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THE BIGGER PICTURE Identification of biomarkers of response to immune-checkpoint blockers (ICBs) is a
major challenge in immuno-oncology. Several studies have focused on specific mechanisms orchestrating
antitumor immune responses, significantly improving our understanding of the functioning of constitutive
parts of the tumor microenvironment (TME) and their relevance for the success of ICBs. However, tumors
are complex systems, and understanding the immune response in the TME requires holistic strategies. To
overcome this challenge, we derived higher-level representation of the TMEby integrating RNA-sequencing
(RNA-seq) data with different types of prior knowledge. We used interpretable machine learning to extract
from these structured data mechanistic biomarkers of antitumor immune responses that effectively pre-
dicted patients’ response to ICBs. Our approach has potential for clinical application as it requires only pa-
tients’ tumor RNA-seq data to quantify biomarkers and predict patients’ likelihood of response to ICB.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Cancer cells can leverage several cell-intrinsic and -extrinsic mechanisms to escape immune system recog-
nition. The inherent complexity of the tumor microenvironment, with its multicellular and dynamic nature,
poses great challenges for the extraction of biomarkers of immune response and immunotherapy efficacy.
Here, we use RNA-sequencing (RNA-seq) data combined with different sources of prior knowledge to derive
system-based signaturesof the tumormicroenvironment, quantifying immune-cell composition and intra- and
intercellular communications.We appliedmulti-task learning to these signatures to predict different hallmarks
of immune responses andderive cancer-type-specificmodels basedon interpretable systemsbiomarkers. By
applying our models to independent RNA-seq data from cancer patients treated with PD-1/PD-L1 inhibitors,
we demonstrated that our method to Estimate Systems Immune Response (EaSIeR) accurately predicts ther-
apeutic outcome.We anticipate that EaSIeRwill be a valuable tool to provide a holistic description of immune
responses in complex and dynamic systems such as tumors using available RNA-seq data.
INTRODUCTION especially in terms of long-term patient survival and even cura-
In the past few years, immunotherapy has revolutionized cancer

treatment, especially based on antibodies targeting immune

checkpoints, such as the cytotoxic T-lymphocyte-associated

protein 4 (CTLA-4), programmed cell death protein (PD-1), or

its ligand (PD-L1).1 Immune-checkpoint blockers (ICBs) boost

the patient’s immune system to effectively recognize and attack

cancer cells. In different cancer types, patients treated with

these immune-based therapies have shown promising results,
This is an open access article und
tive potential. Despite this fact, just a minority of the patients

achieve complete response. In addition, high immunological

toxicity2,3 and considerable costs (>US$100,000 per patient

per year)4 are other challenges for ICB therapy. That is why bio-

markers are indispensable for selecting potential responders

and sparing unnecessary and potentially harmful treatments to

patients who are unlikely to respond to ICBs.5

Different mechanisms in the tumor microenvironment (TME)

are involved in mediating the immune response and affect the
Patterns 2, 100293, August 13, 2021 ª 2021 The Author(s). 1
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efficacy of ICB therapy.6 A first important aspect is the cell-type

composition of the TME. Different types of TME cells, and espe-

cially immune cells, can have a pro- or antitumor role in regu-

lating cancer progression and response to treatment.7 A key

role in antitumor response is played by effector T cells: their

phenotype, abundance, and localization within the TME are ma-

jor determinants of immunotherapy success.8 Another important

aspect is the inter- and intracellular regulation of cellular func-

tions that are responsible for shaping the anticancer immune

response. Signals from outside the cells are processed by intra-

cellular signaling pathways leading to changes in transcription

factor (TF) activity and gene expression. Intracellular regulatory

networks of tumor cells are involved in innate (endogenous,

due to mutations) and adaptive (due to exogenous stimulation)

mechanisms that tumor cells exploit to resist immune attack.9

This can be accomplished by different mechanisms, such as

the upregulation of immune checkpoints,10 reduced release of

inflammatory cytokines,11,12 or impaired antigen presentation

by the major histocompatibility complex (MHC).13 These are all

important mechanisms that cancer cells use to communicate

with surrounding cells. More in general, ligand-receptor (LR) in-

teractions regulate cell-cell (CC) communication between all

the cells in the microenvironment, including tumor cells, immune

cells, and fibroblasts, and finely regulate tumor characteristics

and antitumor immune responses.12,14,15

All these aspects should be taken into account to provide a

comprehensive description of the TME. A holistic approach to

derive biomarkers of immune response can inform clinicians on

the efficacy of ICB therapy in individual patients.6,16 Different

emerging omics technologies allow one to take snapshots of the

TME in bulk tumors, in single cells, or from images of tumor tissue

slides. The combination of these cutting-edge technologies

with new computational tools holds great potential to provide a

complete picture of the TME, shedding light on how complex

cellular and intercellular mechanisms orchestrate the immune

response.17,18 However, such technologies are not yet widely

available, and computational tools to fully exploit their potential

are still in their infancy. To improve precision medicine, we ur-

gently need different approaches to derive a comprehensive

description of the TME and how it regulates immune response

in individual patients, using currently available patient data. Bulk

RNA sequencing (RNA-seq) has become the de facto method to

quantify transcriptome-wide gene expression19 and is increas-

ingly available, not only through public databases and collabora-

tive efforts like The Cancer Genome Atlas (TCGA),20 but also in

small-to-midsize laboratories, as well as in the clinics.21

Here, we describe an approach based on RNA-seq data com-

bined with different types of prior knowledge to derive a holistic

description of the TME. In particular we use validated computa-

tional methods to quantify tumor-infiltrating immune cells,22

activity of intracellular signaling and TFs,23,24 and extent of inter-

cellular communication14 from bulk-tumor RNA-seq data. Using

multi-task machine learning algorithms, we aim to assess how

these system-based signatures of the TME are associated with

14 different transcriptome-based predictors of anticancer im-

mune responses (Table S1), which model different hallmarks of

response to ICB therapy.

By training machine learning models on RNA-seq data from

7,550 patients’ data across 18 solid cancers generated by
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TCGA, we identified predictive, interpretable system-based bio-

markers of immune response in a cancer-type-specific fashion.

This integrative approach allowed us to identify several bio-

markers that are known to be associated with immune response

and response to ICBs, as well as new candidates for future

follow-up studies. In addition, we show how the derived sys-

tem-based biomarkers of immune response are able to predict

response to ICB therapy in independent datasets of cancer pa-

tients treated with anti-PD-1/anti-PD-L1. This proposed compu-

tational framework is provided as a tool called Estimate Systems

Immune Response (EaSIeR) that can be applied to bulk-tumor

RNA-seq data to investigatemechanistic biomarkers and predict

patients’ likelihood of responding to ICBs.

RESULTS

Multiple views of the tumor microenvironment
Using bulk RNA-seq data combined with different types of bio-

logical prior knowledge, we derived five types of system-based

signatures of the TME for 7,550 cancer patients across 18 solid

cancers from TCGA data as summarized in Figure 1A (additional

details in the experimental procedures).

The first type of signature consists of immune-cell fractions ob-

tained with quanTIseq.25 quanTIseq cell fractions are estimated

using a deconvolution approach leveraging as prior knowledge

cell-type-specific expression signatures for B cells, classically

(M1) and alternatively (M2) activated macrophages, monocytes,

neutrophils, natural killer (NK) cells, non-regulatory CD4+ T cells,

CD8+ T cells, regulatory T (Treg) cells, and myeloid dendritic cells.

quanTIseq also provides the fraction of ‘‘other’’ unclassified cells

in the mixture, resulting in a total of 11 cellular features.

We considered two types of signatures describing intracellular

networks, quantifying the activity of 14 signaling pathways and

118TFs.PathwayactivitywasderivedusingPROGENy,23,26which

uses as prior knowledge perturbation-response gene signatures

extracted measuring downstream gene changes upon perturba-

tions of a pathway. The activity of the pathways is computed as

linear combinations of their signature genes. TF activity was

computed using DoRothEA,24 which assumes as prior knowledge

the networks of TF-target interactions (regulons) and infers the ac-

tivity of each TF from the expression of its target genes.

In addition,weextracted two typesof signatures related to inter-

cellular networks, quantifying 813 LR pairs and 169 CC pairs. To

compute LRpairswe leveraged asprior knowledge 1,894 LRpairs

annotated in Ramilowski et al.14 We filtered for literature-sup-

ported pairs expressed in 25 cell types that are present in the

TME, including immune cells, cancer cells, fibroblasts, endothelial

cells, and adipocytes (experimental procedures). The weight for

the LR pairs was computed as the minimum of the expression of

the ligand and the receptor.27 We then computed a score of the

CC interactions between 13 aggregated cell types (including auto-

crine signaling), as a weighted sum of the number of LR pairs ex-

pressed for each CC pair (experimental procedures).

For the same TCGA samples, we also computed 14 different

transcriptomics-based scores of immune response (Table S1).

All these scores were recently published and have been pro-

posed as predictors of response to ICB therapy. We computed

cancer-specific correlations between the 14 scores (Figure S1)

and identified a subset of 10 scores that were highly correlated
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Figure 1. Overall description of the approach

taken

(A) Derivation of the five system-based signatures of

the TME based on the integration of RNA-seq data

and different sources of prior knowledge.

(B) Cancer-specific median correlation of each of

the 10 scores (described in Table S1) of immune

response with all 14 other scores.

(C) Schematic pipelines. Cancer-specific models

are trained on TCGA data. System-based signatures

of the TME and scores of immune response are

derived by combining RNA-seq data and prior

knowledge, and are used respectively as algorithm

inputs and outputs. Trained models are used to

define system biomarkers of immune response.

These models are also included in a tool called

EaSIeR that allows users to input RNA-seq data for

new patients and to compute the likelihood of

response to immunotherapy and the biomarkers

distinguishing responders and non-responders.
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across all 18 cancer types (across cancer types median of the

medianPearson correlationwith all other scores >0.4, Figure 1B).

We considered these scores as output variables (tasks) and

trained two different multi-task machine learning algorithms us-

ing the derived system-based signatures as input features (Fig-

ure 1C). Multi-task learning allows solving of multiple learning

tasks at the same time, exploiting the shared information be-

tween tasks. Therefore, only the 10 correlated scores of immune

response were used as tasks for model training. The first

approach that we used is regularizedmulti-task linear regression

(RMTLR)28 using elastic net regularization (experimental proced-

ures). Regularization allows one to improve model generalization

(avoiding overfitting on the training data) and to perform selec-

tion of relevant predictive features (common for all tasks), which

we interpreted as systems biomarkers of the immune response.

The second approach that we used is Bayesian efficient multi-

ple-kernel learning (BEMKL),29 which was the best-performing

algorithm in the NCI/DREAM7 challenge on prediction of cell

line drug sensitivity from genomic information.30 While BEMKL

is a more sophisticated approach that can account for non-line-

arities, it does not allow us to directly select the important predic-

tive features. Cancer-specific models were trained using RMTLR

and BEMKL with randomized cross-validation using as input

data each of the five system-based signatures (single views)

separately, pairwise combinations, and the combination of all

views (cross-validation performances in Figure S2). For RMTLR,

the randomized cross-validation was also used to select only
robust features (experimental procedures).

The trained cancer-specific models are

provided as a tool called EaSIeR (experi-

mental procedures). Users can provide

RNA-seq data and use the tool to derive

system-based signatures of the TME,

analyze systems biomarkers of immune

response, and predict patient-specific like-

lihood of response to ICB therapy

(Figure 1C).

For models optimized using RMTLR, we
computed the median across cancer types of the estimated

feature weights and verified that 99%of the feature weights (esti-

mated separately for each view) had a variance%0.0015 across

tasks, proving that biomarkers are in general consistent across

tasks (Figure S3). By clustering tasks based on feature weights,

we obtained four main clusters: (1) cytolytic activity (CYT),31 (2)

tertiary lymphoid structures (TLS) signature,32 (3) chemokines33

and interferon-g (IFN-g)34 signatures (both related to cytokine

production), and (4) all six remaining immune signatures

(Figure S3).

We analyzed the systems biomarkers that we identified using

RMTLR to predict estimated immune response, based on the

different tasks, separately for each type of system-based signa-

ture of the TME, i.e., immune cells, intracellular networks (path-

ways and TF activity), and intercellular networks (LR and CC

pairs). Then we assessed the performance of our models in pre-

dicting response to ICB therapy on independent datasets,

analyzed systems biomarkers that differentiate responders and

non-responders to therapy, and evaluated the effects of

combining different types of signatures. The results of these an-

alyses are presented in the following sections.

Immune cells as biomarkers of immune response
We identified several relevant robust associations between im-

mune-cell composition andscoresof immune response (Figure2;

experimental procedures). In particular, CD8+ T cells, which are

essential for tumor-cell recognition and killing,35 were identified
Patterns 2, 100293, August 13, 2021 3
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mune cell quantification

(A) Heatmap showing regression coefficients for

cancer-type-specificmodelswhenusing immunecell

quantification as biomarkers. Shown are the median

values computed first across 100 randomized cross-

validation runs (to keep only robust biomarkers) and

then across tasks. Biomarkers that are significantly

different from zero (Wilcoxon rank-sum test, p < 0.05)

in fewer than half of the tasks are marked with an X.

Rows (biomarkers) were sorted according to their

absolute mean value across tumors.

(B) Network representing associations between

clusters of tasks (top nodes) and immune cell bio-

markers (bottomnodes).Only the topfivebiomarkers for eachcluster of tasks (rankedbymedianweight across the tasks in thecluster) that are significantly different

fromzero (Wilcoxon rank-sum test, p<0.05) in at least half of the tasksof thecluster for at least half of the cancer typesare shown.Edgewidths represent themedian

weight of each biomarker across cancer types. Positive (blue), no (white), or negative (red) association of each biomarker with the tasks that are hallmarks of the

immune response is depicted. B, B cells; CD4, non-regulatory CD4+ T cells; CD8, CD8+ T cells; DC, dendritic cells; IS, immune signature; M1, classically activated

macrophages; M2, alternatively activated macrophages; Mono, monocytes; Neu, neutrophils; NK, natural killer cells; Treg, regulatory T cells.
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as positive biomarkers for all cancer types (Figure 2A). The frac-

tion of ‘‘other’’ uncharacterized cells positively correlates with tu-

mor purity and negatively correlates with the percentage of

tumor-infiltrating immune cells.25 Here, we observed a negative

correlation of this feature with immune response across all can-

cers, which can be interpreted as a positive association

between immune infiltration levels and immune response (Fig-

ure 2A). Some immune cells, such as Treg cells, M1 andM2mac-

rophages, and B cells, were positively associated with response

in most cancer types (16, 17, 16, and 14, respectively, of the 18

analyzed cancer types; Figure 2A). The strong positive associa-

tion of Treg cells and M2 macrophages, which are immunoinhibi-

tory immune cells, either might be due to a general association

with a high immune-cell infiltration ormight reflect negative-feed-

backmechanisms that arise to keep the immunesystem incheck.

For most of the cell types the association was consistent across

all four clusters of tasks (Figure 2B), with the exception of B cells,

CD8+Tcells, andM1macrophages. Asexpected,Bcells showed

a particularly strong association with the TLS signature. TLS are

organized lymphoid aggregates, and recent studies suggested

that B cells are localized in TLS and that B cells and TLS

contribute to an effective T cell response to ICBs.32,36 Instead,

CD8+ T cells andM1macrophages are respectively less strongly

or mildly negatively associated with TLS. As expected, CD8+

T cells are positively associated with CYT, which is based on

genes upregulated upon activation ofCD8+T cells,31 andwith cy-

tokines, someofwhich (e.g., IFN-g) are expressedbyactiveCD8+

T cells.33,34

Intracellular networks as biomarkers of immune
response
Tumor-cell intrinsic deregulation of cellular signaling due to mu-

tations or epigenetic alterations has an effect on the functioning

of intracellular networks that regulate cellular phenotype but also

on the interaction with the immune system.9 Among the analyzed

pathways and TF activities we identified several biomarkers of

immune response (Figure 3).

We identified a strong positive association between the TRAIL

apoptotic pathway, the JAK-STAT pathway, and the NF-kB

pathway and the predicted immune responses in all cancer

types (Figure 3A; experimental procedures). The TRAIL pathway
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can be activated by different types of immune cells causing tu-

mor cell apoptosis.37 In turn, tumor cell death results in the acti-

vation of the immune system via the cancer-immunity cycle.35

The JAK-STAT and NF-kB pathways are also known to play

pivotal roles in immune responses. Both pathways are stimu-

lated by IFN-g released mainly by NK and T cells38 and regulate

several mechanisms of adaptive immune resistance, including

upregulation of immune-checkpoint molecules,10 inhibition of

production of pro-inflammatory chemokines,39 and promoting

expression of class I MHC molecule expression.13 Both JAK-

STAT and NF-kB pathways showed a lower association with

TLS than with other tasks (Figure 3B), suggesting that their role

in the immune response is not dependent on TLS.

Activation of the PI3K pathway, which we identified as a

biomarker for 16 cancer types (Figure 3A), was also shown to

enhance PD-L1 expression.40,41 PI3K pathway activation can

be caused by different mechanisms of innate resistance to im-

mune response, such as loss of PTEN, which is an inhibitor of

the PI3K pathway, or oncogenic mutation of the PIK3CA gene.

Direct or indirect therapeutic inhibition of PI3K was shown to

reduce PD-L1 expression and increase antitumor immunity.10

The positive biomarkers described above are pathways

generally associated with inflamed tumors, which are usually

more predisposed to responding to ICB immunotherapy.42 In

contrast, for VEGF, we observed a negative association with im-

mune response for 17 cancer types, and no association for

ovarian cancer (OV) (Figure 3A). The negative association is in

line with the role that VEGF plays in promoting immune exclusion

due to the presence of vascular barriers.42 Immune-excluded tu-

mors are less responsive to ICB therapy,43 and inhibition of

VEGF could promote immune infiltration and improve efficacy

when used in combination with ICB therapy.44

Similarly, the p53, hypoxia, and EGFR pathways also showed

negative correlation for the majority of the cancer types (14, 13,

and 9, respectively, Figure 3A). Interestingly, it has been recently

shown that, in lung cancer, loss-of-function mutations in the

tumor suppressor P53 gene are associated with increased

expression of PD-L1, immune-cell infiltration, and tumor immu-

nogenicity andmay help in predicting response to ICB therapy.45

Our findings suggest that the activity of the p53-mediated DNA

damage response pathway might be considered as a predictor
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Figure 3. Systems biomarkers based on pathway and TF activity

Heatmaps showing regression coefficients for cancer-type-specific models when using (A) pathway activity and (C) TF activity (limited to the top 30) as bio-

markers. Shown are the median values computed first across 100 randomized cross-validation runs (to keep only robust biomarkers) and then across tasks.

Biomarkers that are significantly different from zero (Wilcoxon rank-sum test, p < 0.05) in fewer than half of the tasks are marked with an X. Rows (biomarkers)

were sorted according to their absolute mean value across tumors. Networks representing associations between clusters of tasks (top nodes) and biomarkers

(bottom nodes) from (B) pathway and (D) TF activity. Only the top five biomarkers for each cluster of tasks (ranked bymedianweight across the tasks in the cluster)

that are significantly different from zero (Wilcoxon rank-sum test, p < 0.05) in at least half of the tasks of the cluster for at least half of the cancer types are shown.

Edge widths represent the median weight of each biomarker across cancer types. Positive (blue), no (white), or negative (red) relationship of each biomarker with

the tasks that are hallmarks of the immune response is shown.
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of ICB therapy response as well, not only for lung cancer (LUAD

and LUSC have the strongest associations), but also for other

cancer types (Figure 3A). Notably, the p53 pathway revealed a

positive correlation in glioblastoma multiforme (GBM); this is in

agreement with stronger immune responses found in TP53

wild-type GBM patients compared with patients harboring

TP53 mutations.46
We also observed a negative impact of hypoxia on the immune

response (Figure 3A), consistent with recent observations that

hypoxia impairs antitumor immunity and contributes to resis-

tance to immunotherapy.47 Preliminary studies in mice revealed

the potential of targeting hypoxia in combination with ICB ther-

apy to restore T cell infiltration and increase efficacy of

immunotherapy.48
Patterns 2, 100293, August 13, 2021 5
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Consistent with our results (Figure 3A), it has been shown that

activation of the EGFR signaling pathway contributes to an unin-

flamed TME, and that combining EGFR inhibitors and anti-PD-1/

PD-L1 antibodies could improve therapeutic outcome in EGFR-

mutant tumors.49

Next, we focused our analysis on the association between TF

activity and immune responses (Figure 3C for the top 30 bio-

markers, full list in Table S2). We identified several TFs that

were selected consistently across the majority of cancer types.

For instance, STAT1, STAT2, and STAT4, all selected as positive

biomarkers (Figure 3C), are members of the STAT family in the

JAK-STAT signaling pathway discussed above.50 Although

STAT3 is often considered an important player in cancer immu-

notherapy,51 it was not selected as top biomarker in our analysis.

This is in line with recent publications suggesting that the main

role in the regulation of PD-L1 expression is played by

STAT1.52 In tumor cell lines from several cancer types, small

interfering RNA (siRNA) knockdown of STAT3 did not reduce

IFN-g- or interleukin-27-induced PD-L1 protein expression,

while siRNA knockdown of STAT1 did.53 STAT4 deficiency has

been associated with diminished antitumor immune response

and worse prognosis.54,55 The positive association of STAT4

found in all 18 cancer types we analyzed suggests that this

mechanism might play a major role in anticancer immunity

and, possibly, response to ICB pan-cancer. As previously

observed for the JAK-STAT pathway, the STAT TFs also seem

to be not dependent on TLS (Figure 3D).

Another relevant biomarker (selected for all cancer types, Fig-

ure 3C) is IRF1. The IRF1 TF can regulate the expression of PD-

L150,56 and the production of cytokines, including the CXCL9

chemokine that is responsible for recruiting antitumor immune

cells.39 Similarly, RELB (selected for 17 of 18 cancer types),

which is part of the NF-kB complex, also regulates PD-L1

expression and inflammation.57 RELB also regulates MHC-I

gene transcription.13 Tumor-immune infiltration favored by pro-

inflammatory cytokines, susceptibility of cancer cells to im-

mune-effector mechanisms such as MHC-I gene expression,

and expression of PD-L1 are all hallmarks of effective

immunotherapy.58

Other important positive biomarkers shared across all 18 can-

cer types were RFXANK, RFXAP, and RFX5, which form the RFX

trimeric complex (Figure 3C). This complex cooperates with

NLRC5 to drive the transcription of class I MHC genes.59

Accordingly, recent studies suggested that reduced activity of

NLRC5 plays a key role in immune evasion.60,61 Taken together,

these results may hint at RFX as a candidate biomarker of anti-

tumor immunity.

Another positive biomarker was RUNX3 (selected for 16 can-

cer types, Figure 3C), which plays a role in the TME regulating

hypoxia and immune-cell infiltration, and has been suggested

as a potential target to prevent immune escape of cancer cells.62

We observed that RUNX3 was more strongly associated with

TLS than with other immune signatures (Figure 3D).

In addition, we found a number of biomarkers negatively asso-

ciated with immune response, although the weight of the associ-

ation was in general lower. CDX2 was identified as a negative

biomarker in 14 cancer types (Figure 3C). Loss of CDX2 has

been reported in colorectal (CRC) tumors that are microsatellite

unstable63 or PD-L1 positive.64 These observations are in agree-
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ment with the negative association that we identified and sug-

gest a potential role of CDX2 as a biomarker of ICB therapy.

Other results suggested that CDX2might also play an important

role in other cancer types and in particular in stomach cancer

(STAD). In our results, CRC and STAD showed the strongest

negative associations with immune response for CDX2, but a

negative association was identified also for other cancer types

(Figure 3C). Another interesting example of a negative biomarker

(for 11 of the 18 cancer types, Figure 3C) was PPARA, which en-

codes a ligand-activated TF regulating lipidmetabolism and fatty

acid oxidation.65 The PPARA antagonist TPST-1120 promotes a

more inflamed TME in different types of cancer and is currently in

clinical trial as a monotherapy and in combination with anti-PD-1

therapy.66 Blocking PPARA shifts the metabolic balance of im-

mune cells from fatty acid oxidation toward glycolysis, which

works in favor of certain immune-cell populations such as M1

macrophages and effector T cells, but against M2 macrophages

and Treg cells.
66 This was in linewith the negative association that

we observed for PPARA, because an inflamed microenviron-

ment is essential for effective ICB therapy.

To compare the predictive powers of different approaches

for quantifying intracellular pathways, we used cross-validation

on TCGA data to assess the predictions of the scores of im-

mune response obtained using the pathway activity scores

and proteomics profiling (expression of 200 proteins and 58

phosphoproteins) using reverse-phase protein array (RPPA)

data from The Cancer Proteome Atlas (Figure S4; experimental

procedures).67 Interestingly, the pathway activity scores

derived with PROGENy from RNA-seq data revealed higher

ability to predict scores of immune response for all cancer

types, except UCEC (p = 0.35).

Biomarkers of immune response based on cell-cell
communication
The phenotype of cancer cells is defined not only by intracellular

oncogenic pathways but also by their exchange of signals with

other TME cells. We, therefore, analyzed the potential of intercel-

lular data in driving an effective immunotherapy response

through LR and CC interactions among cell types of the TME

(Figure 4; experimental procedures).

Among the LR (sender / receiver molecule) biomarkers (top

30 biomarkers in Figure 4A, full list in Table S3), we found several

pairs of chemokines and corresponding receptors that are

important for attracting immune cells to the TME.12 An important

chemokine in the TME is CXCL10, which regulates immune-cell

migration, differentiation, and activation.11 Higher levels of

CXCL10 are associated with increased number of infiltrated

CD8+ T cells.12 The most studied receptor of CXCL10 is

CXCR3 (LR pair associated with immune response in 12 of the

18 cancer types, Figure 4A), which is expressed by effector

CD8+ T cells, T helper 1 cells, and NK cells, which are all anti-

tumor lymphocytes.12 However, the top CXCL10-related LR

pair, which we identified as a positive biomarker for all cancer

types, is CXCL10/ SDC4 (Figure 4A). While there is limited ev-

idence on the role of SDC4 in cancer, it has been shown that

interaction between CXCL10 and SDC4 inhibits fibroblast

recruitment in pulmonary fibrosis.68 Our results suggest that a

similar mechanism might take place in the tumor, since fibro-

blasts recruited in the TME can suppress the immune response
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Figure 4. Systems biomarkers based on cell-cell interactions

Heatmaps showing top 30 regression coefficients for cancer-type-specific models when using (A) ligand-receptors pairs and (C) cell-cell pairs as biomarkers.

Shown are the median values computed first across 100 randomized cross-validation runs (to keep only robust biomarkers) and then across tasks. Biomarkers

that are significantly different from zero (Wilcoxon rank-sum test, p < 0.05) in fewer than half of the tasks are marked with an X. Rows (biomarkers) were sorted

according to their absolutemean value across tumors. Networks representing associations between clusters of tasks (top nodes) and biomarkers (bottom nodes)

from (B) ligand-receptor and (D) cell-cell pairs. Only the top five biomarkers for each cluster of tasks (ranked bymedian weight across the tasks in the cluster) that

are significantly different from zero (Wilcoxon rank-sum test, p < 0.05) in at least half of the tasks of the cluster for at least half of the cancer types are shown. Edge

widths represent the median weight of each biomarker across cancer types. Positive (blue), no (white), or negative (red) relationship of each biomarker with the

tasks that are hallmarks of the immune response is shown. Arrows in biomarker names indicate the direction of the interaction (including cases of autocrine

signaling).
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and limit ICB immunotherapy efficacy.69 In agreement with the

role of CXCL10, the CXCL10 / SDC4 pair was particularly

strongly positively associated with cytokines related to immune

signatures, while showing a small negative association with

TLS and CYT (Figure 4B).

CCL5 is another chemokine that we identified as positively

associated with the immune response when bound to different
receptors (SDC4, SDC1, and CXCR3 for 16, 15, and 13 cancer

types, respectively, Figure 4A). CCL5 binding to CCR5 is often

described as a main actor of tumor progression.70 However,

recent studies have also shown that CCL5 overexpression

can favor CD8+ T cell infiltration, antitumor immunity, and

immunotherapy response,71 in agreement with the positive as-

sociation that we identified. Similarly, we found the CXCL16 /
Patterns 2, 100293, August 13, 2021 7
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CXCR6 LR pair to be positively associated with the immune

response for all 18 cancer types. Although the role of CXCL16

in cancer is disputed,72 overexpression of CXCL16 by tumor

cells is associated with increased infiltration of CD8+ T cells73

and NK cells.74

Another relevant LR biomarker was IFNG binding to IFNGR1

and IFNGR2 (positive association for 17 of the 18 cancer types,

Figure 4A). IFNG is the gene encoding the IFN-g cytokine, which,

as already discussed in the pathways section, plays a main role

in the immune response.75 Mutations in the IFN-g pathway

(including IFNGR1 and IFNGR2) are associated with resistance

to ICB therapy.76 Also, in this case, we observed that IFN-g-

dependent mechanisms of the immune response are indepen-

dent of TLS (Figure 4B).

We also observed several positive biomarkers related to T-

cell-mediated cancer cell killing (Figure 4A). These include the

GZMB gene, which encodes the granzyme B serine protease

that is secreted by CD8+ T cells and NK cells and induces

apoptosis in target cells binding to the corresponding receptor

IGF2R.77 In line with our results, upregulation of the receptor

on the membrane of tumor cells promotes penetration of gran-

zyme B, favoring immune-cell-mediated apoptosis, and was

suggested as a potential target for immunotherapy.78 Similarly,

Fas ligand (encoded by FASLG gene) binding to the TNFRSF6/

FAS receptor (part of the TNF receptor superfamily) is involved

in CD8+ T-cell- and NK-cell-mediated apoptosis.79 Another

interesting apoptosis-related biomarker is BTLA, which is a

ligand forCD79A and TNFRSF14. Binding ofBTLA to TNFRSF14

(also known as HVEM) is an immune checkpoint that has been

generally associated with negative immune responses,80

although there is also evidence that this binding promotes sur-

vival of CD8+ T cells in melanoma.81 Another member of the

TNFR superfamily that we identified as a biomarker is CD27,

which is expressed by CD8+ T cells and binds to its receptor

CD70 on antigen-presenting cells upon T cell activation. The

CD27/CD70 axis can be targeted with antibodies and its

blockade has potential for cancer immunotherapy.82

We additionally identified as positive biomarkers several inter-

actions between MHC-I genes and the corresponding receptors

(HLA-B_HLA-E / KLRD1 and HLA-E / KLRC1 in 17 and 14

cancer types, respectively). These receptor genes encode

CD94/NKG2, which is a family of inhibitory receptors expressed

mainly on the surface of NK and CD8+ T cells.83 Anti-NKG2A

antibody is a checkpoint inhibitor in clinical trials that was re-

ported to enhance tumor immunity by promoting functioning of

these immune cells.83 Another relevant positive biomarker for

all 18 cancer types isB2M/HLA-F. Although this is an intracel-

lular interaction rather than an LR pair, the importance of this

interaction for the immune response is clear, since B2M stabi-

lizes the MHC-I complex, allowing recognition by the T cell

receptor.84

Another important mechanism that we identified among the

LR biomarkers is the stimulation of LFA-1 (encoded by ITGAL

and ITGB2 genes) by ICAM (ICAM2 / ITGAL, ICAM1_ICA

M3 / ITGAL, and ICAM3 / ITGB2 in 18, 11, and 8 cancer

types, respectively). LFA-1 is essential for the adhesion of

CD8+ T cells and NK cells to the cancer cell, thereby allowing

their activation.85 On mouse models, the ICAM1-LFA-1 inter-

action was also shown to cause clusters of activated T cells
8 Patterns 2, 100293, August 13, 2021
in the tumor and was suggested as a mechanism of tumor-

mediated immune retention that prevents trafficking of

T cells to lymph nodes.86 In the same paper they suggest

ICAM-1 as a potential target for cancer treatment by incre-

menting lymphocyte migration to the lymph nodes.

Wewent further and analyzed the number of active LR interac-

tions per CC pair, generating a score for each CC (sender /

receiver cell) pair. CC scores were used to build a model that al-

lowed us to disentangle the complex cross talk between cells of

the TME and its influence on immune responses (top 30 bio-

markers in Figure 4C, full list in Table S4).

CC communication profiles were very specific for each cancer

type, with no biomarker shared across all cancer types (Fig-

ure 4C). The sign of the association with immune response, how-

ever, tended to be consistent across the different cancer types.

Endothelial cells appeared as receiver cells for 5 of the top 30 CC

pair biomarkers (with CD4+ T cells, B cells, cancer cells, adipo-

cytes, and endothelial cells as sender cells). In all cases they

had a consistent, negative association for all cancer types for

which they were selected as biomarkers. The weight of this as-

sociation was consistent for all tasks except TLS, which showed

no association (Figure 4D). Endothelial cells contributed to es-

tablishing an immunosuppressive TME, being actively involved

in immune-cell exclusion and inhibition of lymphocyte activa-

tion.87 The negative association that we identified is in line with

the fact that inhibition of endothelial cells favors an antitumor im-

mune response.87 As expected, signaling of CD8+ T cells to den-

dritic cells and cancer cells was identified as a strong positive

biomarker (in 14 and 10 of the 18 cancer types, respectively, Fig-

ure 4C), in line with the crucial role these cells play in the immune

response andmediation of immunotherapy effects.88 Among the

top 30 biomarkers, we also found B cells as receiver cells in 6

different CC pairs (with NK cells, neutrophils, CD8+ T cells,

CD4+ T cells, and B cells as sender cells and monocytes). In all

cases, these CC pairs were positively associated with the im-

mune response, which is in line with the role of B cells as popular

factories of antibodies after antigen recognition. In particular, NK

cells and neutrophils help B cells by regulating their activation

(NK cells / B cells and neutrophils / B cells were selected in

15 and 16 cancer types; Figure 4C).89,90

Prediction of response to immunotherapy targeting PD-
1/PD-L1 immune checkpoints
We next assessed the performance of EaSIeR on seven different

independent datasets, including four different cancer types, with

patients treated with anti-PD-1 or anti-PD-L1 immunotherapy

(experimental procedures; Table S5).91–97 Pre-therapy RNA-

seq data were provided as input to EaSIeR, which derived

patent-specific, system-based signatures of the TME. The can-

cer-type-specific machine learning models, built on TCGA data

to predict scores of immune response, were used to predict pa-

tient likelihood of response to ICB therapy (experimental proced-

ures). We verified the overall advantage of using cancer-specific

models by comparing predictive performance of the cancer-

specific model for each dataset with respect to the models built

for the remaining 17 cancer types (Figure S5; experimental

procedures).

First, we assessed model performance in stratifying patients

into responders and non-responders on twomelanoma datasets
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Figure 5. EaSIeR evaluation of independent datasets of patients treated with anti-PD-1/anti-PD-L1 immunotherapy

(A) Area under the curve (AUC) values for the Auslander and Gide melanoma cohorts91,92 of predictions obtained using EaSIeR based on system-based sig-

natures of the TME considering single views, pairwise combinations of views, combination of all views, average of single-view predictions (ensemble), and the

computed tasks (gold standard). Bar plots represent the average AUC across tasks and error bars describe the corresponding standard deviation.

(B) Corresponding receiver operating characteristic (ROC) curve for the Auslander and Gide melanoma cohorts based on system-based signatures of the TME

(single views), combination of all views, average of single-view predictions (ensemble), and the computed tasks (gold standard). ROC curves were computed as

the average of the ROC curves obtained for each task.

(C) Performance comparison between single (x axis) and combined (y axis) views for the Auslander and Gidemelanoma cohorts (one-sidedWilcoxon signed-rank

test). Statistical significance is indicated by colors according to the legend. The significance level (*p < 0.05, **p < 0.01, ***p < 0.001) indicates whether combining

views improves the performance.

(D) Volcano plots for systems biomarkers of the immune response from the Auslander andGidemelanoma cohorts comparing non-responder (NR) and responder

(R) patients (two-sidedWilcoxon rank-sum test). Significant biomarkers (p < 0.05) are shown in blue. Biomarkers are drawn according to their corresponding sign

(legend continued on next page)
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(Gide and Auslander cohorts) (Figures 5A–5C using RMTLR, re-

sults for BEMKL in Figure S6). For this, we used models built

separately on each of the five described system-based signa-

tures of the TME (single views), pairwise combinations of views,

and combination of all views. RMTLR applied to the single views

was able to accurately predict patient response (average area

under the curve [AUC] = 0.79–0.84), with performance compara-

ble or superior to the gold standard, i.e., the different tasks

(average AUC = 0.79; Figures 5A and 5B). In particular, the

ensemble model (average AUC = 0.85), computed as the

average of the predictions from the single views, performed

significantly better than the average of the literature-based tasks

(p = 0.003, effect size = 0.849). Combining pairs of different views

significantly improved performance, in particular for cell

fractions + CC pairs, pathways + cell fractions, pathways + CC

pairs, TF + CC pairs, and cell fractions + TF for RMTLR (Fig-

ure 5C; experimental procedures). Particularly good predictions

were obtained combining information on pathways and cell frac-

tions (average AUC using RMTLR = 0.84), despite the very

limited number of features used (25 in total), performing even

better than the combination of all views (average AUC using

RMTLR = 0.81).

Unlike previous predictors that are based on simple gene sets,

the EaSIeR systems-biology approach allows investigation of

the mechanisms behind the differential patient responses to

treatment. For the Gide and Auslander melanoma cohorts, we

investigated how the identified systems biomarkers differ be-

tween responding and non-responding patients and evolve

upon treatment (comparing pre- and on-treatment data). As ex-

pected, the top biomarkers for all individual views were the best

at discriminating between responders and non-responders (Fig-

ure 5D). Responders had a higher number of infiltrated immune

cells, including CD8+ T cells, and a lower number of ‘‘other’’

non-immune cells. They also had higher activity in pathways

(e.g., JAK-STAT, NF-kB) and TFs (e.g., STAT1/2/4, IRF1,

RELB) that are upregulated in response to IFN-g released by

CD8+ T cells during the immune response. Responders also

showed more active CC interactions. Overall, these observa-

tions suggest that responders had a more active immune

response in the tumor even before treatment with immuno-

therapy. Interestingly, applying the model to on-treatment data

showed a significant increase in performance with respect to

the pre-treatment point, especially for models based on path-

ways and cell fractions (Figure S7). To investigate this improve-

ment, we compared the distribution of the systems biomarkers

pre- and on-treatment in responders and non-responders (Fig-

ure 5E). As expected, after treatment, top positive biomarkers
(shape) and weight (size) obtained during model training. Labels are reported for t

that are significantly different between R and NR.

(E) Starburst plots showing the statistical comparison (�log10 p, two-sidedWilcox

axis) and non-responders (NR, y axis). The sign is used to show if the biomarkers

colored according to their consistent statistical significance in both NR and R pat

the association with the tasks) that are significantly different between R and NR.

(F) AUC values obtained combining EaSIeR predictions (ensemble model avera

melanoma datasets (Riaz and Liu cohorts),93,94 one gastric cancer dataset (Kim

represents the penalty g or the relative weight h, depending on the approach

respectively). In both cases low values of the parameter give more importance to

(G) Boxplot of EaSIeR predictions comparing predicted outcome in the case o

cohort).97
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generally tended to increase in both responders and non-re-

sponders. This was the case, for example, for CD8+ T cell abun-

dance, STAT1/2/4 and RFX-associated TFs, and IFN-g binding

to the corresponding receptor. In contrast, the fraction of ‘‘other’’

(non-immune) cells decreases upon treatment, suggesting a

reduction in tumor size. Overall, these observations are in agree-

ment with an increased antitumor immunity upon treatment with

immunotherapy.

Motivated by the rationale that immune response and tumor

antigenicity or foreignness are complementary hallmarks of suc-

cessful ICB therapy,58 we explored the potential of combining

these two scores for predicting patient response. For this pur-

pose, we applied EaSIeR to four datasets where both RNA-seq

data and information on tumor mutational burden (TMB), consid-

ered as a proxy of tumor immunogenicity, were available (Table

S5, experimental procedures). These datasets consist of two

melanoma cohorts (Riaz and Liu), one gastric cancer cohort

(Kim), and one bladder cancer cohort (Mariathasan). The perfor-

mance of EaSIeR predictions was variable between datasets

(average AUC of the ensemble model = 0.63, 0.59, 0.68, and

0.65 for Riaz, Liu, Kim, andMariathasan, respectively; Figure S8).

We used two different approaches to integrate EaSIeR predic-

tions and TMB, one consisting in adding a negative or positive

penalty to patients with low or high TMB, respectively, and the

other as aweighted average of the two scores (experimental pro-

cedures). For all datasets and cancer types, we observed that

both EaSIeR and TMB predictions can be improved by

combining these two sources of information (Figure 5F). These

results support the notion that these two scores provide orthog-

onal information and that they are equally important for effective

prediction of treatment outcome as highlighted by the fact that

the performance of the weighted average is the higher for inter-

mediate values of the relative weight.

Finally, we applied EaSIeR to a glioblastoma cohort (Clough-

esy) to study the effect of neoadjuvant immunotherapy on im-

mune response.97 Glioblastoma is associated with poor survival

after standard of care surgery (median progression-free and

overall survival of 7 and 15 months, respectively).97 The findings

by Cloughesy and colleagues suggest that neoadjuvant admin-

istration of anti-PD-1, continued with adjuvant therapy after sur-

gery, can extend overall survival with respect to administering

only adjuvant therapy, due to an enhanced antitumor immune

response. In line with this finding, EaSIeR predicted a stronger

immune response for patients treatedwith neoadjuvant ICB ther-

apy (Figure 5G). However, due to the limited size of the cohort (28

patients: 15 adjuvant, 13 neoadjuvant), these results should be

interpreted carefully as they are not highly statistically significant
he top 15 cancer-specific biomarkers (based on the association with the tasks)

on rank-sum test) between pre- and on-treatment samples for responders (R, x

are higher ON (positive sign) or PRE (negative sign) treatment. Biomarkers are

ients. Labels are reported for the top 15 cancer-specific biomarkers (based on

ged across tasks) and information on tumor mutational burden (TMB) for two

cohort),96 and one bladder cancer dataset (Mariathasan cohort).95 The x axis

used to combine the two scores (‘‘penalized score’’ or ‘‘weighted average,’’

EaSIeR predictions, while high values give more importance to the TMB.

f adjuvant and neoadjuvant therapy in the glioblastoma dataset (Cloughesy
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(Wilcoxon rank-sum test, p = 0.1, effect size = 0.23). We observe

that patients who received neoadjuvant therapy have increased

activity of the Trail pathway, possibly as a consequence of the

more effective killing of tumor cells, and of the TFs IRF1, respon-

sible for stimulating recruitment of antitumor immune cells,39 and

NFATC2, a marker of T cell activation, which could explain the

stronger immune response of these patients (Figure S9).

DISCUSSION

The efficacy of immunotherapy with immune-checkpoint inhibi-

tors depends on the intricate cross talk across the cells in the

TME. Thus, to disentangle the mechanisms underlying—and ul-

timately predicting—patient response, it is essential to adopt a

holistic strategy to study patients’ tumors.1,98 To find effective

biomarkers, it is essential to use a systems biology approach

to investigate how different mechanisms contribute to the overall

behavior, looking at the TME from different perspectives.6,99 To-

ward this goal, in this study, we derived systems biomarkers of

immune response considering the cellular composition of the

TME together with inter- and intracellular communication to pro-

vide a more comprehensive and mechanistic characterization of

tumors. Since RNA-seq data are becoming routinely available in

clinical settings, we decided to focus on deriving system-based

signatures by using prior knowledge to structure RNA-seq data

into different mechanistic layers. Importantly, our approach

proved to be effective in predicting responses to ICB for inde-

pendent datasets.

Weusedmachine learning to look for associations between the

derived system-based features and the immune response, esti-

mated using 14 predictors (proxies) derived from recent publica-

tions. We considered these proxies as different tasks to be pre-

dicted by our machine learning models and used multi-task

learning algorithms in order to learn all tasks jointly. Multi-task

techniques have the great advantage that they allow one to

exploit the shared information across tasks. By inducing regula-

rization forcing the algorithms to perform well in all tasks, they

prevent overfitting, thereby providing more generalizable

models. Another advantage of our approach is that it does not

require a dataset where patients’ responses to immunotherapy

are known for model training. These datasets are generally

limited to a few dozen patients and are, therefore, not optimal

for training of machine learning approaches due to the risk of

overfitting. Instead, we could exploit the large sample size of

the TCGA RNA-seq dataset to build cancer-specific models,

including cancer types for which the potential of ICB therapy

has not been extensively studied yet. An additional advantage

of our approach is that by deriving system-based signatures, it

performs knowledge-guided dimensionality reduction (e.g.,

pathways consist of only 14 features derived from thousands of

genes). Unlike other approaches for dimensionality reduction,

which cause loss of interpretability of the derived features, our

derived signatures actually improve the interpretability, providing

quantification of different complex mechanisms of the TME. By

aggregating RNA-seq data into higher representations, our

models provide views of the tumor that would have been acces-

sible only through the generation of additional data with complex

and expensive techniques (e.g., imaging for immune-cell quanti-

fication, phosphoproteomics uponperturbation for pathway acti-
vation). Dimensionality reduction also allows improving algorithm

performance, reducing the risk of overfitting.

In summary, our approach allows us to derive more generaliz-

able models thanks to: (1) multi-task learning, leveraging infor-

mation frommultiple proxies of the immune response; (2) training

on large datasets from TCGA; and (3) dimensionality reduction

using system-based features. This results in superior predictive

power on completely independent datasets, outperforming also

the gold standard based on the different literature-derived prox-

ies of the immune response.

An intriguing observation is that intracellular signaling pathway

activity is a major predictor of the immune response. This is likely

due to the fact that they regulate both intrinsic (due to mutations)

and extrinsic (due to exogenous stimulation) tumor cell mecha-

nisms of resistance to immune attack. Importantly, in our anal-

ysis, we found that pathway activity was a better predictor

than protein expression or phosphorylation. The limited predic-

tive power of proteomics data might be partially due to the use

of RPPA data, which are limited to a few hundreds of proteins

and can be noisy. However, we believe that a main motivation

for the superior performance of the pathway activity scores is

that they were derived from perturbation-response signatures,

therefore inferring the activity of the pathway by looking at how

genes downstream of the pathways respond to perturbations.23

This approach allows us to take into account post-translational

modification and capture the dynamic nature of the pathways

even when only static RNA-seq data are available. Similar obser-

vations hold for TF activity, which was computed based on the

expression of the regulated genes.100

For both pathways and TFs, we identified biomarkers that

could be used to suggest new therapeutic strategies. Intracel-

lular networks regulate tumor cell interactions with the microen-

vironment via regulation of immune checkpoints, regulation of

antigen presentation, and release of inflammatory chemokines.9

Targeting these intracellular networks in cancer cells has the po-

tential to improve the efficacy of immunotherapy with ICBs101 or

to be an alternative approach to immunotherapy by inhibiting the

expression of immune checkpoints.10,102 For example, overacti-

vation of the PI3K pathway, which we identified as a positive

biomarker, was shown to cause overexpression of PD-L1,

contributing to immune evasion.103 PI3K inhibition resulted in

downregulation of PD-L1 in different cancer types, providing

an alternative approach to ICBs to enhance antitumor immu-

nity.10 The VEGF pathway, identified instead as a negative

biomarker of immune response in our analysis, has been already

associated with immune exclusion and resistance to ICB ther-

apy.42 In line with our results, accumulating evidence suggests

that combining ICB immunotherapy with antiangiogenic agents

targeting VEGF might improve the clinical efficacy of immuno-

therapy in patients with lung cancer.44 Similarly, the TF PPARA,

identified as a negative biomarker in our analysis, could be in-

hibited to augment inflammation in the TME. In line with this, a

recent clinical trial showed that PPARA blockade promotes a

more inflamed TME and improves ICB efficacy in advanced solid

cancers.66 These results suggest that our biomarkers have

strong potential to be exploited in future research to suggest

new personalized therapies.

As expected, the tumor immune-cell composition was also

important for predictions. However, complementing immune-
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cell fractions with pathway information significantly improved the

predictive power of both individual views. Both the pathway ac-

tivities and the immune-cell fractions are derived using gene sig-

natures, which might justify their high association with antitumor

immune response, as shown by their superior prediction perfor-

mance. As highlighted by our results, another important aspect

of prediction of immune response is the intercellular communica-

tion. Although these types of communication are still less

explored, our results suggest that they deserve more attention

in future research. Our current approach to derive intercellular

interaction signature relies on only prior mechanistic knowledge.

In this regard, more refined approaches to infer CC networks

from bulk RNA-seq data, e.g., by integrating gene expression

analysis and the exploitation of orthogonal information from sin-

gle-cell technologies, hold great potential.104

Remarkably, we found literature support validation for most

of our top biomarkers. This highlights the potential of using a

systematic and unbiased approach like the one described in

this paper. A word of caution when interpreting the results is

that the derived associations do not provide the direction of

the causal effects. Therefore, as we observe, for both im-

mune-cell quantification and pathway activity, that the identi-

fied biomarkers can be either the drivers or the result of the

anticancer immune response.

Instead of focusing on individual mechanisms requiring spe-

cific biological assays, we use widely available RNA-seq data

complemented by prior knowledge to provide a holistic picture

of the TME. In this way, we provide a tool (EaSIeR) that can be

readily used to predict individual patients’ responses to ICB ther-

apy and paves the way to suggesting new therapeutic strategies

not only for individual tumor types but also for individual patients,

based on systems biomarkers.We expect that different datamo-

dalities will become increasingly available in clinical practice and

will provide complementary information on the TME that could be

integrated into EaSIeR. In this paper we provide a proof of princi-

ple of how EaSIeR scores and TMB, which provide orthogonal

information on antitumor immune responses, can be effectively

integrated to more optimally predict the response to ICB therapy

in patients with different cancer types. With the advancement of

computational pathology, we envision that it will be possible to

extract information on tumor composition and spatial localization

of immune cells105,106 to be integrated in EaSIeR to derive spatial

biomarkers and possibly improve predictive power. Finally,

emerging single-cell methodologies that allow us to look at the

TME from a different angle can provide complementary insights

into intra- and intercellular interactions27,107,108 that could be

used to adapt the EaSIeR framework to single-cell analyses.
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https://github.com/olapuentesantana/easier_manuscript to compute systems

biomarkers and likelihood of patient response to ICB from RNA-seq data is

available at.

TCGA RNA-sequencing data

Gene expression data for 18 solid tumors were downloaded via the Firehose

tool from the BROAD Institute (https://gdac.broadinstitute.org), released

January 28, 2016. We selected primary tumor or metastatic (only in the case

of melanoma) samples, resulting in a total of 7,750 patients.

We extracted the gene expression data from ‘‘illuminahiseq_rnaseqv2-

RSEM_genes’’ files. From these data, we used ‘‘raw_count’’ values as counts

and we calculated transcripts per million (TPM) from ‘‘scaled_estimate’’ values

multiplied by 1,000,000. We first removed those genes with a non-valid HGNC

symbol and then we averaged the expression of those genes with identical

HGNC symbols.

Validation data

Validation cohorts for melanoma (Gide, Auslander, Riaz, and Liu cohorts),91–94

gastric cancer (Kim cohort),96 bladder cancer (Mariathasan cohort),95 and glio-

blastoma (Cloughesy cohort)97 were derived from published datasets of pa-

tients treated with anti-PD-1/anti-PD-L1 therapy with publicly available RNA-

seq data (Table S5 for more details and accession numbers).

For the Auslander, Gide, Riaz, Kim, and Cloughesy cohorts, we downloaded

the corresponding SRA files from the Sequence Read Archive (SRA; https://

www.ncbi.nlm.nih.gov/sra/) and converted to FASTQ using the ‘‘fastq-dump

function’’ provided by the SRA toolkit. FASTQ files of RNA-seq reads were

then pre-processed with quanTIseq to obtain gene counts, TPM, and cell frac-

tions.25 In brief, we used Trimmomatic109 to remove adapter sequences and

read ends with Phred quality scores lower than 20, discard reads shorter

than 36 bp, and trim long reads to a maximum length of 50 bp (quanTIseq pre-

processing module). We ran Kallisto110 on the pre-processed RNA-seq reads

to generate gene counts and TPMusing the ‘‘hg19_M_rCRS’’ human reference

(quanTIseq gene-expression quantification module). For the Mariathasan

cohort, gene counts were obtained using the IMVigor 210 Biologies R pack-

age. Counts and TPM data for the Liu cohort were downloaded from the sup-

plementary files of the study.

For the Riaz, Liu, Kim, and Mariathasan cohorts we also considered the

available information on TMB as provided, already processed in the original

publications. Whole-exome sequencing (WES) was used to quantify the

TMB, except for the Mariathasan cohort, for which panel sequencing was

used instead. For the Riaz, Liu, and Kim cohorts, the TMB was defined as

the total number of non-synonymous mutations detected fromWES, whereas,

in theMariathasan cohort, panel sequencing was used to estimate the TMB by

including synonymous mutations in addition to non-synonymous mutations.

The TMBwas provided asmutations permegabase, except for the Kim cohort,

for which the TMB was available as a categorical variable with three classes:

low (<100), moderate (100–400), and high (>400).

For all datasets we considered only patients treated with anti-PD-L1 or anti-

PD-1. For the Auslander cohort we considered the classification of responders

and non-responders as in the original publication, as response evaluation

criteria in solid tumors (RECIST) were not provided. For theMariathasan cohort

we considered patients with complete response as responders and patients

with progressive disease as non-responders, in agreement with Bonavita

et al.111 For all the other datasets we considered responder patients to have

complete response or partial response, and non-responder patients to have

partial response or stable disease. Since RECIST classification was not pro-

vided for the glioblastoma Cloughesy cohort, we compared our model predic-

tions with the type of therapy (neoadjuvant versus adjuvant) to verify whether

wecouldpredict the expectedbetter therapeuticoutcome for patients following

neoadjuvant anti-PD-1 therapy.97 More details can be found in Table S5.

System-based signatures of the TME

We used RNA-seq data to derive different types of mechanistic signatures

integrating prior knowledge.

Immune-cell quantification

We used quanTIseq to compute tumor-infiltrating immune-cell fractions,

which are estimated by applying deconvolution to bulk gene expression

levels in a mixture based on cell-specific gene-expression signatures.25

mailto:f.eduati@tue.nl
mailto:f.eduati@tue.nl
https://github.com/olapuentesantana/mechanistic_biomarkers_immuno-oncology
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quanTIseq returns the fractions of 10 cell types: B cells, classically (M1) and

alternatively (M2) activated macrophages, monocytes, neutrophils, NK cells,

non-regulatory CD4+ T cells, CD8+ T cells, Treg cells, and myeloid dendritic

cells. The fraction of other cell types in the mixture is computed as 1 minus

the total fraction of immune cells and was shown to often correlate with tumor

purity.25 Since non-regulatory CD4+ T cells are difficult to distinguish from

Treg cells, we decided to consider non-regulatory CD4+ T cells as the sum

of both non-regulatory CD4+ T cells and Treg cells, keeping Treg cells as a

separate cell type as well.

Pathway activity

We used PROGENy to compute scores for 14 pathways: androgen, EGFR, es-

trogen, hypoxia, JAK-STAT, MAPK, NF-kB, p53, PI3K, TGF-b, TNF-a, Trail,

VEGF, and WNT.23,26 Pathway-specific signatures were derived from

pathway-perturbation experiments by investigating which genes change in

expression when a pathway is perturbed. A linear regression model was

used to fit the genes that were affected by the perturbation of the pathway.

Both pathway-specific signatures and gene expression data were then used

to infer pathway signaling activity. The pathway scores were directly

computed using the PROGENy R package version 1.10.0. Since these scores

are a linear transformation of gene expression data, we removed 448 genes

used to compute the proxies of immune response (average pan-cancer Pear-

son correlation with original pathway activity = 0.99, p < 10�16).

Transcription factor activity

We used DoRothEA to compute TF activity.100 The expression of individual

genes is controlled by TFs, and TF activity can be estimated by the expression

of its target genes (so-called TF regulons). The TF activity was estimated using

analytic Rank-based Enrichment Analysis (aREA) from the Viper R package

1.22.0, as part of the DoRothEA R package 1.0.1. aREA provides a normalized

enrichment score for each TF regulon based on the average ranks of its tar-

gets. Each TF-target interaction is assigned a degree of confidence (from A

to E) depending on the total supporting evidence. To consider only high-quality

regulons, we filtered for confidence levels A and B, resulting in a total of

115 TFs.

Ligand-receptor pairs

Based on LR pair annotations from the database by Ramilowski et al.14, we

quantified LR interactions in the TME for each individual patient. This was

done in two steps: first we derived a subset of 867 LR pairs that are potentially

present in the TME, then we quantified these pairs for each patient based on

RNA-seq data.

For the first step we started from the 1,894 LR literature-supported pairs in

the Ramilowski database, consisting of 642 unique ligands and their 589

cognate receptors. Furthermore, the database annotates the TPM expression

of these ligands and receptors in 144 human cell types based on cap analysis

of gene expression (CAGE) from the FANTOM5 expression atlas. We filtered

for the 24 cell types commonly acknowledged to be present in the TME and

present in the Ramilowski database (Table S6). In addition, we considered a

pan-cancer cell type derived using data from the Cancer Cell Line Encyclo-

pedia (CCLE).112 In the CCLEwe selected gene expression data for all cell lines

linked to the 18 solid cancer types researched here, leaving 583 cell lines. We

determined the median expression of each gene over all selected cell lines,

which we considered as the gene expression of the pan-cancer cell type.

We filtered for ligands and receptors with expression R10 TPM in at least

one of the 25 cell types considered. Furthermore, we excluded ligands and re-

ceptors that were expressed by a cell type but not paired to another ligand or

receptor in one of the other 24 considered cell types, resulting in 867 LR pairs.

The 10 TPM threshold used in the Ramilowski paper for the CAGE data was

based on known expression data from B cells. To confirm the suitability of

the 10 TPM threshold for the CCLE RNA-seq data, we considered six healthy

B cell datasets from two studies113,114 by comparing the sets of LR pairs ex-

pressed in the Ramilowski CAGE data versus RNA-seq B cells considering

different thresholds. The 10 TPM cutoff allowed the retrieval of ~80% B-cell-

specific LRs expressed in the Ramilowski data, while resulting in the RNA-

seq-specific expression of only 3% of the full LR set (data not shown).

Next, we assigned a patient-specific weight to the LR pairs. The LR pair

weight was defined as the minimum of the log2ðTPM + 1Þ expression of the

ligand and the receptor, theorizing that a pair has a weaker bond if one of

the genes is expressed at a lower level. Certain LR pair features were assigned

equal weights because of involving the same gene as either ligand or receptor
in their interaction; thus these LR pairs were grouped, reducing the total num-

ber of features to 813 LR pairs.

Cell-cell interactions

The 24 TME cell types were combined in 12 aggregated cell types (Table S6).

To assign a weight to the CC interactions, we considered the number of active

LR pairs between each two pairs of the 13 considered cell types (12 TME-

aggregated cell types and the additional pan-cancer cell type), for a total of

169 CC pairs. For each CC pair (sender / receiver cell), we considered an

LR pair active only if the ligand was expressed in the sender cell and the recep-

tor was expressed in the receiver cell, using the 10 TPM threshold as described

above. For each LR pair we computed the frequency across the whole TCGA

database, with the idea that more rare interactions are more relevant to

discriminate patients. The CC score for each patient was then computed as

the sum of the inverse of the frequency of all the active LR pairs.

Proteomics data

Weused protein data for 18 solid tumors for a total of 5,394 patients. Datawere

downloaded via The Cancer Proteome Atlas Portal (https://tcpaportal.org). We

used RPPA data labeled ‘‘Level 4 Pan-Can 32,’’ including 200 proteins and 58

phosphoproteins for a total of 258 features. For RMTRL, protein features with

any missing value in a specific cancer type were not considered (in the range

from 24 to 47 proteins depending on the cancer type). This was not done for

BEMKL, which can handle missing values.

Transcriptomics-based scores of immune response

The 14 published transcriptomics signatures of the immune response are sum-

marized in Table S1. Among them, immune cytolytic activity31 represents the

level of two cytolytic effectors, granzyme A and perforin, which are overex-

pressed upon CD8+ T cell activation. Ock immune signature115 is based on

the expression of 105 genes associated with the response to immunotherapy

with the MAGE-A3 antigen. Immunophenoscore116 is calculated according to

genes related to MHC molecules, immunomodulators, and effector and sup-

pressor cells. IMPRES92 is obtained through a logical comparison between

the expressions of immune-checkpoint gene pairs. Roh immune score (Ro-

h_IS)117 is defined by a set of genes involved in immune activation in relation

to tumor rejection. Chemokine signature (chemokines)33 is based on a gene

set associated with inflammation and immunity, which is able to predict host im-

mune reaction and the formation of tumor-localized lymphoid structure. Davoli

immune signature (Davoli_IS)118 is derived from the expression of cytotoxic

CD8+ T cell and NK cell markers. IFN-g signature34 comprises genes able to

separate responders and non-responders in melanoma. Immune expanded

signature (Ayes_expIS)34 is generated by searching for genes highly correlated

with IFN-g signature genes; this new set included all immune-related genes.

T cell inflamed microenvironment signature (T cell_inflamed)34 is based on the

joint potential of IFN-g and T-cell-associated inflammatory genes in predicting

response to PD-1 blockade. TIDE119 is developed on the basis of immune

escape signatures, such as T cell dysfunction or exclusion. MSI status120 is

determined by logical comparison of MSI-related gene pairs. TLS32 signature

is derived fromdifferentially expressed genes in tumorswith TLS.Repressed im-

mune resistance121 is defined by combining a set of gene signatures associated

with T cell exclusion, post-treatment, and functional resistance.

All these proxies were calculated following the methodology reported by the

original studies. For the chemokine signature only, we adjusted the sign ac-

cording to the positive correlation with the cluster of correlated tasks. Since

it is computed based on the first principal component, the sign is arbitrarily

determined. When applicable, these transcriptional predictors were computed

according to published computational frameworks. More details can be found

in Table S1.

Machine learning methods

Regularized multi-task linear regression

The objective function that defines the RMTLR for N observations is described

in Equation 1:

1

N

XN
i =1

kyi � b0 � xibk22 + l
Xp
j = 1

�ð1�aÞkbjk2 + akbjk22
�
: (Equation 1)
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In this equation, yi represents a q-dimensional row vector where each entry

corresponds to a task, and xi is a row vector where each entry represents an

observed feature. The aim of the RMTLR is to estimate a matrix b, whose rows

represent the relation between one feature and all the tasks, and a vector b0 of

offsets (one for each task). The regularization term of RMTLR is a grouped

version of the elastic net that aims at enforcing sparsity to entire rows of

b.28,122 In this way, the features corresponding to those rows of b that are

set to zero do not contribute to the model. The strength of the regularization

effect is tuned via the hyperparameter l, while a regulates the interplay be-

tween the ridge- and the lasso-like terms of the elastic net. We selected the

hyperparameters using 5-fold cross-validation.

We used RMTLR as implemented in the glmnet R package 2.0-16.123 When

applying RMTLR to a combination of multiple views, individual derived signa-

tures (single views) were combined by merging datasets by columns.

Bayesian efficient multiple-kernel learning

BEMKL29 is a Bayesian approach with two important features: multi-view and

multi-task learning. BEMKL is a non-linear regression model that defines view-

specific kernels as similarity measures between all samples and integrates

them into a combined kernel to obtain response predictions (Equation 2).

The similarity between samples is calculated using the Gaussian kernel.

On one hand, BEMKL uses multi-view learning to integrate different sample

views as kernels, creating a combined kernel as the weighted sum of the

view-specific kernels. The kernel weights were learned using multiple-kernel

learning and represent the view’s importance for predicting the response. On

the other hand, the peculiarity of multi-task learning is that it enables one to

model multiple tasks simultaneously. Assuming that the kernel weights are

shared across all tasks, task-specific weights are estimated for all samples:

fðxÞ = aT

 XM
m=1

emkm
�
xmi ; x

m
�!

+b; (Equation 2)

whereM denotes the number of input kernels and kmðxmi ; xmÞ represents the
view-specific kernel, emthe shared kernel weights, a the task-specific sample

weights, and b the error term.

Bayesian inference was used to estimate all model parameters that were in-

terpreted as random variables with certain probability distributions. The pa-

rameters of these distributions were learned using deterministic variational

approximation. A more detailed explanation of the probabilistic model used

and the inference method can be found in the original paper.29,30 An R imple-

mentation of this method is available at https://github.com/mehmetgonen/

bemkl. An adaptation to multi-task learning is available at https://github.

com/mehr-een/bemkl-rbps, and we converted the code from MATLAB to R:

https://github.com/olapuentesantana/mechanistic_biomarkers_immuno-

oncology.

Model training based on TCGA data

Models were trained using TCGA data separately for each cancer type. For

both RMTLR and BEMKL, training was repeated 100 times with randomized

cross-validation, each time randomly picking 20% of the samples as a test

set. This helped to assess the stability of the model, in terms of both perfor-

mance and feature selection. For each iteration, we first standardized the

training set, and then we standardized the test set based on the mean and

standard deviation of the training set.

Definition of biomarkers of immune response

As mentioned above, the model training was repeated 100 times, resulting in

an estimated 100 weight values for each biomarker. This allowed us to assess

the stability of the features and assess whether the biomarkers were signifi-

cantly different from zero. The values displayed in Figures 2, 3, and 4 were

defined as the median of the estimated weights, first across runs and second

across tasks (median >0, i.e., selected by regularization in at least 50% of the

runs). Only statistically significant biomarkers (Wilcoxon rank-sum test, p <

0.05) are reported.

Prediction of response to ICB therapy using EaSIeR

All 100models learned in the randomized cross-validation were included in the

EaSIeR tool and were used to make predictions for the external test tests. For

each validation dataset we used the corresponding cancer-type-specific

model: SKCM for the melanoma Gide, Auslander, Riaz, and Liu cohorts;

STAD for the gastric cancer Kim cohort; BLCA for the bladder cancer Maria-

thasan cohort; and GBM for the glioblastoma Cloughesy cohort. Predictions
14 Patterns 2, 100293, August 13, 2021
for each task were computed as the average of the 100 cancer-type-specific

models. Prediction performances of cancer-type-specific models for each da-

taset were also compared with models built for the remaining 17 cancer types

(Figure S5).

Integration of information on tumor mutational burden

For the Kim cohort we used the classification of low TMB (TMBL), moderate

TMB (TMBM ), and high TMB (TMBH) as provided in the main text of the original

publication.96 For the other cohorts, patients were grouped in thirds as

described in Carbone et al.124 The lower tertile was considered as TMBL,

the intermediate as TMBM, and the upper as TMBH. Predictions of immune

response using EaSIeR (using the ensemble model averaged across tasks)

and information on tumor antigenicity based on the measured TMB were inte-

grated using two different approaches.

In the first approach ("penalized score") the final prediction for each patient

(Pi ) is obtained by subtracting or adding a penalty (g) to the score obtained us-

ing EaSIeR (PEaSIeR;i ), for patients with TMBL or TMBH, respectively, as

described in Equation 3:

Pi = PEaSIeR;i + c,g; (Equation 3)

where c= � 1 if TMBi = TMBL, c= 1 if TMBi = TMBH, and c= 0 if

TMBi = TMBM.

In the second approach ("weighted average") the final prediction for each

patient (Pi ) is obtained computing the weighted average between the score

obtained using EaSIeR (PEaSIeR;i ) and the TMB. Both EaSIeR predictions and

TMB were scaled between 0 and 1 to make them comparable. In this way

TMBL = 0, TMBM = 0:5, and TMBH = 1. The relative weight is given by

the hyperparameter h as described in Equation 4:

Pi = ð1�hÞ,PEaSIeR;i + h,TMBi : (Equation 4)

Statistical analysis

We used Wilcoxon rank-sum test to assess whether the coefficients esti-

mated for the biomarkers using the 100 randomized cross-validations

were significantly different from zero. We used one-sided Wilcoxon

signed-rank test (pair data) for comparison of predictions between pair-

wise combinations of derived signatures and single ones and for compar-

ison of cross-cancer-type predictions. Two-sided Wilcoxon rank-sum

test (unpaired data) was used for biomarker comparison between re-

sponders and non-responders. Statistical tests were carried out using

the function ‘‘wilcox_test’’ from the R package rstatix version 0.6.0. Ef-

fect size was calculated as the test statistic divided by the square root

of the number of observations, using the function ‘wilcox_effsize’ from

the R package rstatix version 0.6.0.

Model performances were evaluated using the Spearman correlation for

randomized cross-validation. For the validation dataset we computed the

receiver operating characteristic curve and the AUC using the R package

ROCR 1.0-11.

All analyses were performed using R software, version 4.0.2. For training of

machine learning models, we used R software version 3.5.2.
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(2018). The hallmarks of successful anticancer immunotherapy. Sci.

Transl. Med. 10, eaat7807.

59. Meissner, T.B., Liu, Y.-J., Lee, K.-H., Li, A., Biswas, A., van Eggermond,

M.C.J.A., van den Elsen, P.J., and Kobayashi, K.S. (2012). NLRC5 coop-

erates with the RFX transcription factor complex to induce MHC class I

gene expression. J. Immunol. 188, 4951–4958.

60. Yoshihama, S., Vijayan, S., Sidiq, T., and Kobayashi, K.S. (2017). NLRC5/

CITA: a key player in cancer immune surveillance. Trends Cancer Res.

3, 28–38.

61. Chelbi, S.T., and Guarda, G. (2016). NLRC5, a promising new entry in tu-

mor immunology. J. Immunother. Cancer 4, 39.

62. Manandhar, S., and Lee, Y.M. (2018). Emerging role of RUNX3 in the

regulation of tumor microenvironment. BMB Rep. 51, 174–181.

63. Aasebø, K., Dragomir, A., Sundström, M., Mezheyeuski, A., Edqvist,

P.-H., Eide, G.E., Ponten, F., Pfeiffer, P., Glimelius, B., and Sorbye, H.

(2020). CDX2: a prognostic marker in metastatic colorectal cancer

defining a better BRAF mutated and a worse KRAS mutated subgroup.

Front. Oncol. 10, 8.

64. Inaguma, S., Lasota, J., Wang, Z., Felisiak-Golabek, A., Ikeda, H., and

Miettinen, M. (2017). Clinicopathologic profile, immunophenotype, and

genotype of CD274 (PD-L1)-positive colorectal carcinomas. Mod.

Pathol. 30, 278–285.

65. Bougarne, N., Weyers, B., Desmet, S.J., Deckers, J., Ray, D.W., Staels,

B., and DeBosscher, K. (2018). Molecular actions of PPARa in lipid meta-

bolism and inflammation. Endocr. Rev. 39, 760–802.

66. Laport, G., Powderly, J.D., Chokshi, S., Luke, J.J., Bendell, J.C.,

Enstrom, A.,Whiting, C.C., and Dubensky, T.W. (2019). Phase 1/1bmulti-

center trial of TPST-1120, a peroxisome proliferator-activated receptor

alpha (PPARa) antagonist as a single agent (SA) or in combination in pa-

tients with advanced solid tumors. J. Clin. Oncol. 37, TPS2665.

67. Li, J., Lu, Y., Akbani, R., Ju, Z., Roebuck, P.L., Liu, W., Yang, J.-Y.,

Broom, B.M., Verhaak, R.G.W., Kane, D.W., et al. (2013). TCPA: a

resource for cancer functional proteomics data. Nat. Methods 10,

1046–1047.

68. Jiang, D., Liang, J., Campanella, G.S., Guo, R., Yu, S., Xie, T., Liu, N.,

Jung, Y., Homer, R., Meltzer, E.B., et al. (2010). Inhibition of pulmonary

fibrosis in mice by CXCL10 requires glycosaminoglycan binding and syn-

decan-4. J. Clin. Invest. 120, 2049–2057.
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