underlying energy as a function of the relevant degrees of freedom. In the present
case, these are the azimuthal and polar angles {θk, ϕk}which describe the orientation of the
magnetic moments ~mk of all MNPs. A meaningful simplification of the energy landscape
(EL) E(θ1, ϕ1, . . . , θN , ϕN) can be achieved by identifying its stationary states, namely, its
local minima (LM) and transition states (TS) [45,46]. Very often, an exhaustive determina-
tion of all LM and TS is practically impossible and not strictly necessary, particularly when
the number of degrees of freedom is very large. In these cases, a representative set of LM
and TS is determined, on the basis of which the static and dynamic physical properties
of the system are obtained. In this work the LM and TS are calculated by means of the
following algorithm, which is based on a series of single-ended transition state searches
adapted from Ref. [47]: (i) Start by choosing a local minimum from the database that has
not yet been used for locating transition states. (ii) Perform an eigenvector-following search
along a specific eigenvector of the Hessian Ĥ at this local minimum. Usually, one chooses
eigenvectors corresponding to the smallest eigenvalues of Ĥ, since the energy increase
along these directions is smallest a priori. (iii) Once a transition state is found, the two
adjacent local minima are identified by stepping off the transition state in the directions
parallel and antiparallel to the single unstable mode. In this step, L-BFGS minimizations
are performed [48]. (iv) If one of the two local minima corresponds to the initial local
minimum, the other local minimum and the transition state are added to the database of
stationary states. If not, the LM-TS-LM triplets are discarded, since we aim for a connected
(ergodic) network of stationary states. (v) The algorithm proceeds by choosing a different
eigenvector and repeating the steps (ii)–(iv). Once a specified number of eigenvectors have
been tried (in the present case 15), the algorithm goes back to step (i) and a new LM is
considered. The algorithm terminates after all local minima in the database have been used
as initial states.

2.3. Kinetic Networks

The local minima and transition states of a given energy landscape form an a priori
ergodic network that is known as the kinetic network (KN) of the system. It can be
represented naturally by an undirected graph, in which the nodes represent the local
minima and the edges symbolize the connecting pathways through the corresponding
transition states. A number of parameters can be calculated in order to quantify and better
understand the connectivity of a kinetic network and to compare the topology of the ELs
of different physical systems.

One of the basic local network parameters is the degree Nc(i) of each node i, which is
defined as the number of links between node i and any other node of the network. The
kinetic networks of different systems can vary widely in their size and structure. In the
case of finite systems, finite simulation cells or when a natural correlation length is present,
it is meaningful to introduce the local connectivity density

ρc(i) =
Nc(i)

NLM − 1
(2)

of node i, where NLM is the number of LM or nodes in the network. Nodes i with com-
paratively large values of ρc(i) are often referred to as hubs: they play a central role in
conveying the stochastic dynamics of complex systems.
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Another useful network parameter is the distance dij between two nodes i and j
in a graph, which is defined as the smallest number of edges required to connect them.
In other words, dij gives the number of elementary transitions that are required to bring
the system from metastable state i to metastable state j. The average path distance d̄,
obtained by averaging dij over all pairs of nodes, gives thus a measure of the overall
extension of the graph. In particular, if d̄ is small, only a few elementary transitions are
needed for the system to relax from any excited configuration towards the low-energy
configurations or even to explore the complete configurational space. Conversely, as d̄
increases, the dynamics become more complex and usually slows down, since a larger
number of transitions are involved in most relaxation processes. The distance matrix dij
allows us to gain information on the location of the nodes within the kinetic network. In
particular, the eccentricity εi of a node i, defined as the largest dij between node i and
any other node j, measures the extent to which the node can be regarded as central or
peripheral. Further interesting related properties are the radius R of the network, given by
the minimum value of εi among all nodes i, and the diameter D, which is the maximum εi.
Note that neither R nor D are average properties of the network. In fact, they are prone
to strong fluctuations among different comparable systems, since they are defined by the
connectivity of one particular node.

Finally, it is often necessary to quantify the degree of clustering in a network. Indeed,
knowing if the neighbors of a node are also neighbors of each other, provides insights on
the short-time dynamics of the system. The clustering of a network is usually measured by
the transitivity

C =
3× number of triangles

number of triads
, (3)

which represents the probability that in a triad of nodes, where i is connected to j and j is
connected to k, also i and k are connected with each other [49].

For the purpose of future comparison, it is useful to direct our attention to two
paradigmatic reference network models: periodic lattice structures and random graphs,
which have strongly contrasting properties. In a random graph, the nodes are connected
randomly with each other with a given average degree [50,51]. They have a relatively
short average path distance d̄ and a small transitivity C. In a lattice graph, on the other
hand, each node has the same number of neighbors resulting in a large average path
distance and a large transitivity or number of short loops. A particular combination of
these properties leads to the notion of small-world network. According to Watts and
Strogatz, a network can be regarded as a small world if it combines the short average path
distance of random graphs with the large transitivity of lattice graphs [52]. Small-world
networks are also characterized by the presence of hubs with large local connectivity
densities. Many naturally occurring networks are small worlds, for instance, social and
neural networks. In our context, it is interesting to elucidate if or under what circumstances,
the kinetic networks of disordered NP ensembles exhibit small-world behavior [50,51].

2.4. Disconnectivity Graphs

The main limitation of kinetic networks as a tool for energy-landscape characterization
is the lack of information on the energies of the connected local minima and the energy
barriers separating them. Hence, they offer no clue about the time scales of the associated
dynamics. Disconnectivity graphs (DGs), as proposed by Karplus et al. [53], provide this
information and are therefore a much-used tool in the analysis of energy landscapes. Ex-
amples of the disconnectivity graphs of magnetic nanostructures are shown in Section 3.
The physical meaning of these representations of the ELs can be clarified by describing
how they are constructed [45,53].

The disconnectivity graph of a given connected network of LM and TS is created
according to the following algorithm: For any given energy E, all energetically accessible
local minima, i.e., the local minima having an energy lower than E, are grouped into
disjoint sets denoted as superbasins. Two LM belong to the same superbasin, if there is a
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path, for example, the minimum energy path (MEP), which connects the two LM without
exceeding the energy E. Usually one starts by choosing E close to the energy of the global
minimum. In the absence of degeneracies, there is only one superbasin that contains the
global minimum for such low values of E. If the ground state is N-fold degenerate, there
are then N disjoint superbasins. As the energy E is gradually increased, more local minima
become energetically accessible. Since in most cases these newly accessible LM are not all
connected to the ground state without exceeding the increases E, one usually observes that
the number of superbasins first increases. However, at some point, the superbasins start
to merge with each other, since the separating energy barriers along the connecting MEP
can be overcome. Eventually, for very high values of E, only one superbasin is left, which
contains all local minima of the system, provided that the energy barriers are finite.

In practice, DGs are created by performing this algorithm at a discrete set of equidistant
energies, which are indicated on the y-axis. At each energy E, a superbasin is represented by
a node. Two nodes are connected with each other, if they share at least one local minimum.
The horizontal position of the nodes is arbitrary. It is usually chosen in a way that nodes
separated by lower energy barriers are closer to each other than those separated by larger
energy barriers. In the end, the result is a tree-like graph, where the end point of each
branch gives the energy of the corresponding local minimum and the merging of two
branches indicates the energy barrier, which separates them (see, for instance, the DGs in
Section 3).

2.5. Markovian Dynamics

At small temperatures, the transitions between different metastable states of the
magnetic nanostructures can be regarded as rare events. In this case, the time evolution
of a system, for instance, after magnetic saturation and external field removal or after a
sudden temperature quenching, can be regarded as consisting of a series of independent
elementary transitions, which are separated by long thermalization periods. The resulting
Markovian dynamics can then be described by solving the master equation

d~P
dt

= Q~P (4)

where the i-th component of ~P represents the occupation probability of the metastable state
or basin i. The transition-rate matrix Q is given by

Qij = kij − δij

LM

∑
l=1

kli (5)

where kij stands for the transition rates for going from state j to state i. The solution of this
system of linear differential equations can be expressed in terms of the eigenvalues λn and
the corresponding eigenvectors ûn of Q as

~P(t) =
NLM

∑
n=1

cn eλnt ûn, (6)

where cn = ~P(0) · ûn is the projection of the initial probability distribution ~P(0) on the
eigenvector ûn.

In this work, the transition rates k ji are calculated within the framework of harmonic
transition-state theory (HTST) [54]:

k ji = aji exp
(
−

∆Eji

kBT

)
, (7)

where aji, usually denoted as attempt frequency, depends on the curvature of the energy
landscape at the initial local minimum and at the separating transition state [54–56]. Typical
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values of aji in magnetic nanostructures are in the range of 108–1011 Hz [44,57]. In the
absence of Goldstone modes, the temperature dependence of the expression solely resides
in the Arrhenius exponential, which is defined by the separating energy barrier ∆Eji.
Further details on the calculation of kij may be found in Refs. [44,54–56].

3. Results

The goal of this section is to quantify the role of structural disorder on the energy
landscapes of dipole-coupled magnetic nanoparticle ensembles, not only concerning the
general trends, but also by giving particular emphasis to the fluctuations between dif-
ferent realizations having the same degree of disorder. For this purpose, four different
representative realizations of two very different types of lattices are investigated in some
detail: weakly-disordered square lattice (WDSL) ensembles, which are are obtained by
starting from a perfectly periodic square lattice arrangement and applying small random
displacements to the NP positions, and strongly disordered (SD) ensembles, in which the
particles are randomly distributed within the unit cell without any overlap. The extended
nanostructures are then modelled with finite unit cells having N = 36 MNPs and periodic
boundary conditions. The surface coverage is in all cases c = 0.44, which corresponds
to an average nearest-neighbor distance r0 = 4 nm. Reasonable changes in the sample
parameters are not expected to have a significant impact on our conclusions [19–21,44].

3.1. Weakly-Disordered Square Lattice Ensembles
3.1.1. Ground-State Magnetic Order

The ground-state magnetic configurations of a significant number of (more than 200)
weakly-disordered square lattice ensembles with the same degree of structural disorder
σr = 0.05 r0 have been explored. In Figure 1, the NP positions within the unit cell and
the ground-state magnetic configurations of representative realizations are shown. As a
consequence of the strong out-of-plane anisotropy of the dipole interaction, the magnetic
moments of the NPs always lie within the xy-plane as indicated by the arrows [15,44]. One
observes that the ground-state magnetic configurations exhibit a long-range order, which is
very close to the so-called microvortex (MV) state. Ignoring some minor random deviations
due to disorder, the orientations of the magnetic moments ~mk at each NP k are given by

mx
k = (−1)ny cos(αMV) |~mk|

my
k = (−1)nx sin(αMV) |~mk|,

(8)

where αMV ∈ [0, π] is the microvortex angle, and nx and ny indicate the position of
nanoparticle k along the x and y directions of the underlying square lattice [15]. For
instance, αMV = 0 represents a striped antiferromagnetic state whereas αMV = π/4
corresponds to a perfect vortex state.

In the perfectly periodic case without any disorder, the ground state is continuously
degenerate with respect to αMV, which can be shown to be a consequence of the C4 ro-
tational symmetry of the square lattice [14,58,59]. This continuous degeneracy is broken
by the slightest degree of structural disorder. As a result, one or a few specific values
of αMV are stabilized with respect to all others, as can be seen in the NP ensembles illus-
trated in Figure 1. In these particular cases, αMV adopts values between 0.55 in (d) and
1.09 in (b). This long-range-order stabilization is generally known as order-by-disorder
effect [14,60–62]. The only remaining symmetry is then time-reversal, which implies that
the ground state (and any other magnetic configuration) has the same energy as the one
obtained by reversing all spin directions.
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(a) (b)

(c) (d)

Figure 1. Ground-state magnetic configurations of four representative weakly-disordered square-
lattice ensembles (a–d) having σr = 0.05 r0. The positions of the MNPs within the unit cell are
indicated by the disks and the directions of the magnetic moments by the arrows. Notice that all
ground-state magnetic configurations correspond to a microvortex state with different angles αMV

[see Equation (8)].

From the previous considerations, one might be tempted to conclude that the ground-
state values of αMV bear no correlation between different NP ensembles having the same
degree of disorder and that it adopts all values in [0, π] with equal probability. However,
the theoretical work by Prakash et al. has shown that structural disorder systematically
favors MV angles close to αMV = π/4 = 0.785 [14,59]. This remarkable result is a conse-
quence of the fact that, although the energy E in the periodic square lattice is independent
of αMV, the curvature of the energy landscape (or in more physical terms the spin-wave
density) very much depends on it. Therefore, MV states having different αMV behave
differently under the influence of structural disorder. In our case the calculated average of
αMV of 100 realizations is ᾱMV = 0.77± 0.35, which is close to the theoretically expected
value even if the standard deviation is still significant. These deviations are possible a
consequence of the finite size of the considered unit cells of the investigated ensembles,
which preclude full self-averaging. The specific examples shown in Figure 1 allow us to
asses the measure of the fluctuations of αMV for different, hardly discernible but visually
equivalent ensembles.

3.1.2. Kinetic Networks

Previous studies have shown that the energy landscapes of disordered ensembles of
dipole-coupled magnetic nanoparticles contain a large number of local minima, which are
connected through diverse transition states [19–21,44]. Each LM-TS-LM triplet represents
an single elementary transition or relaxation process which, together, define the dynamics
of the system. The connectivity among the LM is displayed by the kinetic networks of
Figure 2. They correspond to the NP ensembles illustrated in Figure 1. As usual, the nodes
represent the LM and the connecting TS are indicated by grey edges. The black edges
highlight the dynamically most dominant relaxation process for each LM, which are those
involving the lowest energy barrier while leading to a LM with lower or equal energy [44].
One observes that the ground states (red circles) are always at the center of the kinetic
networks. They are directly connected to an important fraction of the LM, as measured
by their large connectivity density ρc, which ranges from ρc = 0.38 in (d) to ρc = 0.45 in
(a). Hence, the ground states are clear hubs of the kinetic networks of weakly-disordered
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NP ensembles (see Figure 2). The large values of ρc can be attributed to the huge basins of
attractions of the ground states. This are a consequence of lifting the continuous degeneracy
of the MV state in the periodic lattice by means of structural disorder [44,63]. Besides the
ground state, one finds in almost all cases at least two degenerate additional LM that are
hubs (orange circles) which also stem from the MV manifold, but which have a slightly
higher energy. Most importantly, the KNs show that the dynamically dominant transitions
are all channeled towards the hubs, which thus act as veritable funnels of the networks.
One concludes that the ELs of weakly-disordered square-lattice ensembles share their main
characteristics with other good structure-seeking systems such as good-folding proteins
and magic-number clusters [44,64–66].

Figure 2. Kinetic networks of the local minima and transition states of the weakly-disordered square
ensembles (a–d) illustrated in Figure 1. The two-fold degenerate ground states are indicated by red
circles. Additional hubs are indicated by orange circles. The highlighted black segments correspond
to the transition which leads from a given minimum to a minimum having a lower or equal energy
by involving the smallest energy barrier. The number of local minima and transition states of each
NP ensemble can be found in Table 1.

Table 1. Ground-state microvortex angle αMV, number of local minima NLM and number of transition
states NTS of the WDSL ensembles illustrated in Figure 1. The corresponding averages µ and standard
deviations σ are obtained from 100 different realizations of disorder.

(a) (b) (c) (d) µ ± σ

αMV 1.04 1.09 0.68 0.55 0.77± 0.37
NLM 120 148 80 132 121± 42
NTS 392 474 254 426 433± 144

One of the main difference between the ELs of different WDSL ensembles lies in the
number of local minima NLM. In Table 1 results for NLM are given for the nanostructures
illustrated in Figure 1. Even though NLM ranges between NLM = 80 in (c) to NLM = 148 in
(b), the network topology is not significantly affected (see Figure 2). Moreover, the main
network parameters given in Table 2, namely, the average path distance d, radius R,
diameter D, transitivity C and ground-state connectivity density ρc, are all very similar
or the same. This is a consequence of the fact that most of the differences among the
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various realizations of disorder occur at the periphery of the kinetic networks rather than
at the center. Therefore, the general properties of the networks are mostly unaffected. The
equilibrium and dynamical properties of these NP ensembles should be very similar, even
though NLM varies to some extent between different realizations. Concerning the values
of d, R, and D, it is important to note that they are relatively small, which is consistent
with the afore discussed good-structure-seeker behavior and with the large ground-state
connectivity density (see Table 2 and Ref. [44]).

Finally, it is always of great interest to investigate, whether a physically meaningful
network exhibits small-world properties by comparing its average path distance d and
transitivity C with those of random graphs having the same number of nodes and edges. A
previous study has already shown that kinetic networks of weakly-disordered square lattice
ensembles do exhibit small-world behavior [44]. Yet, the question remains to quantify to
what extent the network parameters defining small-world behavior are affected by the
details in the nanostructure realizations. The results shown in Table 2 clearly indicate
that the network behavior is remarkably robust. Not only is the average path length d
significantly smaller than in the corresponding random graphs, but also the transitivity C
is always significantly larger. This, together with the presence of large hubs, convincingly
shows that the kinetic networks of WDSL ensembles are small worlds. Similar conclusions
are drawn by considering the averages over a large number of realizations.

Table 2. Topological parameters of the kinetic networks of WDSL ensembles illustrated in Figure 2:
average path distance d, radius R, diameter D, transitivity C and ground-state connectivity density ρc.
The corresponding averages µ and standard deviations σ are obtained from 100 different realizations
of disorder. For the sake of comparison, the values in brackets indicate the results for random graphs
having the same number of nodes and edges.

(a) (b) (c) (d) µ ± σ

d 2.51 (3.27) 2.64 (3.43) 2.63 (3.27) 2.67 (3.29) 2.47± 0.20
R 3.00 (4.06) 3.00 (4.38) 3.00 (4.12) 3.00 (4.04) 2.64± 0.54
D 5.00 (6.62) 5.00 (7.14) 5.00 (7.00) 5.00 (6.54) 4.60± 0.77
C 0.08 (0.04) 0.08 (0.03) 0.11 (0.05) 0.09 (0.04) 0.10± 0.03
ρc 0.45 (0.09) 0.43 (0.09) 0.40 (0.08) 0.36 (0.09) 0.48± 0.11

3.1.3. Disconnectivity Graphs

A complementary perspective on the energy landscapes of WDSL ensembles is pro-
vided by the disconnectivity graphs shown in Figure 3. Here, the focus is no longer on the
connectivity among the local minima, but rather on their energies and in particular on the
energy barriers separating them, which are most important from a dynamical perspective.
First of all, one observes, as in the kinetic networks discussed in Section 3.1.2, that the
disconnectivity graphs of the different NP ensembles are qualitatively very similar. In all
cases, one finds a clearly identifiable ground state together with a very small number of
excited magnetic configurations, which have close-by energies and which correspond to
MV states with different microvortex angles αMV (see Section 3.1.2). All the other excited
states are located at much larger energies. Furthermore, the energy profiles in the dis-
connectivity graphs are extremely asymmetric, since the energy barriers leading towards
the two ground states are very small, while the energy barriers in the opposing direction
are much larger. Consequently, a very fast relaxation dynamics is expected in agreement
with the previously discussed kinetic networks. The results confirm the conclusion that
weakly-disordered square ensembles of dipole-coupled MNPs are good structure-seekers
regardless of the specific realization of disorder [44].
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Figure 3. Disconnectivity graphs of the energy landscapes of the four weakly-disordered square
lattice ensembles (a–d) illustrated in Figure 1. The two-fold degeneracy of all local minima is a known
consequence of time-reversal symmetry.

Concerning the differences between the individual realizations, the DGs of Figure 3
show that they occur mostly in the high-energy part of the spectrum. Therefore, despite
the fact that the number of local minima NLM varies between the different realizations, one
does not expect any significant differences in the equilibrium and dynamical properties
at low temperatures. Quantitatively, the energy barrier between the two ground states
varies from ∆E = 1.64 meV in (d) to ∆E = 3.39 meV in (b). While this would not affect
the physical properties of the nanostructures, it conditions some aspects of the relaxation
dynamics, for example, if the system is prepared in an asymmetric initial state.

3.1.4. Relaxation Dynamics after Quenching

Numerical simulations of the magnetic relaxation of weakly-disordered square-lattice
ensembles of magnetic NPs have been performed in order to demonstrate the correlation
between the characteristics of the ELs discussed in the previous sections and the actual mag-
netic response of the corresponding magnetic nanostructures. The considered experimental
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situation or simulation protocol consists in an initial thermalization of the nanostructures
at a relatively high temperature T∗ = 200 K, which is larger than most of the energy
barriers in these systems (kBT∗ = 17.23 meV, see Figure 3). At time t = 0, once the system
has reached equilibrium at T∗, it is rapidly quenched to a much lower temperature T,
which is kept constant throughout the simulation. The relaxation dynamics is subsequently
recorded until the new equilibrium state is reached. This simulation protocol, which we
refer to as relaxation after quenching (RAQ), corresponds to a symmetric (isotropic) initial
probability distribution ~P(0), which is completely defined by the canonical equilibrium
state at T∗.

The time-dependence of the long-range magnetic order in the nanostructures is quan-
tified by the microvortex order parameter

ηMV = M̃2
x + M̃2

y, (9)

where
M̃x =

1
Nm ∑

nxny

(−1)ny mx
nxny and M̃y =

1
Nm ∑

nxny

(−1)nx my
nxny (10)

are the components of the staggered magnetization adapted to the MV state and mx
nxny

(my
nxny ) is the x (y) component of the magnetic moment of the NP located at the nx-th

row and ny-th column (see Section 3.1.1 and Ref. [15]). This is the most interesting order
parameter for square-lattice arrangements as the ground-state configuration is close to
the perfect microvortex state which has ηMV = 1 (see Section 3.1.1). A further important
property characterizing the approach to equilibrium is the configurational entropy, which
is defined by

S = −kB

NLM

∑
i=1

Pi ln Pi, (11)

where Pi is the occupation probability of the metastable state i. Equation (11) gives a
measure of the diversity of the probability distribution of the system throughout the
energy landscape. However, notice that the vibrational-like entropy associated with the
fluctuations of the NP magnetic moments within each basin of attraction is disregarded at
this stage.

In Figure 4, the time-dependence of ηMV and S in the WDSL ensembles illustrated in
Figure 1 are displayed for T = 25 K and T = 50 K. For the sake of comparison, the average
over 100 different realizations is also shown (dashed curves). One observes that for all
ensembles ηMV increases monotonously with time t whereas S decreases. This behavior
is a consequence of the fact that the low-energy states, which have a strong MV order,
are increasingly occupied at the expense of high-energy states, which are magnetically
disordered to a large extent. At T = 25 K, only the lower-energy states are significantly
occupied in the final equilibrium state. This results in values of ηMV which are close to
unity and in relatively small values of S. In contrast, at T = 50 K the excited states remain
appreciably occupied even in the equilibrium state, which leads to clearly smaller values
of ηMV and larger values of S.

Furthermore, one observes that the time evolution is close to exponential in all the
investigated ensembles. There are no signs of complicated non-equilibrium effects such
as trapping and slowing-down. This is in agreement with our analysis of the kinetic
networks and disconnectivity graphs of the energy landscapes as well as with previous
studies of WDSL ensembles [44]. Hence, the simulations of the relaxation dynamics
confirm that WDSL ensembles are good structure-seeking systems with unhindered fast
relaxation dynamics.
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Figure 4. Time dependence of the microvortex (MV) order parameter ηMV and the configurational
entropy S of the WDSL ensembles illustrated in Figure 1 (solid curves) following a relaxation after
quenching (RAQ). The corresponding averages over 100 different realizations of the nanostructures
are given by the dashed curves. The simulation temperatures T are indicated.

The differences between individual ensembles are relatively small. In particular,
the relaxation time scales are nearly the same in all ensembles. Thus, the overall time
evolutions are close to the one obtained by averaging over a large number of different
nanostructure realizations. The same holds for the equilibrium values of ηMV and S,
showing that the considered ensembles, their energy landscapes and their dynamics are
indeed representative of WDSL ensembles in general. Only ensemble (a) shows slightly
stronger deviations for ηMV and S at T = 50 K. This can be traced back to the energy
differences between the low-energy states and the higher-energy states, which are slightly
larger in this ensemble than in the others. This results in more stable low-energy states and
thus in larger values of ηMV and smaller values of S at increasing temperatures.

3.2. Strongly-Disordered Ensembles
3.2.1. Ground-State Magnetic Configurations

The magnetic properties of 100 different strongly-disordered dipole-coupled nano-
particle ensembles have been investigated. The NP positions and the ground-state magnetic
configurations of four representative realizations are shown in Figure 5. In contrast to
WDSL ensembles, no clear signs of long-range order can be recognized. Instead, the ground-
state magnetic configurations are primarily dominated by short-range head-to-tail orienta-
tions of neighboring magnetic moments, which are energetically the most favorable. In
addition, depending on the local environments of the NPs, other kinds of magnetic arrange-
ments are also found, for example, vortices, branchings, as well as some ferromagnetic
domains of variable size (see Figure 5).

A further important characteristic of the ground state of SD ensembles is that the
magnetic order changes widely among the various realizations of disorder. No com-
mon long-range order can be recognized by comparing the different SD ensembles. This
contrasts with the MV state found in WDSL ensembles or the ferromagnetic order in
weakly-disordered triangular lattices [16,44,67]. Nevertheless, on a short length scale, qual-
itatively similar magnetic structures can be identified (e.g., head-to-tail, vortex-like, etc.)
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which are arranged in different ways depending on the NP locations. It seems therefore
not possible to describe or classify these configurations by means of a single global order
parameter, which would reflect the hierarchy among the different metastable states in a
meaningful way. For instance, even though the total magnetization M is expected to be
relatively small in the low energy states in order to minimize magnetic stray fields, we
find that it fluctuates very strongly from M = 0.02 m in the ground state of ensemble (d) to
M = 0.15 m in (c), where m stands for the NP moment.

(a) (b)

(c) (d)

Figure 5. Ground-state magnetic configurations of representative strongly-disordered ensembles
(a–d) of MNPs. The positions of the particles within the unit cell are indicated by the disks and
the directions of the magnetic moments by the arrows. Notice that the magnetic configurations are
dominated by short-range correlations between the local moments.

3.2.2. Kinetic Networks

A clearer insight into the morphology of the energy landscapes of SD ensembles can be
obtained by analyzing the kinetic networks shown in Figure 6. The corresponding numbers
of local minima NLM and transition states NTS can be found in Table 3. A number of
contrasting differences with respect to the kinetic networks of WDSL ensembles deserve to
be stressed. Not only NLM and NTS are much larger in SD ensembles, but also the topology
of the kinetic networks itself is far more complex, even if we restrict ourselves to the
dynamically dominant transitions which are highlighted in black. Furthermore, the ground
states (red circles) are no longer hubs of the kinetic networks. Their connectivity density is
only ρc = 0.01, which is much smaller than in the WDSL case. In fact, the kinetic networks
of SD ensembles have no hubs at all. Instead, these networks are diverting and tend to
decompose into smaller subnetworks. Consequently, a highly complex relaxation dynamics
is expected, which involves many intermediate metastable states and which is not funnelled
towards a clear set of low-lying magnetic configurations. These findings differ strikingly
from the trends observed in weakly-disordered arrangements (cf. Figures 2 and 6). The
specific behavior of SD ensembles is also clearly demonstrated by the different topological
network parameters. For instance, the average path distances in the illustrated ensembles
vary between d = 6.0 in (d) and d = 6.6 in (a), which are much larger than in the WDSL
ensembles. The same holds for the radius R and diameter D. However, the transitivities
are comparable (cf. Tables 2 and 4).
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Figure 6. Kinetic networks of the local minima and transition states of the strongly-disordered
ensembles (a–d) illustrated in Figure 5. The two-fold degenerate ground states are indicated by red
circles. The highlighted black segments indicate the transitions, which connect each minimum with
a minimum having a lower or equal energy by involving the smallest energy barrier. The number of
local minima and transition states of each NP ensemble may be found Table 3.

The strong increase of NLM in SD ensembles can be attributed to the shorter correlation
lengths between the NP moments [21,44]. In fact, in WDSL ensembles the correlation length
between the NP moments is extremely large, since almost all elementary transitions involve
reorientations of nearly all NP moments at the same time. This results in a comparatively
small number of metastable states with extended basins of attraction. In contrast, the corre-
lation length in SD ensembles is much shorter, since it most often involves only one NP
and its immediate environment. This allows for a multitude of elementary transition in
which only a small number of NP moments change direction [21]. The basins of attraction
of the LM in SD ensembles are accordingly much smaller. Moreover, one observes that
increasing the size of the unit cells in WDSL ensembles only leads to a modest increase of
NLM, whereas NLM in SD ensembles increases almost exponentially with the unit-cell size.
This is a consequence of the fact that different local arrangements and domains within the
magnetic configurations of SD ensembles are nearly statistically independent [68].

Table 3. Total number of local minima NLM and of transition states NTS of the strongly-disordered
NP ensembles illustrated in Figure 5. The corresponding averages µ and standard deviations σ are
obtained for 100 different realizations of disorder.

(a) (b) (c) (d) µ ± σ

NLM 2276 2162 2596 2532 2628± 1043
NTS 8876 7982 11,100 9700 10,389 ± 4468

Concerning the differences between the kinetic networks of different SD ensembles,
Figure 6 shows that the overall network topology is quite similar qualitatively. This is
also reflected by the network parameters d, R, D, and C reported in Table 4, which are all
very much alike. An important difference between the kinetic networks stems, however,
from time-reversal symmetry and from the way in which symmetry-equivalent magnetic
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configurations are related. The two-fold degeneracy of each state leads to a splitting of
the networks in two kind of hemispaces, which can clearly be identified in each of the net-
works shown in Figure 6. The extent of the splittings depends on the particular ensembles.
For instance, in ensemble (a) the splitting is very strong and the two time-inversion related
hemispaces are nearly disconnected from each other. The scarceness of transitions results
in a slowing down of the thermalization between them. In contrast, in the ensemble (b)
the splitting between hemispaces is much weaker. The reason behind such differences
lies probably in the presence of particularly stable magnetic configurations, which do
not change significantly at a local level, i.e., among directly connected metastable states.
Reversing all the local moments in one of them, in oder to reach its time-inverted image,
requires multiple elementary transitions, which renders the connectivity between hemis-
paces particularly difficult. Depending on the stability of these magnetic configurations,
the splitting is stronger in some ensembles and weaker in others.

Table 4. Topological parameters of the kinetic networks of SD ensembles illustrated in Figure 6:
average path distance d, radius R, diameter D, transitivity C and ground-state connectivity density ρc.
The corresponding averages µ and standard deviations σ are obtained for 100 different realizations
of disorder. Results for random graphs having the same number of nodes and edges are given
in brackets.

(a) (b) (c) (d) µ ± σ

d 6.54 (4.65) 5.94 (4.55) 5.43 (4.31) 6.57 (4.65) 6.12± 0.53
R 9.00 (6.00) 8.00 (6.00) 7.00 (5.86) 9.00 (6.00) 8.19± 0.75
D 14.00 (9.04) 12.00 (8.90) 10.00 (8.06) 14.00 (9.06) 12.34± 1.30
C 0.11 (0.00) 0.11 (0.00) 0.10 (0.00) 0.14 (0.00) 0.10± 0.02
ρc 0.01 (0.13) 0.01 (0.13) 0.01 (0.13) 0.01 (0.13) 0.01± 0.00

Finally, before closing this section, it is worth analyzing the topology of the kinetic
networks SD ensembles with respect to small-world behavior. The results in Table 4
show that the average path distance d and transitivity C are always larger in the kinetic
networks of SD ensembles than in the random graphs having the same number of nodes
and edges. This means that the small-world criterion of Ref. [52] is not satisfied. Moreover,
the complete lack of hubs is a further clear indication that the kinetic networks shown in
Figure 6 do not exhibit small-world properties, thus confirming the conclusions of previous
studies [44]. A similar behavior has also been observed in other kinds of systems, such as
clusters and glasses, which also show slow and complex relaxation dynamics [63].

3.2.3. Disconnectivity Graphs

As already observed in Section 3.1.3, the disconnectivity graphs provide a most useful
complementary perspective to the ELs of MNP ensembles. In Figure 7 the DGs of the SD
ensembles illustrated in Figure 5 are shown.

First of all, one is amazed by the high level of complexity that they reflect, which
obviously surpasses that of WDSL ensembles. In addition to the much larger number
of local minima at all energy levels, one also finds a particularly important number of
low-lying LM whose energies are all very similar.

While the energy barriers surrounding high-energy LM are small, as in the weakly-
disordered case, the barriers separating the low-energy LM are relatively large, often much
larger than the energy differences between them. Hence, the relaxation dynamics from
high-energy LM towards low-energy LM is expected to be relatively fast, whereas the
thermalization among low-energy LM should be much slower and complex. Consequently,
the magnetization dynamics of SD ensembles is not only significantly slower than in WDSL
ensembles, but in addition it involves multiple time scales which tend to increase as the
system evolves in time (e.g., as in a stretched exponential behavior) [44]. In fact, the DGs
shown in Figure 7 closely resemble those found in structural glasses, which indicates that
the dynamic behavior should be similarly intricate [44,69–72].
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Figure 7. Disconnectivity graphs of energy landscapes of the strongly-disordered ensembles (a–d)
illustrated in Figure 5. The two-fold degeneracy of the LM is a consequence of time-reversal symmetry.

As already observed for the KNs, the differences between the DGs of various SD
ensembles are significantly stronger than in the case of WDSL ensembles. In SD ensembles,
the changes in the DGs occur not only in the high-energy parts of the spectrum, but also
at the low energies, as can be clearly seen in Figure 7. Hence, one expects an important
quantitative dispersion in the static and dynamic behavior among different realizations of
disorder in the unit cell. However, since the general trends are very similar, no significant
qualitative differences are expected.

3.2.4. Relaxation Dynamics after Saturation

As in the case of WDSL ensembles, the link between the energy landscapes and relax-
ation dynamics of strongly-disordered nanostructures deserves to be established. In the
case of SD ensembles, a particularly interesting experimental or simulation situation is the
isothermal relaxation after saturation (RAS). Starting from a fully polarized configuration
in an arbitrary direction, the magnetic field is turned off at time t = 0. Consequently,
the system falls into the closest LM j of the field-free energy landscape. In general, the mag-
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netic configuration of this state is not fully polarized as it involves the barrierless part of the
relaxation starting from the initial fully polarized state. This preparation protocol results in
a quite asymmetric initial probability distribution Pi(0) = δij. Thus, the initial occupation
probability is zero, except for one state j, which is defined by the saturating magnetic field
direction, namely, the one whose basin of attraction includes the given saturated magnetic
configuration. The long-range magnetic order in the SD ensembles is quantified best by the
ferromagnetic (FM) order parameter ηFM which is simply given by

ηFM = M2
x + M2

y (12)

where
~M =

1
Nm ∑

k
~mk (13)

is the average magnetization of the system measured in units of the NP moment m.
Figure 8 shows the time dependence of the FM order parameter ηFM and of the

configurational entropy S in the SD ensembles illustrated in Figure 5, together with the
corresponding averages over 100 different realizations for the temperatures T = 25 K and
T = 75 K. One observes that ηFM decreases with increasing t starting from a strongly
polarized state where ηFM ' 0.8 is large. As the systems evolve in time out of strongly
ferromagnetic states towards the low-energy configurations, ηFM decreases, since the
magnetization in the low-lying states is usually small due to their tendency to magnetic
flux closure (see Figure 5, where the ground-state magnetic configurations are illustrated).
At the same time, the configurational entropy, which is equal to zero in the initial well-
defined state, increases as other metastable states are increasingly populated.
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Figure 8. The time dependence of the ferromagnetic (FM) order parameter and of the configurational
entropy S of the SD ensembles illustrated in Figure 5 (solid curves) following an isothermal relaxation
after saturation (RAS) are shown. Moreover, the average of ηFM and S over 100 different realizations
of the nanostructures are given by the dashed curves. The simulation temperatures are indicated.

It is important to note that the relaxation towards equilibrium of the SD ensembles is
profoundly different from the behavior of WDSL ensembles (cf. Figures 4 and 8). First, it
takes place on a completely different time scale, which is orders of magnitude larger than
in WDSL ensembles. Second, the time evolution at the lower temperature T = 25 K of the
individual ensembles is not monotonous. Instead, remarkable non-equilibrium phenomena
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are found including in particular trapping, as indicated by the plateaus in ηFM and by some
minima in S as a function of t. This is a clear indication that the equilibration within smaller
regions of configurational space takes place on completely different time scales than the
equilibration of large macroscopic systems, which is in agreement with the results shown
in Sections 3.2.1–3.2.3 and in previous studies [44]. Finally, as the temperature is increased,
for instance, to T = 75 K, the trapping effects and the differences between different
realizations of disorder are strongly softened, since the details in the local NP arrangements
and magnetic configurations become less relevant as the energy barriers responsible for
trapping can be more easily overcome. Notice, in particular, that the relaxation time scales
of different ensembles tend to be similar at T = 75 K, and yet they remain remarkable large
in comparison with the weakly-disordered ensembles. This reflects the far more intricate
nature of their ELs, as shown in Figures 6 and 7.

As already mentioned in the discussion of the kinetic networks and disconnectivity
graphs, the differences observed in the behavior of the various realizations of disorder
are much stronger in SD ensembles than in WDSL ensembles. Indeed, trapping involves
different magnetic states, it occurs at different times along the dynamics, and it lasts for dif-
ferent periods of time. Still, the main qualitative features and relaxation time scales remain
relatively similar (see Figure 8). Thus, the average of the time dependence over different
NP arrangements, which can be regarded as representative of extended NP ensembles,
converges rather rapidly provided that the temperature is not too low. The calculated time
dependences of ηFM and S for different strongly-disordered arrangements of the NPs give
us a unique insight on the way self-averaging in extended nanostructures most probably
takes place. In fact, in agreement with previous studies showing that the elementary
relaxation processes in dipole-coupled NP ensembles become increasingly localized as
disorder increases, we observe that different local arrangements of the NPs follow different
sometimes even non-monotonous pathways towards equilibrium [21]. Thus, the relaxation
of the different NP arrangements on small unit cells are expected to be representative of
subsystems of larger macroscopic ensembles. Only the average of a large number of such
local situations yields a monotonous convergence to equilibrium.

4. Conclusions

The energy landscapes of disordered two-dimensional ensembles of dipole-coupled
magnetic nanoparticles have been investigated. The ergodic networks of local minima and
connecting first-order saddle points have been determined for an important number of
weakly-disordered square-lattice ensembles and strongly-disordered ensembles. The anal-
ysis shows that structural disorder is responsible for a remarkable transformation in the
collective behavior of these nanostructures. Weakly-disordered square-lattice ensembles
are good structure-seekers with a clearly identifiable time-inversion degenerate ground
state and very few low-lying states, all of which have large basins of attraction to which
the vast majority of higher-energy metastable configurations are directly or almost directly
connected. It can therefore be anticipated that the system responds unhindered and rela-
tively fast to changes of external parameters. In contrast, strongly-disordered ensembles
have very rough and complex energy landscapes with a much larger number of local
minima and a multitude of low-lying metastable magnetic configurations whose energy
differences are much smaller than the energy barriers separating them. These energy
landscapes resemble those found in glasses. They are characteristic of systems showing
slow complex dynamical responses, which are prone to trapping and are likely to involve
multiple relaxation time scales.

Once the energy landscapes have been characterized, we determined the Markovian
dynamics of WDSL ensembles following an abrupt temperature quenching as well as the
dynamics of SD ensembles following magnetic saturation. From a qualitative perspective,
the results confirm the conclusions drawn from the calculated kinetic networks and discon-
nectivity graphs in all respects. Moreover, the possibility of contrasting the quantitative
results for multiple realizations of disorder have allowed us to unambiguously demonstrate
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the profound correlations between the KNs and DGs of the energy landscapes on the one
hand and the time evolution of the magnetic order η and configurational entropy S on the
other hand. The system specific properties have been contrasted with the corresponding
averages over a large number of nanoparticle arrangements. In particular in the case of SD
ensembles, remarkable non-monotonous time-dependencies of η and S have been observed
which provide new insights on the trapping effects occurring at different length scales.

The primary focus of this paper has been on the dipole–dipole interactions between
the NPs and on the cooperative many-body effects resulting from the interplay between
these interactions and structural disorder. In view of more comprehensive comparisons
with experiment, it would be worthwhile to extend this work by taking other magnetic
effects into account. This includes local contributions, such as the magnetocrystalline and
shape anisotropies of individual magnetic nanoparticles and their dispersion, as well as
global contributions, such as the coupling to external magnetic fields. The former, which are
always present to some extent in experiment, are expected to reduce the spatial extent of the
correlation between local moments of different NPs. The latter should modify the EL more
profoundly by changing the number of local minima and inducing multiple catastrophes.
Further interesting research directions to be pursued in the present framework concern
exploring other types of interactions, for example, quadrupolar couplings between coated
NPs, RKKY interactions mediated by a metallic support, and direct exchange couplings at
the interfaces between NPs in contact.
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The following abbreviations are used in this manuscript:

2D Two-dimensional
DG Disconnectivity graph
EL Energy landscape
KN Kinetic network
LM Local minimum
TS Transition state
MEP Minimum-energy path
NP Nanoparticle
MNP Magnetic nanoparticle
RAS Relaxation after saturation
RAQ Relaxation after quenching
SD Strongly-disordered
WDSL Weakly-disordered square-lattice
L-BFGS Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm
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