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ABSTRACT Stenotrophomonas maltophilia is an opportunistic bacterium that is com-
monly associated with respiratory infections in immunocompromised patients, including
cystic fibrosis patients. In this report, we introduce the complete genome sequence of
S. maltophilia podophage Pepon, which is a T7-like phage closely related to the previ-
ously reported phage Ponderosa.

S tenotrophomonas maltophilia is a Gram-negative opportunistic pathogen, and
some strains found in natural environments and contaminated medical equipment

have become multidrug resistant (1, 2). With its ability to cocolonize with Pseudomonas
aeruginosa in cystic fibrosis patients, and increasing resistance to antibiotics, potential
alternatives are being explored to treat S. maltophilia infections (1, 2). Here, we report
the complete genome sequence of S. maltophilia phage Pepon, as part of the phage
therapy development effort for controlling this pathogen.

Phage Pepon was isolated from an influent wastewater sample collected in
September 2019 from the Texas A&M University wastewater treatment plant (College
Station, TX) using S. maltophilia ATCC 17807 as its isolation and propagation host.
Pepon was isolated using the double overlay method (3), and the host strain was cul-
tured aerobically at 30°C in tryptone nutrient (0.5% tryptone, 0.25% yeast extract, 0.1%
glucose, 0.85% NaCl, wt/vol) broth or agar. Phage genomic DNA was isolated from
polyethylene glycol (PEG)-precipitated phage particles from ;8 mL phage lysate (.109

PFU/mL) using a Promega Wizard DNA cleanup system as previously described (4), and
the sequencing libraries were prepared as 300-bp inserts using a Swift 2S Turbo kit.
The prepared sequencing libraries were sequenced on an Illumina MiSeq instrument
with paired-end 150-bp reads using v2 300-cycle chemistry. The 348,904 raw sequence
reads were quality controlled using FastQC v0.11.9 (www.bioinformatics.babraham.ac
.uk/projects/fastqc) and then manually trimmed using FASTX-Toolkit v0.0.14 (http://
hannonlab.cshl.edu/fastx_toolkit/) to result in 67,758 reads. A raw contig was assembled
using SPAdes v3.50 (5) with 298-fold sequencing coverage. The genome was completed
by PCR and Sanger sequencing of the product using the forward primer 59-ATCCTGTCC
TGTCAACCCCT-39 and the reverse primer 59-AACTGCGGCTTAGCAACTGA-39. All annota-
tions were carried out using the CPT Galaxy Apollo phage annotation platform (https://
cpt.tamu.edu/galaxy-pub) (6–8). Structural annotations of Pepon were performed using
MetaGeneAnnotator (9), Glimmer v3 (10), ARAGORN v2.36 (11), and tRNAscan-SE v2.0
(12). Gene function predictions were formed using InterProScan v5.48 (13), BLAST v2.9.0
(14), TMHMM v2.0 (15), HHpred (16), LipoP v1.0 (17), and SignalP v5.0 (18). All BLAST
searches were conducted against the NCBI nonredundant and Swiss-Prot databases (19)
with a maximum E value of 0.001. The genome-wide DNA sequence similarity was calcu-
lated using ProgressiveMauve v2.4 (20). All analyses were conducted with default
settings.

Editor John J. Dennehy, Queens College CUNY

Copyright © 2022 Lee et al. This is an open-
access article distributed under the terms of
the Creative Commons Attribution 4.0
International license.

Address correspondence to Mei Liu,
meiliu@tamu.edu.

The authors declare no conflict of interest.

Received 18 February 2022
Accepted 11 April 2022
Published 25 April 2022

May 2022 Volume 11 Issue 5 10.1128/mra.00158-22 1

GENOME SEQUENCES

https://orcid.org/0000-0003-1156-2722
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://www.bioinformatics.babraham.ac.uk/projects/fastqc
http://hannonlab.cshl.edu/fastx_toolkit/
http://hannonlab.cshl.edu/fastx_toolkit/
https://cpt.tamu.edu/galaxy-pub
https://cpt.tamu.edu/galaxy-pub
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1128/mra.00158-22
https://crossmark.crossref.org/dialog/?doi=10.1128/mra.00158-22&domain=pdf&date_stamp=2022-4-25


Phage Pepon exhibited very large, clear plaques up to 8 mm in diameter with a 1-mm
halo. The morphology of Pepon was confirmed as podophage (Fig. 1) by viewing the sam-
ples negatively stained with 2% (wt/vol) uranyl acetate via transmission electron micros-
copy at the Texas A&M Microscopy and Imaging Center.

The 42,532-bp genome of Pepon has a GC content of 60.0% and a coding density of
93.8%; it contains 53 protein-coding genes and no tRNAs. The genome termini were ana-
lyzed using PhageTerm (21), but the results were not conclusive. Phage Pepon shared
the highest similarity with the S. maltophilia T7-like podophage Ponderosa (GenBank
accession number MK903280) (22), with 90.6% genome-wide nucleotide identity, as
determined using ProgressiveMauve, and 52 similar proteins (BLASTp; E value, ,0.001).
The predicted lysis cassette of Pepon appears to be bisected by the small and large ter-
minases, with a class II holin upstream of the terminases and a downstream signal-
arrest-release (SAR) endolysin and partially overlapping i-spanin/o-spanin.

Data availability. The Pepon genome sequence was deposited at GenBank under
accession number MZ326858. The BioProject, SRA, and BioSample accession numbers
are PRJNA222858, SRR14095254, and SAMN18509329, respectively.
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