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Abstract

The raw sewage that flows through sewage systems contains a complex microbial community whose main source is the human gut
microbiome, with bacteriophages being as abundant as bacteria or even more so. Phages that infect common strains of the human
gut bacteriome and transient bacterial pathogens have been isolated in raw sewage, as have other phages corresponding to non-
sewage inputs. Although human gut phages do not seem to replicate during their transit through the sewers, they predominate at
the entrance of wastewater treatment plants, inside which the dominant populations of bacteria and phages undergo a swift change.
The sheer abundance of phages in the sewage virome prompts several questions, some of which are addressed in this review. There
is growing concern about their potential role in the horizontal transfer of genes, including those related with bacterial pathogenicity
and antibiotic resistance. On the other hand, some phages that infect human gut bacteria are being used as indicators of fecal/viral
water pollution and as source tracking markers and have been introduced in water quality legislation. Other potential applications of
enteric phages to control bacterial pathogens in sewage or undesirable bacteria that impede the efficacy of wastewater treatments,
including biofilm formation on membranes, are still being researched.
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Introduction
Bacteriophages, viruses that infect bacteria, are commonly ac-
knowledged to have played an important role in the development
of molecular biology science, and their properties are being in-
creasingly harnessed in various biotechnological applications.

Viral ecology studies in diverse environments indicate that
phages are highly ubiquitous and essential elements of natural
microbial systems (Weinbauer 2004), where they are agents of
bacterial mortality (Fuhrman and Schwalbach 2003), nutrient re-
generation (Weitz et al. 2015), and horizontal gene transfer (Can-
chaya et al. 2003). Therefore, they are key drivers of bacterial abun-
dance, activity and community composition in natural ecosys-
tems, including animal guts (Rodriguez-Valera et al. 2009, Mills
et al. 2013, Minot et al. 2013).

The key role played by phages in shaping the bacterial mi-
crobiota of the human gut ecosystem has been extensively re-
searched (Mills et al. 2013, Scanlan 2017, Guerin and Hill 2020).
Recent studies show that the gene flux generated by phages is
not restricted to a single bacterial species or genus, but that they
create gene flow networks across phylogenetically distinct bac-
teria (Camarillo-Guerrero et al. 2021). Phages dominate the vi-
ral fraction of human gut microbiota (Letarov and Kulikov 2009,
Reyes et al. 2012), and up to 1012 virus-like particles (VLPs) per ml
have been reported in human faeces (Hoyles et al. 2014). Regard-
ing diversity, more than 142 000 non-redundant viral genomes,

mostly those of phages, have been detected in the human gut
based on data in the Gut Phage Database (Camarillo-Guerrero
et al. 2021). Among all this variety, the worldwide predominance
of crAssphage and crAss-like phages has emerged (Dutilh et al.
2014, Edwards et al. 2019). CrAss-like phages are associated with
the Bacteroidetes, which is the most abundant bacterial phylum in
the human gut microbiome.

The aim of this review is to picture the gut phages occurrence
in sewage and they role as vectors of horizontal gene transfer,
to show their potential application as faecal indicators, microbial
source trackers or to be applied in internal processes of a WWTP.

Bacteriophages in raw sewage
The raw sewage circulating in sewage systems harbours a com-
plex microbial community, largely of human origin. Faecal bac-
teria do not replicate in raw sewage, with the exception of a few
genera of the phylum Proteobacteria, which are infrequent in the
gut (García-Aljaro et al. 2019). Even when an autochthonous pop-
ulation derived from non-sewage inputs proliferates in the sew-
ers, the bacterial and phage profile of sewage before it reaches
a wastewater treatment plant (WWTP) continues to be shaped
mainly by the human gut microbiome.

As in faeces, phages are an important component of the mi-
crobial content of sewage, as demonstrated by various methods.
Total viral particles can be determined by electron microscopy,
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epifluorescence microscopy or flow cytometry, while a metage-
nomics approach sheds light on the composition and diversity of
the sewage phageome, also providing information about host bac-
terial species, including pathogenic strains.

Values in the literature for VLPs in the sewage entering WWTPs
vary considerably, which is likely due to inter-site (Gulino et al.
2020) or intra-site variability (Brown et al. 2019) and the variable
efficiency of methods used for VLP detection (Wu and Liu 2009).
Nevertheless, most reported concentrations of VLPs (correspond-
ing mainly to phages) in sewage systems range from 108 to 109 per
ml (Wu and Liu 2009, Tamaki et al. 2012), which is much higher
than in any other water environment studied so far. These values
are similar to those reported for faeces (Hoyles et al. 2014) consid-
ering that daily each person defecates 150–200 g and contributes
an average of 200 l of water to urban sewage.

Phages infecting strains of diverse species of cultivable gut bac-
teria have been reported in raw sewage, including Escherichia coli
(Jebri et al. 2017), Shigella (Muniesa et al. 2003), Klebsiella (Muniesa
et al. 2003, Wangkahad et al. 2015), Enterobacter (Wangkahad et al.
2015), Salmonella (Carey-Smith et al. 2006), Pseudomonas (Essoh et al.
2015), Aeromonas (Wangkahad et al. 2015), Staphylococcus (Synnott
et al. 2009), Enterococcus (Bonilla et al. 2010, Vijayavel et al. 2014) and
Bacteroides (Jebri et al. 2017). However, relatively few studies have
quantified infectious phages, except those infecting E. coli, com-
monly known as coliphages, with reported values from 4.0 to 5.0
log10 units per ml (Jebri et al. 2017). Other cultivable phages are
those infecting the most abundant bacteria in the gut: the phy-
lum Bacteroidetes. For example phage infecting Bacteroides tehaio-
taomicron, show values ranging from 2.0 to 3.0 log10 units per ml
(Jebri et al. 2017).

Non-cultivable phages in sewage have also been studied by
electron microscopy and metagenomics, the results revealing a
huge diversity. Electron microscopy images show a wide mor-
phological range, with Myoviridae, Syphoviridae, Pedovoridae, and
Microviridae being the principle forms (Wu and Liu 2009, Brown
et al. 2019). Metagenomics studies report a great variability in the
metagenomic composition of raw sewage samples, with a high
percentage of sequences not identified in databases, as well as a
predominance of DNA phages (Cantalupo et al. 2011, Tamaki et al.
2012, Gulino et al. 2020). The collection of the existing metage-
nomic data of viromes from sewage and joining analysis efforts
will provide more comprehensive insight into sewage virome pro-
files. However, as the human microbiota is the main source of
the raw sewage microbial population (García-Aljaro et al. 2019),
it can be assumed that most phages in sewage are found in the
human gut. Indeed, the most abundant phage in human faeces,
crAssphage, was identified in wastewater in all the 14 WWTPs
tested in New York, showing a far greater ubiquity than any other
identified phage (Gulino et al. 2020). Moreover, using a real time
qPCR approach, Ballesté et al. (2021) reported about 106 and 107

crAssphage genomic copies per ml of municipal wastewater, ten
thousand times more than the highest number of phages detected
so far by culture of Bacteroides host strains (Payan et al. 2005). Be-
sides, in the study of WWTPs in New York, a low percentage of
samples were found to contain phages infecting bacteria involved
in carbon and sulphur cycling, which can grow in biofilms formed
in the sewers (Gulino et al. 2020).

The number of phage particles in activated sludge liquor is
significantly higher than in raw sewage (Ewert and Paynter 1980,
Wu and Liu 2009, Brown et al. 2019), indicating that phage replica-
tion occurs in the reactors, which is the most common biological
secondary treatment of wastewater in high-income countries.
Differences in the microbiota of raw sewage and activated sludge
determined by metagenomics (Ye and Zhang 2013, Caiv 2014,

Liu et al. 2017) indicate a shift in the composition of microbial
communities in the effluents versus influents. As most phages are
associated with specific host taxa, and the evolution of bacterial
and viral communities is therefore closely linked (Fuhrman and
Schwalbach 2003), the phageome of activated sludge also differs
from that of raw sewage (Otawa et al. 2007, Parsley et al. 2010,
Tamaki et al. 2012), with variations in abundance and diversity
over time (Brown et al. 2019). Clear phage-host associations have
been reported in activated sludge plants during bulking episodes
(Liu et al. 2017).

As emphasised by this brief overview, phages are present in
raw sewage and WWTPs in great abundance and variety. However,
their study is still in its infancy and many questions remain to be
answered, such as whether this density of phages has any signif-
icance for public health and if they have any useful applications.

Phage populations in the gut have been reported to differ sub-
stantially between healthy and diseased cohorts (Mills et al. 2013,
Norman et al. 2015, Manriquev2017), a finding that has generated
considerable interest in how phages shape our gut microbiome.
Although great numbers of VLPs, mostly phages, have been de-
tected in potable, well and reclaimed water, their metagenomics
do not coincide with those found in the human gut or sewage
(Rosario et al. 2009). Therefore, the potential role of gut phages
that can reach humans through the consumption of faecally pol-
luted water remains to be elucidated and will not be discussed
here further.

In contrast, there is growing evidence that phages can act as
vehicles of gene transfer, including those encoding toxins and an-
tibiotic resistance, and in this manner they can have an undesir-
able impact on gut microbiota, including pathogens. This subject,
one of increasing concern, is covered in the review.

Regarding potential applications of phages, we will look at
their use as indicators of faecal/viral contamination and as fae-
cal source markers, as well as their potential use in wastewater
treatment processes.

Bacteriophage-mediated gene transfer in sewage
There is mounting evidence that phages in sewage may play a sig-
nificant role in gene transfer as mobile genetic elements (MGEs).
These are segments of DNA that encode enzymes and other pro-
teins involved in the movement of DNA within genomes (intracel-
lular mobility) or between bacterial cells (intercellular mobility)
(Frost et al. 2005). MGEs act as vectors of horizontal gene transfer,
which is the main evolutionary mechanism of prokaryotes (Dar-
mon and Leach 2014, Vos et al. 2015). The set of MGEs within a cell,
known as the mobilome (Siefert 2009), includes plasmids, trans-
posons, integrons, genomic islands, conjugative integration ele-
ments, gene transfer agents, and phages.

The ubiquity, abundance, persistence, and versatility of phages
makes them ideal vehicles for the transfer of genes between
bacteria, even between those of different taxa or from different
biomes. Phages found in sewage also show similar persistence,
as discussed in other sections (Muniesa et al. 1999, Allué-Guardia
et al. 2012, Calero-Cáceres and Muniesa 2016). Unlike other hori-
zontal gene transfer mechanisms, transduction does not require
contact between the donor and the recipient cell.

Phages infecting intestinal bacteria are released by defecation,
either as free phages or some lysogens after the induction of
prophages located within the bacterial chromosomes, remaining
free in extra-intestinal environments (Muniesa et al. 2011). Conse-
quently, phages of faecal origin encoding genes related with viru-
lence can be found in raw sewage or animal wastewater, includ-
ing those encoding the E. coli Shiga toxin type 1 (Dumke et al. 2006,
Grau-Leal et al. 2015), Shiga toxin type 2 (Muniesa and Jofre 1998,
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Tanji et al. 2002, Muniesa et al. 2004a, Dumke et al. 2006, Imamovic
et al. 2010), new Shiga toxin 2 subtypes (García-Aljaro et al. 2006)
and the cytolethal distending toxin (Allué-Guardia et al. 2011).

More recently, interest has grown in phages that mobilize an-
tibiotic resistance genes (ARGs), far less studied than ARG trans-
fer mediated by plasmids and transposons. Early studies de-
tected β-lactamases in phages isolated from sewage (Muniesa
et al. 2004b) and their abundance was subsequently quantified in
sewage (Colomer-Lluch et al. 2011a, 2014, Marti et al. 2014), animal
wastewater (Colomer-Lluch et al. 2011b) and sludges produced in
WWTPs (Calero-Cáceres et al. 2014). Other groups of ARGs, such as
those encoding resistances to sulfonamides (sul1) (Calero-Cáceres
et al. 2014), quinolones (qnrA, qnrS) (Colomer-Lluch et al. 2014) and
tetracycline (tetW) (Anand et al. 2016) have also been abundantly
detected in phages, whereas those carrying methicillin resistance
genes (mecA) (Colomer-Lluch et al. 2011a,b) and aminoglycoside
resistance genes (armA) (Colomer-Lluch et al. 2014) are less com-
mon. Metagenomic analysis of the viral fraction isolated from
sewage samples allows a more general overview of ARG diversity
in sewage viromes (Subirats et al. 2016, Lekunberri et al. 2017).

The abundance of phages encoding virulence genes and ARGs
increases the chances of their transduction to the resident bacte-
ria in the sewage environment. Moreover, some bacterial popula-
tions in WWTPs, although not those of faecal origin, are metabol-
ically active during the treatment process, a necessary condition
for transduction to occur. Transduction was traditionally consid-
ered a rare event, thought to happen about once every 107–109

phage infections. Yet other studies (Evans et al. 2010, Kenzaka et al.
2010), and some recently described mechanisms of transduction
(Chen et al. 2018), suggest a higher frequency, possibly several or-
ders of magnitude greater. In this scenario, gene transfer by trans-
duction in sewage environments could be taking place every sec-
ond at an exceptionally high rate (Muniesa et al. 2013).

Transduction in a wastewater environment has been observed
in Proteobacteria, Bacteroidetes, Actinomycetales, and Firmicutes (Del
Casale et al. 2011a,b), but not in other classes of bacteria (e.g.,
Deltaproteobacteria, Nitrospira, Planctomycetes), indicating that not
all bacterial groups are equally involved in gene transfer in a
wastewater environment. Phages from wastewater (Gunathilaka
et al. 2017) and biosolids (Ross et al. 2015) have shown the poten-
tial to transduce ARGs to the bacterial population, although the
extent of ARG transduction events within the WWTP remains to
be elucidated.

In environments with high concentrations of phages and their
bacterial hosts, such as the gut and sewage, genetic material
can be exchanged in other ways. Indeed, the constant lysis and
turnover of bacterial populations during the natural life cycle of a
lytic phage may be underestimated as a mechanism for the liber-
ation of DNA, including plasmids and antibiotic resistance deter-
minants. Subsequent genetic exchange may involve mechanisms
such as transformation and delivery by outer membrane vesicles
(Fulsundar et al. 2014, Keen et al. 2017, Crippen et al. 2020), which
would be important among unrelated bacteria in environments
that receive inputs from several sources, such as sewage.

Bacteriophages as indicators of viral/fecal
pollution
Phages were proposed as indicators of faecal contamination as
early as the 1940s, when they were studied by Guelin and Collab-
orators (1948) in the marine waters of the French Atlantic coasts
(Guelin 1948). Using clearly defined methodologies, they estab-

lished a correlation between phages and the proximity of faecal
discharge of urban origin, considering the dilution effect associ-
ated with tide kinetics.

In the following decades, numerous studies enumerated and
evaluated the diversity of phages infecting enteric bacteria,
mainly E. coli, in wastewater and faeces (Dhillon et al. 1970, Ayres
1977). The relationship of these phages with bacterial indicators
(Kott et al. 1974, Bell 1976) and enteric viruses in water (Simková
and Cervenka 1981, Stetler 1984) began to be investigated. During
this period, studies were initiated on the resistance of phages in-
fecting enteric bacteria to different water treatments (Friberg and
Hammarström 1956, Weber-Schutt 1966, Joyce and Weiser 1967,
Vaughn and Ryther 1974), and data on their environmental per-
sistence in different ecosystems were provided (Kott et al. 1974,
Gerba and Schaiberger 1975). However, until the late 1980s, infor-
mation on the ecology of these phages remained limited, which
led to unsubstantiated assumptions about phage behaviour. For
example, it was claimed that somatic coliphages can replicate in
the water environment and consequently cannot accurately re-
flect faecal microbial contamination (Vaughn and Metcalf 1975,
Seeley and Primrose 1980, Grabow et al. 1981). As reviewed by Jofre
(2009), it was subsequently demonstrated that such replication is
highly unlikely and if it were to occur, the effect on the concentra-
tion of somatic coliphages in the environment would be negligible
(Jofre 2009).

As research in the field progressed, four groups of phages found
in sewage attracted attention as potential determinants of micro-
bial water quality: somatic coliphages, which infect E. coli through
the cell wall, F-specific coliphages, which infect E. coli through the
sex pili, phages infecting Bacteroides and those infecting entero-
cocci (IAWPRC 1991, Bonilla et al. 2010). The proportions in which
these proposed viral indicators of faecal pollution occur in sewage
has been extensively studied (Contreras-Coll et al. 2002, Rose et al.
2004, Blanch et al. 2006), and it has been consistently documented
that urban wastewater contains more somatic than F-specific col-
iphages or phages infecting Bacteroides or enterococci (Jebri et al.
2017, Nappier et al. 2019, Jofre et al. 2021).

As phages that infect enteric bacteria are always present in
wastewater, they can be considered as indicators of faecal con-
tamination. Moreover, as phages are affected by inactivation pro-
cesses in a similar way to human or animal viruses, the presence
of phages of faecal origin in the treated water can generally pre-
dict human faecal viruses. A correlation between human viruses
and phages has been demonstrated in samples of surface water,
groundwater, sediments and shellfish (Jofre et al. 1989, Havelaar
et al. 1993, Brion et al. 2005), although other studies report a lack
of clear association (Haramoto et al. 2005, Lodder et al. 2010, Reza-
einejad et al. 2014). In any case, coliphages are more strongly as-
sociated with pathogenic viruses than traditional bacterial mark-
ers and even more so than other groups of human viruses (Wu
et al. 2011, Ballesté et al. 2021). Although coliphages are not index
microorganisms for specific virus groups, their presence indicates
faecal contamination, potentially including pathogenic faecal hu-
man viruses (Jofre et al. 2016).

Now established in regulations for water quality management,
coliphages meet the operational requirements to be selected as
microbial indicators (World Health Organization 2017): they are
not a pathogenic microorganism; they are universally present in
human and animal faeces in high numbers; under natural condi-
tions they do not multiply in water; they are more numerous than
faecal pathogens; they persist, are inactivated and respond to
disinfection treatments in a similar way to faecal pathogens;
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and can be easily detected by simple and inexpensive culture
methods.

Before an indicator can be included in national or international
regulations, standardized protocols need to be established that
can be applied in different laboratories to provide robust and com-
parable results (IAWPRC 1991). In the case of phage indicators, it
was not until the late 1990s that methodology began to be stan-
dardized for the enumeration of somatic and F-specific coliphages
and phages infecting Bacteroides spp.

Standardized methods were developed, almost simultaneously,
by the International Standardization Organization (ISO) and the
United States Environment Protection Agency (the US EPA) for
detecting somatic coliphages (International Standardization Or-
ganization 2000, US EPA 2001a,b) and F-specific coliphages (In-
ternational Standardization Organization 1995, US EPA 2001a,b).
A standardized protocol for phages infecting enterococci is not
yet available, but an ISO method exists for phages infecting Bac-
teroides, which uses B. fragilis RYC2056 (ATCC 700786) as a host
strain (International Standardization Organization 2001). This
method can also be applied with phages associated with other
Bacteroides spp. that effectively discriminate between sources of
faecal contamination in water and have been used for micro-
bial source tracking (MST) studies, as described in the following
section.

The standardized ISO and EPA protocols for somatic and F-
specific coliphage analysis, which are very similar and produce
comparable results, have been widely applied in the last decades.
They outline a qualitative procedure (a presence/absence spot
test) that can be adapted to quantitative approaches based on
a most probable number test or the enumeration of plaque
forming units (PFUs) on host bacteria layers. Additionally, the
ISO has defined a validation procedure for methods that con-
centrate phages from water when volumes higher than 10 mL
need to be analysed (International Standardization Organization
2003).

The US EPA standardized protocols for somatic and F-specific
coliphage detection also include two different methods applica-
ble to both types of phages. Method 1601 is a quantitative ap-
proach based on single agar layer (SAL) assays for PFU enumer-
ation (US EPA 2001a), whereas the qualitative method 1602 uses
presence/absence assays (US EPA 2001b). The US EPA has recently
revised and adapted these methods for application in recreational
water and wastewater, using ultrafiltration and SAL assays (US
EPA 2018a), and for the analysis of secondary wastewater, also us-
ing SAL procedures (US EPA 2018b).

Although ISO and the US EPA methods can be easily imple-
mented in routine microbiology laboratories without experience
in phages, they can be cumbersome in laboratories with limited
equipment and insufficiently trained staff. Although the protocols
from both organizations are similar, they use different host strains
for the various groups of targeted phages. Among the few compar-
ative studies carried out, some authors report that methods with
the DAL technique provide slightly higher values than those using
SAL assays (Mooijman et al. 2001).

As indicated by the ISO and the US EPA standardized proto-
cols, origin traceability of the host strains and positive control col-
iphages is important, as is strain quality control and maintenance,
so that the genotypic and phenotypic properties that characterize
the stipulated strains are not lost. For example, both ISO and the
US EPA methods use nalidixic acid-resistant variants to minimize
the growth of accompanying microbiota in polluted water sam-
ples, which frequently interferes with visualization of plaques.
Otherwise, a previous step of filtration through membrane filters

of 0.22 μm pore diameter made of materials that do not adsorb
proteins is advised.

In the case of F-specific coliphage enumeration, in both the ISO
and the US EPA standardized methods, host strains must express
the sexual pili, encoded in the F plasmid or F-derived plasmids
and are not synthesized below 32ºC. In addition, markers are used
in these host strains to improve their selection and stability: the
capacity to degrade lactose in Salmonella enterica WG49 in the ISO
method and ampicillin resistance in the E. coli HS/Famp strain in
the US EPA methods.

Despite efforts to standardize protocols, a small percentage of
divergent results is reported for phage total numbers and the pro-
portions of phage groups. It cannot be ruled out that some of
the notable variations in wastewater analysis outcomes between
studies in different laboratories around the world could be related
to insufficient quality control of the host strains and how long
they are maintained (Wu et al. 2011, Nappier et al. 2019).

Of the aforementioned four types of enteric phages, somatic
coliphages are the most frequently used as viral indicators of wa-
ter quality, as they have the highest concentrations in wastewa-
ter and are simple to analyse. However, there is still some debate
regarding which type of coliphage is the most suitable for appli-
cation as a faecal/viral indicator. As F-specific coliphages are usu-
ally more resistant to ultraviolet light than somatic coliphages,
they are used to monitor and validate ultraviolet-disinfection wa-
ter treatments (Leclerc et al. 2000, Montemayor et al. 2008). How-
ever, F-specific coliphages have lower persistence in surface wa-
ters, especially in warmer climates, and are less resistant to inac-
tivating heat or high pH treatments (Jofre 2007). It was therefore
proposed to detect both types simultaneously, and standardized
methods based on modified host strains were devised for total col-
iphage enumeration in a single analysis. Initially, the E. coli strain
C3000 (ATCC 15597), extensively used in conjugation studies of
the 1960s, was employed, but it was observed that this modified
strain detects lower amounts of somatic coliphages than the stan-
dardized strains. The problem was subsequently overcome by the
engineering of E. coli strain CB390 (CECT9198) (Guzmán et al. 2008),
which can match the results of established methods that enumer-
ate F-specific and somatic coliphages separately (Guzmán et al.
2008, Bailey et al. 2017).

Consequently, coliphages have been used to assess the quality
of drinking water, wastewater sanitation, water reuse treatments,
and hygienization of sludge, biosolids and sediments, and the
safety of some foods (mainly shellfish). Since the beginning of the
millennium, mainly somatic, but also F-specific coliphages, have
been progressively incorporated in national and international reg-
ulations and guidelines, including those of the WHO, for the man-
agement of microbiological quality (Table 1).

Despite the availability of feasible and cost-effective pres-
ence/absence and quantitative (PFU) methods standardized by
regulatory agencies, the routine analysis of coliphages as viral in-
dicators will require faster and more user-friendly methods. Dif-
ferent analytical procedures have been proposed, including those
that can be adapted to 100 mL of water, thus avoiding the need to
concentrate phages from smaller volumes (Blanch et al. 2020).

Bacteriophages as microbial source tracking
markers
Faecal indicators have been used to determine water quality for
over a century, and now they are also being employed to de-
termine the origin of the pollution. Microbial source tracking
(MST) (Malakoff 2002) is based on the detection of particular
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Table 1. List of national and International regulations and guidelines including coliphages as viral indicators for different water matrices,
biosolids, sludge, and food (mainly shellfish).

Year Country Regulation sector Description

1989 USA Integrity membranes
and UV

USEPA. 1989. Drinking Water; national Primary Drinking Water Regulations;
Filtration; Disinfection; Turbidity, Giardia lamblia; Viruses; Legionella; and
Heterotrophic Bacteria; Final Rule. 40CFR Parts 141 and 142. Federal register 54:
27486-27541. Washington D.C.

1999 UK Integrity membranes
and UV

DWI. 1999. The Water Supply (Water Quality) (Amendment) Regulations 1999:
Cryptosporidium in Water Supplies. Department for Environment, Food and Rural
Affairs. Statutory Instruments No. 1524. United Kingdom Legislation (available at
http://united-kingdom-legislation.vlex.co.uk/vid/water-supply-quality-amendment
-28393731)

2001 Canada (Quebec) Drinking Water Loi sur la qualité de l’environnement : règlement sur la qualité de l’eau potable c.
Q.-2, r. 18.1.1. Gazette Officielle du Québec 24, 3561. Government of Quebec,
Montreal, Quebec, Canada

2005 Australia (Queensland) Reclaimed water Queensland Government. 2005. Queensland Water Recycling Guidelines.
Queensland Environmental Protection Agency. Brisbane. Australia.

2006 Australia (Northern
Territory)

Reclaimed water DRAFT Northern Territory Interim Guidelines for Management of Recycled Water
Schemes 2006

2006 Australia (Northern
Territory)

Reclaimed water Australian Guidelines for Water Recycling: Managing Health and Environmental
Risks (Phase 1), 2006

2006 Australia (Western
Australia)

Reclaimed water Australian Guidelines for Water Recycling: Managing Health and Environmental
Risks (Phase 1) 2006

2006 USA Groundwater 40 CFR Parts 9, 141, and 142 National Primary Drinking Water Regulations: Ground
Water Rule; Final Rule.

2001 USA Integrity membranes
and UV

USEPA. 2001. Low-pressure membrane filtration for pathogen removal: application,
implementation and regulatory issues. EPA 815-C-01-001. Environmental Protection
Agency. Washington D.C.

2007 Australia (New South
Wales)

Recycled Water Interim NSW Guidelines for Management of Private Recycled Water Schemes, 2007

2008 Australia Recreational Water Guidelines for Managing Risks in Recreational Water (Emerging interest)
2008 Canada Recreational Water Guidelines for Canadian Recreational Water Quality (Third edition 2012)
2009 Australia (Western

Australia)
Recycled Water Draft Government of Western Australia Department of Health. Draft Guidelines for

the Use of Recycled Water in Western Australia. Initial External Consultation
2009 USA Molluscan shellfish Guide for the control of Molluscan Shellfish. National shellfish Sanitation program.

2017 Revised
2011 Australia Drinking Water National Water Quality Management Strategy. Australian Drinking Water Guidelines

6 (version 3.2 updated February 2016)
2011 Canada Drinking Water Guidelines for Canadian Drinking Water Quality: Guideline Technical Document -

Enteric Viruses
2011 USA (North Caroline) Reclaimed water North Carolina Environmental Quality. North Carolina Adm. Code 15A NCAC

2U Reclaimed Water; North Carolina Department of Environment and Natural
Resources. Regulatory Review of North Caroline.

2012 Australia (Western
Australia)

Biosolids Western Australian guidelines for biosolids management. Department of
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host-associated bacteria, mainly Bacteroidetes and Bifidobacterium
(Bernhard and Field 2000, Shanks et al. 2008, Mieszkin et al. 2009,
Gomez-Donate et al. 2012, Green et al. 2014), or viruses, either
phages or host pathogens, as discussed below. By identifying the
potential source of faecal pollution, these markers allow a better
management of water and the application of effective restoration
measures.

F-specific RNA phages, a fraction of F-specific coliphages, were
the first phage candidates suggested as a potential MST tool.
These viruses belong to the family Fiersviridae (Francki et al. 1991)
and are divided into two genera, Emesvirus and Qubevirus (Fried-
man et al. 2009, Callanan et al. 2021), each of which are classified in
two serotypes or genogroups: genogroups I and II for Emesvirus and
III and IV for Qubevirus (Hsu et al. 1995, Beekwilder et al. 1996). The
proportions of these genogroups in faecal pollution can serve to
discriminate between human and warm-blooded animal inputs,
given that groups II and III predominate in the former, and groups
I and IV in the latter (Furuse 1987, Havelaar et al. 1990, Hsu et al.
1995, Schaper et al. 2002).

F-specific RNA phages can be detected either by culture, as ex-
plained in the previous section, or by molecular methods such as
real-time quantitative polymerase chain reaction (RT-qPCR). After
obtaining plaques by culture, the genotypes can be distinguished
by plaque hybridization using specific probes (Schaper et al. 2002),
or analysing a phage suspension from the plaques by RT-qPCR
(Ogorzaly and Gantzer 2006, Wolf et al. 2008). RT-qPCR can also
be carried out directly on the viral fraction of a sample (Wolf et al.
2008).

However, different phage groups display variable resistance to
environmental stressors and inactivation treatments such as dis-
infection. Several studies on both laboratory and environmen-
tal phages have shown that phages belonging to genogroups I
and II (Levivirus) are more resistant than those of III and IV (Al-
lolevivirus) (Schaper et al. 2002, Long and Sobsey 2004, Muniesa
et al. 2009, Haramoto et al. 2015). Consequently, the variability in
genogroup proportions after natural or human-driven inactiva-
tion impairs their suitability for MST.

Even before or parallel to the growing use of host-specific Bac-
teroidetes as MST markers, phages infecting Bacteroides strains iso-
lated from humans or animals were also being promoted as pollu-
tion source trackers (Tartera et al. 1989, Payan et al. 2005, Gómez-
Doñate et al. 2011). As the sensitivity of Bacteroides strains used
to detect phages varies considerably between regions, a suitable
strain needs to be isolated from each area (Payan et al. 2005). As
a result, several Bacteroides strains have been isolated for use in
MST in different countries (e.g., Spain, Colombia, UK), success-
fully discriminating between human and animal (mainly cattle,
swine, poultry, and horse) faecal pollution (Tartera and Jofre 1987,
Ebdon et al. 2007, Gómez-Doñate et al. 2011, Venegas et al. 2015).
Numbers of Bacteroides phages infecting B. thetaiotaomicron GA17
strain range from 103-105 PFU/100 mL in municipal sewage to 50
to 104 PFU/100 ml in secondary effluents, being rarely detected
in wastewaters from animal slaughterhouses (Muniesa et al. 2012,
Venegas et al. 2015, Yahya et al. 2015). On the other hand, num-
bers of Bacteroides phages of animal origin range between 103 and
104 PFU/100 ml for cattle and poultry (phages infecting B. thetaio-
taomicron CW18 and B. fragilis PL122, respectively) and 104 to 105

PFU/100 ml for swine (phages infecting B. fragilis PG76 and B. frag-
ilis PG1226) (Gomez-Donate et al. 2012).

The great majority of phages infecting B. fragilis detected in
sewage belong to the Siphoviridae family and have flexible tails
and dsDNA (Tartera and Jofre 1987, Lasobras et al. 1997, Ogilvie
et al. 2012); for example, phage B40-8, which infects B. fragilis strain
GA17, and phage FB124-14, which infects B. fragilis strain GB-124,

isolated in Spain and the UK, respectively. These phages have a
very narrow host range and infect through receptors in the cell
wall (Ogilvie et al. 2012, Jofre et al. 2014), which situates them in
the group of somatic phages. As phages infecting Bacteroides have
similar persistence to somatic coliphages, the ratio of both phage
types (i.e., host-specific and a general indicator) was proposed as
a good marker for MST (Muniesa et al. 2012).

Recent studies have identified a new group of phages infect-
ing Bacteroides, known as crAssphage, which metagenomic studies
have revealed to be the most abundant phage in sewage (Dutilh
et al. 2014). This phage family has a worldwide distribution, hav-
ing been found in sewage in all the continents except Antarctica,
and has therefore been proposed as a human-associated molec-
ular marker for MST (Stachler and Bibby 2014, García-Aljaro et al.
2017, Cinek et al. 2018). Four crAssphage have been isolated so far,
all with Podoviridae morphology, although only two of them have
been partially characterized, �crAss001 (Shkoporov et al. 2018)
and �crAss002 (Guerin et al. 2021), whose hosts are B. intestinalis
and B. xylanisolvens, respectively. The other two phages were iso-
lated in B. thetaiotaomicron (Hryckowian et al. 2020). Moreover, the
replication cycles of these phages are still mostly unknown. As
culture methods are difficult to be implemented, to date only
molecular techniques have been developed for crAssphage detec-
tion and quantification. The worldwide use of qPCR-based analy-
sis has yielded average contents of between 104 and 109 GC/100 ml
(García-Aljaro et al. 2017, Stachler et al. 2017, Ahmed et al. 2018a,
Farkas et al. 2019, Kongprajug et al. 2019, Malla et al. 2019, Crank
et al. 2020, Wu et al. 2020) and a high correlation with other bac-
terial and viral MST markers has been observed (Ahmed et al.
2018b, Ballesté et al. 2019, Edwards et al. 2019). These values are
higher than those of other known human viruses, such as ade-
noviruses, noroviruses or polyomaviruses (Bofill-Mas et al. 2006,
Ballesté et al. 2021), or bacterial MST markers, such as human
Bifidobacteria (Gomez-Donate et al. 2012) or human Bacteroidetes
(Green et al. 2014).

Finally, host-specific phages infecting enterococci have been
postulated as another alternative MST indicator (Bonilla et al.
2010), although no standardized method for their detection is
available. Several bacterial hosts have been isolated from human,
cattle and pigs, which showed high specificity and abundances be-
tween 102−104 PFU 100 ml-11 in animal runoff or sewage in Eng-
land (Purnell et al. 2011) and Thailand (Wangkahad et al. 2017).

Prospective applications of bacteriophages in
wastewater treatment processes
Phage-mediated bacterial mortality may improve the perfor-
mance of wastewater treatments by controlling the abundance
of harmful bacteria. Laboratory studies have tested phage effi-
cacy against pathogenic bacteria, as well as filamentous bacteria
causing bulking and foaming in activated sludge and membrane-
fouling bacteria, among others. A few examples are given here.

The application of phages infectious for specific strains of
pathogenic bacteria is envisaged as an additional tool to the range
of treatments already used by WWTPs to reduce pathogen num-
bers in sewage (Curtis 2003). Laboratory tests have shown that
communities of Salmonella (Turki et al. 2012) and E. coli (Beheshti
Maal et al. 2015) are negatively affected by specific phage treat-
ment.

Activated sludge treatment plants quite frequently suffer from
the presence of filamentous bacteria that cause bulking and
foaming on the surfaces of aeration reactors. A clear phage-host
association has been reported in activated sludge plants during
these episodes (Liu et al. 2015). Therefore, the addition of specific
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lytic phages should reduce the numbers of problematic bacteria.
In laboratory-scale experiments, isolated phages that infect foam-
causing bacteria have prevented foam stabilization (Petrovski et al.
2011, Liu et al. 2015).

Membrane-based treatments are increasingly being used in
WWTPs, but their operation can be impaired by the formation of
bacterial biofilms, which results in a loss of flow rate (Wu et al.
2017). Addressing this issue, treatments with lytic phages assayed
in the laboratory have shown promising results in inhibiting bac-
terial fouling of membranes (Goldman et al. 2009, Bhattacharjee
et al. 2015, Ayyaru et al. 2018).

However, although promising results have been obtained on a
laboratory level, the application of phages in WWTPs in the real
world is more complex, due to a number of shortcomings (Ji et al.
2020). These include narrow host specificity, the difficulty of iso-
lating and producing suitable phages, the emergence of resistant
hosts, non-specific adsorption, phage decay, and last, but not least,
as already discussed, the potential role of phages in gene trans-
fer. This approach to controlling undesirable bacteria in wastew-
ater treatments is, however, still in its infancy and considerable
research remains to be done to render the procedures applicable
in real-life settings. The progress made in phage therapy for bac-
terial infections in human medicine and husbandry (Gordillo Al-
tamirano and Barr 2019, Kortright et al. 2019) may help to resolve
some of the present limitations.

Conclusions
The aim of this review is to show the importance of bacterio-
phages in sewage and uncover their potential applications. Their
great abundance and diversity in sewage mirrors the diversity
observed in faeces and for the moment there is no information
whether the water way has any role in shaping the gut virome
and hence the gut microbiome. However, currently there are al-
ready some applications of gut phages. Thus, some of them like
somatic coliphages and F-RNA phages are being used as faecal
indicators together with bacterial indicators like E. coli and En-
terococci. Since they have a similar persistence and environmen-
tal behaviour than animal viruses, they can act as a better proxy
for them, allowing a better prediction of viral presence in water.
In fact, some regulatory agencies have already included them in
their regulations regarding water quality. For this reason, their use
as microbial source trackers to determine the source of a pollu-
tion is also increasing, specially after the discovery of crAssphage
as the most abundant bacteriophage in human faeces. Before its
detection, just culture techniques were used to detect Bacteroides
phages and molecular techniques as qPCR have also been devel-
oped to detect human and animal specific F-RNA phages. Also,
the use of lytic phages in WWTPs can control the concentration of
pathogenic bacteria or those impairing the treatment like bacteria
causing bulking. However, currently these applications are still in
laboratory stages. On the other hand, bacteriophages role in gene
transfer as mobile genetic elements between bacteria like viru-
lence related genes or antibiotic resistance genes has to be consid-
ered. In fact, sewage includes abundant autochthonous bacterial
populations growing in sewage which could, by transduction, in-
terchange these genes with bacteria of the human gut, including
pathogens.
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