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Oliver López Corona1,7, Pablo Padilla2, Oscar Escolero3,
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Mexico
7 Current affiliation: Theoretical Astrophysics, Instituto de Astronomı́a, Universidad Nacional
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ABSTRACT
Analyzing field data from pumping tests, we show that as with many other natural
phenomena, groundwater flow exhibits complex dynamics described by 1/f power
spectrum. This result is theoretically studied within an agent perspective. Using
a traveling agent model, we prove that this statistical behavior emerges when the
medium is complex. Some heuristic reasoning is provided to justify both spatial
and dynamic complexity, as the result of the superposition of an infinite number of
stochastic processes. Even more, we show that this implies that non-Kolmogorovian
probability is needed for its study, and provide a set of new partial differential
equations for groundwater flow.

Subjects Environmental Sciences, Computational Science, Coupled Natural and Human Systems
Keywords Hydrogeology, 1/f noise, Quantum game theory, Complex systems, Spatially extended
games

INTRODUCTION
Pink or 1/f noise (sometimes also called Flicker noise) is a signal or process with a

frequency spectrum such that the power spectral density is inversely proportional to the

frequency (Montroll & Shlesinger, 1982; Downey, 2012). This statistical behavior appears

in such diverse phenomena as Quantum Mechanics (Bohigas & Schmit, 1984; Faleiro et al.,

2006; Haq, Pandey & Bohigas, 1982; Relanyo et al., 2002), Biology (Cavagna et al., 2009;

Buhl et al., 2006; Boyer & López-Corona, 2009), Medicine (Goldberger, 2002), Astronomy

and many other fields (Press, 1978). Recently the universality of 1/f noise has been related

with the manifestation of weak ergodicity breaking (Niemann, Szendro & Kantz, 2013) and

with statistical phase transition (López-Corona et al., 2013).

In Geosciences the idea of self-organized criticality (SOC) associated with 1/f power

spectrum showed to be important for example in modeling seismicity (Bak, Tang &

Weisenfeld, 1987; Bak & Tang, 1989; Bak & Chen, 1991; Sornette & Sornette, 1989). The

basic idea of SOC is that large (spatially extended) interactive systems evolve towards a state
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in which a minor new event can have dramatic consequences. In seismicity this means that

earthquakes contribute to organize the lithosphere both in space and time (Sornette, Davy

& Sornette, 1990). In this context, the lithosphere may be understood as an unstable and

non-linear system made of hierarchy of interacting blocks and in which dynamics has a

characteristic 1/f signal (Keilis-Botok, 1990).

A particular active research field in Geoscience is the study of groundwater, which

may be considered as a complex dynamic system characterized by non-stationary

input (recharge), output (discharge), and response (groundwater levels). For example,

groundwater levels in unconfined aquifers never reach steady state and may vary over

multiple spatial and temporal scales showing fractal scaling characterized by inverse power

law spectra (Zhang & Schilling, 2004; Jianting, Young & Osterberg, 2012). For a review on

grounwater transport see Dentz et al. (2012).

Spectral analysis has proven to be a powerful analytical tool for the study of variations in

hydrologic processes. Ever since Gelhar (1974) studied temporal variations of groundwater

levels for the first time with spectral analysis, it has been widely used. Spectral densities

have been used in the study of: the earth tides effect on water level fluctuations (Shih et al.,

2000; Maréchal et al., 2002); temporal scaling in discharge (Tessier et al., 1996; Sauquet et

al., 2008); scaling in hydraulic head and river base flow (Zhang & Schilling, 2004; Zhang &

Li, 2005; Zhang & Li, 2006); water quality variations in space and time domains (Duffy &

Gelhar, 1985; Duffy & Al-Hassan, 1988; Kirchner, Feng & Neal, 2000; Schilling et al., 2009).

Using the Detrended Fluctuation Analysis (DFA) method, Zhongwei & You-Kuan (2007)

have proved that groundwater levels exhibit 1/f behavior for large time scales.

The groundwater flow process may be considered as the motion of agents (water

particles) in a heterogeneous medium (Tranouez, Bertelle & Olivier, 2001; Cortis &

Knudby, 2006; Park et al., 2008). This problem is analogous to the model of traveling

agents presented in Boyer & López-Corona (2009). In that model, the agents are frugivorous

animals who feed on randomly located vegetation patches, in a similar way to anomalously

diffusing particles in a physical context. The displacement patterns of a variety of animals

as albatrosses, bumblebees, primates, gastropods, jackals, seals and sharks, among others

(Viswanathan et al., 1999; Ramos-Fernández et al., 2004; Seuront, Duponchel & Chapperon,

2007; Atkinson et al., 2002; Austin, Bowen & McMillan, 2004; Sims et al., 2008) involve

many spatio-temporal scales and are sometimes well described by Lévy walks. This is

the case of the traveling agents of the model referred to Boyer & López-Corona (2009).

A good review on biological aspects of the subject may be found in Miramontes, Boyer

& Bartumeus (2012) and for Lévy process see Shlesinger, Klafter & Wong (1982), Klafter,

Blumen & Shlesinger (1987) and Lomholt et al. (2008).

The frequent occurrence of pink noise in a seemingly unrelated set of physical

systems has prompted an extensive search for common underlying physical principles

(Miller, Miller & McWhorter, 1993). In this paper we present a heuristic reasoning for the

emergence of 1/f noise in groundwater and propose a new set of groundwater equations

for flow in complex media (see Supplemental Information 1).
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The traveling agent model
Let us consider a two-dimensional square domain of unit area with N fixed, point-like food

patches randomly and uniformly distributed. Each patch contains an amount of food k.

Initially, an agent is located on a patch chosen at random. Then the following

deterministic foraging rules are iteratively applied at every time step:

(i) The agent located at patch i feeds on that patch, the fruit content decreasing by one

unit: ki → ki − 1.

(ii) If ki has reached the value 0, the agent chooses another patch, j, such that kj/dij is

maximal over all the allowed patches j ≠ i in the system, where kj is the food content of

patch j and dij the Euclidean distance between patches i and j. With this rule, the next

visited patch (the “best” patch) has large food content and/or is at a short distance

from i. It was assumed that the travel from i to j takes one time unit.

(iii) The agent does not revisit previously visited patches.

This model produces complex trajectories that have been studied in detail in Boyer et

al. (2006) and Boyer, Miramontes & Larralde (2009) and discussed in connection with

spider monkeys foraging patterns observed in the field (Ramos-Fernández et al., 2004).

Most interesting is the fact that when this model is combined with a forest one, the coupled

model exhibits self-organized criticality and 1/f power spectrum for biomass time series

(Boyer & López-Corona, 2009).

We propose that it is possible to use an equivalent model to study groundwater flow,

conceptualizing it as the motion of water particles (agents) in a hydrogeological medium.

Assume the existence of a scale of support w where porous media properties can be

measured. This scale of support is kept constant and is small enough such that, at the

scale of the flow domain, w can be represented as a point-like quantity. Let us consider

a two-dimensional square domain of unit area with N fixed, point-like Hydrogeological

Units (HU) randomly and uniformly distributed. Each HU is characterized by its hydraulic

flow potential, defined as Ki = Hi/Ri, where Hi and Ri are hydraulic head and hydraulic

resistivity at point i, respectively. Thus Ki has units of time.

Initially, an agent (water particle) is located on an HU chosen at random. Then the

following deterministic motion rules are iteratively applied at every time step:

(i’) An agent located in an HU stays there for a dimensionless time T proportional to

Kmax/(K + a), where Kmax is the maximum hydraulic flow potential in the domain

and a is an arbitrary normalization constant such that Kmax ≫ a. For K → 0 then

the waiting time is the maximum possible; for K → Kmax then the waiting time is the

minimum possible.

(ii’) When an agent has spent T time in the HUi, it chooses another HUj, such that

ΔKij/dij is maximal over all the allowed HU (i ≠ j) in the domain, where ΔKij/dij

is the hydraulic flow potential difference between HUi and j, and dij is the Euclidean

distance between points i and j. With this rule, the next visited HU has the largest
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Table 1 Relation between media homogeneity coefficient β, type of medium, agent motion, and the
noise type observed.

Homogeneity Medium type Agent motion type Displacement noise type

β = 2 Inhomogenous
Disordered

Random confined White
Uncorrelated

β = 3 Complex
Transition point

Lévy
Fractal

Pink (1/f )
Transition point

β = 5 Homogeneous
Ordered

Brownian Brown
Highly correlated

hydraulic flow potential gradient. It is assumed that the travel from i to j takes one

time unit.

(iii’) For a particular set of initial and boundary conditions, the agent does not revisit

previously visited HU.

With this set of rules, both models, biological and groundwater flow, have the same

statistical properties despite representing very different systems and then a direct analogy

may be considered.

This traveling agent model exhibits some remarkable properties. Let us define the

displacement of an agent R(t) = |R(t + t0) − R(t0)| with R(t) is the location of the agent at

time t. For analysis, averages were taken over different and independent realizations. If the

hydraulic flow potential K follows an inverse power-law distribution P(K) = cK−β , where

c is an arbitrary constant and β is a coefficient that represents the medium homogeneity.

When β is large (β ≫ 1) the medium is very homogeneous, meaning that all HU have

similar values of hydraulic flow potential. On the contrary when β is small (β ∼ 1) the

medium is very heterogeneous, meaning that HUs with high hydraulic flow potential are

numerous. The intermediate case is when β = 3 and corresponds to a complex medium

where HUs with high hydraulic flow potential are present but they are not so numerous.

LÉVY WALKS AND 1/f DYNAMICS
In recent works (Eliazar & Klafter, 2009a; Eliazar & Klafter, 2009b; Eliazar & Klafter,

2010) proved that Lévy walks and 1/f are the result of systems which superimpose the

transmission of many independent stochastic signals.

With this in mind, we proceeded to investigate if the power spectrum of the agent’s

motion follows a 1/f dynamic. We found a non-trivial relationship between the homo-

geneity coefficient β, the motion of the traveling agent and the type of noise observed.

These results (summarized in Table 1) are new and differ from previous work since now the

motion of the agents is explicitly analyzed.

Fifty time series for R(t) were generated using the implemented traveling agents model

in Boyer & López-Corona (2009) which we propose is analogous to groundwater flow.

Three values of β = {2,3,5} were considered, corresponding to disordered, complex and

ordered media. Then all the 50 power spectra were averaged and fitted by an inverse power

law S(f ) ∼ f − λ. White noise correspond to a λ ≈ 0, pink to a λ ≈ 1, and brown to a λ ≈ 2.
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These results show that the emergence of pink noise for a traveling agent in a

heterogeneous medium depends on its degree of heterogeneity. Thus this dynamical

behavior may naturally arise from the motion of agents in a complex medium. The agents

may be frugivorous monkeys, and the complex medium a rain forest; or the agents may

be water particles and the medium an aquifer with a complex geology. Our results suggest

that 1/f noise may be a fingerprint of a statistical phase transition from randomness (low

correlation associated with white noise), to predictability (high correlation associated to

brown noise) an idea suggested to us by A Frank (pers. comm., 2011) and discussed in

Fossion et al. (2010).

STUDY CASE
As part of an academic collaboration between German Karlsruhe Institute of Technology

(KIT) and Mexico’s National University (UNAM), pumping tests were performed on a set

of urban wells in the metropolitan zone of San Luis Potosi City in Mexico (ZMSLP), which

hydrogeology is described in Mart́ınez, Escolero & Kralish (2010) and Martinez, Escolero &

Wolf (2011).

The metropolitan area is located approximately 400 km northwest of Mexico City.

It lies in the San Luis Potosi Valley in the west-centre of the state of the same name at

an altitude between 1,850 and 1,900 m above sea level. The area is flanked by the hills

of Sierra San Miguelito to the west and Cerro San Pedro to the east; the hills have an

altitude of more than 2300 m. The climate is semi-arid with an average rainfall of 356 mm

between 1989 and 2006, an average annual temperature of 17.68 ◦C, and average annual

potential evaporation of approximately 2,000 mm. The San Luis Potosi aquifer system

underlies much of the surface endorheic basin. It consists of a shallow aquifer and a deep

one, separated by a lens of fine material that permits very little interaction. The shallow

aquifer is recharged by rainfall in the valley and the Sierra San Miguelito foothills, as well

as by leaks from the urban water system. The deep aquifer is recharged in the Sierra San

Miguelito and beyond. The 300 km2 of shallow aquifer underlies the urban zone and its

periphery. The thickness of the aquifer is within a range estimated at four to 60 m, while

the depth of the phreatic level has been reported in general terms as between five and 30 m.

The less deep levels are to be found within the urban zone and they deepen towards the east

and northeast in the area of peripheral farmland, following the direction of the flow. The

deep aquifer covers about 1,980 km2 and underlies the municipalities of San Luis Potosi

and Soledad de G. Sanchez, as well as part of Cerro San Pedro, Mexquitic and Zaragoza.

The aquifer consists of granular material and fractured volcanic rock, and is confined over

most of the flat part of the basin. Usually, wells tapping this aquifer terminate at a depth of

350–450 m and exceptionally at 700 m.

The time series from three pumping well tests, in the shallow aquifer, were analyzed.

A pumping test is conducted to evaluate an aquifer by “stimulating” the aquifer through

constant pumping, and observing the aquifer’s response (drawdown) in observation wells.

The power spectrum from all tests shows that there are two statistical regimes (Figs. 1 and

2). The first regime is characterized by time periods from 101 s to 103 s and 1/f noise
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Figure 1 Power spectra for traveling agents with three values of homogeneity. First column β = 2, the medium is very inhomogeneous
(disordered) and the signal is a white noise. Second column β = 3, the medium is complex and the signal is a pink noise. Third column 5, the
medium is very homogeneous (ordered) and the signal is a brown noise. Power Spectrum is taken as S(f ) ≡ R̃(f )R̃(−f ), where R̃(f ) is the Fourier
transformation of the displacement calculated by a Fast Fourier Transformation technique.

Figure 2 Power spectra for three pumping tests in the aquifer of San Luis Potosi City in Mexico. Drawdown data was acquired in 3 s intervals
basis, with a total of 1800 measurements. There are two statistical regimes 101 s to 103 s with 1/f noise statistical behavior, and the second one with
periods of seconds or less and a white noise type of signal.

statistical behavior, and the second one with periods of seconds or less and a white noise

type of signal.

DISCUSSION AND CONCLUSIONS
Major sources of uncertainty have been identified in groundwater modeling. Model

parameters are uncertain because they are usually measured at a few locations which

are not enough to fully characterize the high degree of spatial variability at all length

scales; thus, it is impossible to find a unique set of parameters to represent reality correctly.

Stresses and boundary conditions are also uncertain; the extraction of water through wells

and vertical recharge due to rain are not known exactly and they must be provided to the

model; lateral boundaries are often virtual boundaries and water exchange through them

is usually uncertain. Even model structure can be uncertain because a mathematical model

is an approximation of reality and thus some physical processes are not completely known

or partially represented (Neuman, 2003). In fact, the problem of characterizing subsurface
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heterogeneity has been one of the biggest obstacles in constructing realistic models of

groundwater flow (Fleckenstein, Niswonger & Fogg, 2006). Koltermann & Gorelick (1996)

and De Marsily et al. (1998) present a good review on the subject.

Prediction with classical deterministic process models is constrained by several

mathematical limitations. For one side, there is measurement error, non-linearity and

sensitivity to boundary conditions (chaos) and on the other side we most face model

error and inaccessible or uncertain parameters and variables (Little & Bloomfield, 2010).

For these reasons, systematic oversimplifications in groundwater problems have been

commonly made, under the assumption that if the most important processes are identified,

groundwater flow may be sufficiently characterized.

On the other hand, Kirchner, Feng & Neal (2000) found that long-term, time series

measurements of chloride, a natural passive tracer, in runoff in catchments exhibits a 1/f

dynamic and later (Scher, Cortis & Berkowitz, 2002) gave a physical model to explain these

founding in terms of CTRW.

Significant deviations from standard solutions have been observed in pumping tests

(Raghavan, 2004). Moreover, it has been reported that 1/f dynamics are observed in

time series of pumping test (Zhongwei & You-Kuan, 2007) and we showed evidence that

support their findings. One approach to deal with this anomalous behavior has been to

formulate the groundwater flow problem in the continuous time random walk (CTRW)

framework (Cortis & Knudby, 2006). Alternatively we propose a traveling agent model

for groundwater flow. The model proposed is an analogy of a previous one presented

by Boyer & López-Corona (2009) which was used to construct time series for agent’s

mean-displacement. In agreement with field results, the model generates 1/f dynamics

when the ambient where the agent’s move is complex. For this type of medium, the

step length follows a power law distribution P(l) ∼ l − a with a ≈ 2; the waiting time

distribution follows a power law y(t) ∼ t − d with d = 2 and the mean displacement a

power law (R2) ∼ Tg with g ≈ 1.2 (Boyer & López-Corona, 2009; López-Corona, 2007). If

the process was a CTRW then the following relationship should hold g = 2 + d − a and a

value of g = 2 would be expected (Klafter, Zumofen & Shlesinger, 1995). This suggests that

groundwater flow is even more complex than a CTRW, which, in fact, also occurs in spider

monkeys’ foraging process for which g = 1.7 (Ramos-Fernández et al., 2004). In this sense,

the model proposed could be a forward step in the study of groundwater flow complexity.

Another advantage of the traveling agent model for explaining the emergence of 1/f

is that we may identify in which type of hydrogeological medium this kind of dynamic

behavior is observed. We proved that pink noise is present when the environment

heterogeneities in which the agents are moving are distributed as a power law with a

scaling exponent of β = 3, corresponding to a complex medium. Labat et al. (2011) has

pointed out that the complex characteristics of karst aquifers make their exploitation more

complicated than other porous or fractured aquifers. These types of aquifers are spatially

complex (as our β = 3 medium) groundwater systems characterized by an inherent

temporal non-stationarity and nonlinearity of their hydrological response.

López Corona et al. (2014), PeerJ, DOI 10.7717/peerj.557 7/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.557


Eliazar & Klafter (2009a) and Eliazar & Klafter (2009b) have proven that the 1/f

statistical dynamic is originated by the superposition of an infinite number of stochastic

processes. This suggests that for complex media (as karstic or rock fractured aquifer)

no groundwater modeling simplification is valid. This ambient induces 1/f noise and

an infinite number of stochastic processes are in play. Therefore, the assumption that

groundwater flow may be sufficiently characterized if the most important processes are

identified is no longer valid.

Even more, the results may be interpreted also from a physical standpoint; the

observable macroscopic behavior of a hydrogeological system at a given location is the

result of the superposition of different physical processes at different scales, such as: diurnal

barometric variations that affect groundwater levels, temporal fluctuations in recharge

rates, moon’s gravitational effects over the aquifer, tide variations in coastal aquifers,

variations in the income flow from rivers and discharge through base flow, temporal

increase on total stress due to trains, the effect of extraordinary recharge events provoked

by an hurricane presence, and the regime of operation of wells in the area. In Labat et al.

(2011) it has been proved, using DFA analysis, that in karstic stream flow fluctuations there

are three distinct temporal scale ranges: from 1 h to around 100 h, from around 100 h up

to 1 year and scales larger to 1 year. Fluctuations in flow show a clearly anti-correlated

behavior on time scales above 1 year, with a slope around 0.3 corresponding to white

noise. In the intermediate regime from a few days up to 1 year, a positive Hurst effect

is observed, with a slope around 0.8 (almost a 1/f noise) as expected. On time scales

below the crossover at a few days, the scaling behavior is highly non-stationary and

corresponds to a random walk with positively correlated steps (with a slope around 1.75,

near a Brown noise type). The authors explain these findings from a hydrogeological

point of view. The first temporal scale, 1 to 100 h, is interpreted as the rapid response

of the aquifer (associated with the main drain in the karstic system) to the rainfall; the

second temporal scale, 100 h to 1 year, is the global response of the aquifer to rainfall input

including the temporal structure of the peak flow; the third temporal scale, larger than

1 year, corresponds to the annual response of rainfall input including the regulation of

the discharge via annex systems in the saturated zone. It has also been suggested that an

explanation for the scale invariance of groundwater levels involve the system response

to constantly changing driving inputs and boundary conditions, including boundaries

imposed by management regimes, (Little & Bloomfield, 2010). In this way, the 1/f power

spectrum observed in groundwater time series may be originated by both complexity of

the geological medium and the presence of complex external factors (as time dependent

boundary conditions).

Given this, either we accept that these types of complex groundwater systems are not

suited to being modeled or we learn to deal with this infinite superposition of stochastic

processes. Once groundwater flow is modeled on a traveling agent framework, we propose

to describe it as a spatially extended game. Using this approach we have been able to

deduce a set of partial differential equations starting from the discrete description of the

model (the details of the derivation are presented as Supplemental Information 1). The
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probability of finding an agent (water particle) in the position (x,y) at the time t obeys

∂tP(x,y,t) = div[e(x,y,t)∇P], (1)

where e(x,y,t) is the strategy (micro-physics of the flow process) that the agent in (x,y)

plays at time t. The strategy in turn obeys the equation

∂te(x,y,t) = −div[D1(x,y,t)e(x,y,t)] +∇
2
[D2(x,y,t)e(x,y,t)]. (2)

While in continuous time random walk approaches few parameters suffice to describe

a complex system, Eqs. (1) and (2) introduce field (x,y) dependent diffusion and drift

coefficients, and thus represent a quite complex approach. Godec & Metzler (2013) has

provided an exact expression for the diffusion coefficient in anomalous diffusion process

modeled by Lévy walks under linear response regime.

If you take the simple case when e(x,y,t) is a constant (assuming that the porous

medium is relatively constant in the observation time scale, and it is sufficiently

homogeneous and isotropic, all of which are common assumptions in hydrogeology),

then you recover the classical groundwater flow equation Ss∂h/∂t = k∇2h. Our equations

then satisfy the correspondence principle since they recover classical formulation and

establish the ground for new insights of groundwater flow process, other porous media

transport phenomena and even in Game Theory.

Typically, a system is considered complex when it is constituted from a large number of

subsystems that interact strongly enough, but there is another source of complexity that

has been widely ignored. A system is also complex when the system itself changes over time

in the same scale of its dynamics, which is the case in some karstic aquifers. This second

source of complexity is taken into account directly in our equations making a contribution

in this respect and might have some important interpretation in Game Theory.

Finally, most interesting, using the traveling agent model described in the method

section, we proposed (López-Corona et al., 2013) that 1/f noise is a fingerprint of a

statistical phase transition, from randomness (disorder—white noise) to predictability

(order–brown noise). In this context, one may interpret Labat et al.’s (2011) results as

follows: first temporal scale (from 1 to 100 h) represents a rapid response of the aquifer

and should be dominated by random processes (white noise); the second (100 h to 1 year)

is the global response of the aquifer to rainfall input including the temporal structure of

the peak flow one may be interpreted as a complex (with multiple spatio and temporal

scales included) process (1/f noise); and as the third correspond to mean (1 year or more)

response is a more predictable process (brown noise). We have then a transition from

randomness to predictability consistent with power spectra exponent values. In this way,

the results of Labat et al. (2011) is only one example of a universal statistical kind of phase

transition.
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Lomholt MA, Tal K, Metzler R, Joseph K. 2008. Lévy strategies in intermittent search processes
are advantageous. Proceedings of the National Academy of Sciences of the United States of America
105(32):11055–11059 DOI 10.1073/pnas.0803117105.
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López Corona et al. (2014), PeerJ, DOI 10.7717/peerj.557 13/14

https://peerj.com
http://dx.doi.org/10.1080/07900627.2010.489292
http://dx.doi.org/10.1007/s11269-010-9697-6
http://dx.doi.org/10.1063/1.353079
http://dx.doi.org/10.1371/journal.pone.0034317
http://dx.doi.org/10.1073/pnas.79.10.3380
http://dx.doi.org/10.1007/s00477-003-0151-7
http://arxiv.org/abs/1002.0993
http://dx.doi.org/10.1007/s12303-008-0029-2
http://dx.doi.org/10.1029/2003RG000142
http://dx.doi.org/10.1007/s00265-003-0700-6
http://dx.doi.org/10.1103/PhysRevLett.89.244102
http://dx.doi.org/10.1002/hyp.6952
http://dx.doi.org/10.1016/j.physa.2007.07.029
http://dx.doi.org/10.7717/peerj.557


Schilling KE, Palmer JA, Bettis III EA, Jacobson P, Schultz RC, Isenhart TM. 2009. Vertical
distribution of total carbon, nitrogen and phosphorus in riparian soils of Walnut Creek,
southern Iowa (USA). Catena 77(3):266–273 DOI 10.1016/j.catena.2009.02.006.

Shlesinger MF, Klafter J, Wong YM. 1982. Random walks with infinite spatial and temporal
moments. Journal of Statistical Physics 27(3):499–512 DOI 10.1007/BF01011089.

Shih D, Lee C, Chiou K, Tsai S. 2000. Spectral analysis of tidal fluctuations in ground
water level. Journal of the American Water Resources Association 36(5):1087–1099
DOI 10.1111/j.1752-1688.2000.tb05712.x.

Sims DW, Southal EJ, Humphries NE, Hays GC, Bradshaw CJA, Pitchford JW, James A,
Ahmed MZ, Brierley AS, Hindel MA, Morritt D, Musyl MK, Righton D, Shepard ELC,
Wearmouth VJ, Wilson RP, Witt MJ, Metcalfe JD. 2008. Scaling laws of marine predator search
behaviour. Nature 451:1098–1102 DOI 10.1038/nature06518.

Sornette A, Sornette D. 1989. Self-organized criticality and earthquakes. Europhysics Letters
9:197–202 DOI 10.1209/0295-5075/9/3/002.

Sornette D, Davy P, Sornette A. 1990. Structuration of the lithosphere in plate tectonics as a
self-organized criticality phenomenon. Journal of Geophysical Research 95(B11):17353–17361
DOI 10.1029/JB095iB11p17353.

Tessier Y, Lovejoy S, Hubert P, Schertzer D, Pecknold S. 1996. Multifractal analysis and modeling
of rainfall and NGWA.org river flows and scaling, causal transfer functions. Journal of
Geophysical Research 101(D21):26427–26440 DOI 10.1029/96JD01799.

Tranouez P, Bertelle C, Olivier D. 2001. Changing the level of description of a fluid flow in a
agent-based simulation. In: ESS 2001 conference. France: Marseilles.

Viswanathan GM, Buldyrev SV, Havlin S, da Luz M, Raposo E, Stanley H. 1999. Optimizing the
success of random searches. Nature 401:911–914 DOI 10.1038/44831.

Zhongwei L, You-Kuan Z. 2007. Quantifying fractal dynamics of groundwater
systems with detrended fluctuation analysis. Journal of Hydrology 336:139–146
DOI 10.1016/j.jhydrol.2006.12.017.

Zhang Y-K, Li Z. 2005. Temporal scaling of hydraulic head fluctuations: nonsta-
tionary spectral analyses and numerical simulations. Water Resources Research
41(7):W07031 DOI 10.1029/2004WR003797.

Zhang Y-K, Li Z. 2006. Effect of temporally correlated recharge on fluctuations of groundwater
levels. Water Resources Research 42(10):W10412 DOI 10.1029/2005WR004828.

Zhang YK, Schilling K. 2004. Temporal scaling of hydraulic head and river base
flow and its implication for groundwater recharge. Water Resources Research
40(3):W03504 DOI 10.1029/2003WR002094.
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