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Abstract

Background: Variations in DNA copy number carry information on the modalities of genome evolution and
mis-regulation of DNA replication in cancer cells. Their study can help localize tumor suppressor genes, distinguish
different populations of cancerous cells, and identify genomic variations responsible for disease phenotypes. A number
of different high throughput technologies can be used to identify copy number variable sites, and the literature
documents multiple effective algorithms. We focus here on the specific problem of detecting regions where variation
in copy number is relatively common in the sample at hand. This problem encompasses the cases of copy number
polymorphisms, related samples, technical replicates, and cancerous sub-populations from the same individual.

Results: We present a segmentation method named generalized fused lasso (GFL) to reconstruct copy number
variant regions. GFL is based on penalized estimation and is capable of processing multiple signals jointly. Our
approach is computationally very attractive and leads to sensitivity and specificity levels comparable to those of
state-of-the-art specialized methodologies. We illustrate its applicability with simulated and real data sets.

Conclusions: The flexibility of our framework makes it applicable to data obtained with a wide range of technology.
Its versatility and speed make GFL particularly useful in the initial screening stages of large data sets.
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Background
Genomic duplications and deletions are common in can-
cer cells and known to play a role in tumor progression
[1]. As our ability to survey the fine scale of the human
genome has increased, it has become apparent that nor-
mal cells can also harbor a number of variations in copy
number (CN) [2,3]. The last few years have witnessed a
steady increase in our knowledge of the size and frequency
of these variants [4-7] and their implications in complex
diseases [8,9]. At the same time, statistical methods and
algorithms have been developed to better harness the
information available. At the cost of oversimplification,
two different approaches have become particularly pop-
ular. One is based on the hidden Markov model (HMM)
machinery and explicitly aims to reconstruct the unob-
servable discrete DNA copy number; the other, which
we will generically call “segmentation”, aims at identifying
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portions of the genome that have constant copy number,
without specifically reconstructing it.

The HMM approach takes advantage of the implicitly
discrete nature of the copy number process (both when
a finite number of states is assumed and when, as in
some implementations, less parametric approaches are
adopted); furthermore, by careful modeling of the emis-
sion probabilities, one can fully utilize the information
derived from the experimental results. In the case of geno-
typing arrays, for example, quantification of total DNA
amount, relative allelic abundance, and prior information
such as minor allele frequencies can be considered.

No apriori knowledge of the number of copy num-
ber states is required in the segmentation approach—an
advantage in the study of cancer where polyploidy and
contamination with normal tissues result in a wide range
of fractional copy numbers. Possibly for the reasons out-
lined, HMMs are the methods of choice in the analysis
of normal samples [10-14], while segmentation methods
are the standard in cancer studies [15,16]. A limitation of
segmentation methods is that they rely on data in which
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the variation in copy number is reflected in the differences
in means of the segments. This fact makes segmenta-
tion methods applicable directly to a substantial portion
of the data derived from recent technologies, but not to
relative allelic abundance. However, see the modification
suggested in [17] and the following description for an
exception.

While a number of successful approaches have been
derived along the lines described above, there is still a
paucity of methodology for the joint analysis of multiple
sequences. It is clear that if multiple subjects share the
same variation in copy number, there exists the poten-
tial to increase power by joint analysis. Wang et al. [18]
present a methodology that extends [1] to reconstruct
the location of tumor suppressor genes from the iden-
tification of regions lost in a larger number of samples.
The initial steps of the Birdsuite algorithm rely on the
identification of suspect signals in the context of multiple
sample. PennCNV [13] includes an option of joint anal-
ysis of trios. Methodology to process multiple samples
within the context of change point analysis has been devel-
oped in [16,19-21]. Efron and Zhang [22] consider FDR
analysis of independent samples to identify copy number
polymorphisms (CNPs), and Nowak et al. [23] use a latent
feature model to capture, in joint analysis of array-CGH
data from multiple tumor samples, shared copy number
profiles, on each of which a fused-lasso penalty is enforced
for sparsity.

In the present work we consider a setting similar to
[16] in that we want joint analysis to inform the seg-
mentation of multiple samples. Our main focus is the
analysis of genotyping array data, but the methodology
we develop is applicable to a variety of platforms. By
adopting a flexible framework we are able, for example, to
define a segmentation algorithm that uses all information
from Illumina genotyping data. As in [19], we are inter-
ested in the situation where some but not all the samples
under consideration carry a copy number variant (CNV).
We prefer to enforce a certain sparsity in the vector that
identifies which samples carry a given variant. We tackle
this problem using a penalized estimation approach, orig-
inally proposed in this context by [24], for which we have
developed an algorithmic implementation [25]. Appre-
ciable results are achieved in terms of speed, accuracy,
and flexibility.

In concluding this introduction, we would like to make
an important qualification. The focus of our contribu-
tion is on segmentation methods, knowing that this is
only one of the steps necessary for an effective recovery
of CNVs. In particular, normalization and transforma-
tion of the signal from experimental sources are crucial
and can have a very substantial impact on final results,
as documented in [26-31], for example. Indeed, prepro-
cessing to eliminate systematic variation in intensities

is particularly important for joint analysis of multiple
sequences, when repeated deviances are more likely to
be interpreted as true signal. Furthermore, calling proce-
dures that classify results of segmentation while possibly
controlling global error measures [22] are also needed.
Indeed, in the data analysis included in this paper, we
need to resort to both of these additional steps, and we
will describe then briefly the fairly standard choices we
make.

Before describing in detail the proposed methods for
joint segmentation of multiple sequences, we start by
illustrating various contexts where joint analysis appears
to be useful.

Genotyping arrays and CNV detection
Genotyping arrays have been used on hundreds of thou-
sands of subjects. The data collected through them pro-
vides an extraordinary resource for CNV detection and
the study of their frequencies in multiple populations.
Typically, the raw intensity data (representing hybridiza-
tion strength) is processed to obtain two signals: quantifi-
cation of total DNA amount (from now on log R Ratio,
LRR, following Illumina terminology) and relative abun-
dance of the two queried alleles (from now on B allele
frequency, BAF). Both these signals contain information
on CNVs, and one of the strengths of HMMs has been that
they can easily process them jointly. Segmentation mod-
els like CBS have traditionally relied only on LRR. While
this is a reasonable choice, it can lead to substantial loss of
information, particularly in tumor cells, where polyploidy
and contamination make information in LRR hard to deci-
pher. To exploit BAF in the context of a segmentation
method, a signal transformation has been suggested [17]:
mirrored BAF (mBAF) relies on exchangeability of the
two alleles and the low information content of homozy-
gous SNPs. The resulting mBAF is defined on a coarser
grid than the original BAF, but is characterized by chang-
ing means in the presence of a CNV. While [17] shows
that the analysis of BAF alone can be advantageous and
more powerful than segmentation of LRR in some con-
texts, clearly a joint analysis of LRR and mBAF should
be preferable to an arbitrary selection of one or the other
signal.

Multiple platforms
LRR and BAF are just one example of the multiple
signals available in some samples. Often, as research pro-
gresses, the samples are assessed with a variety of tech-
nologies. For example, a number of subjects who have
been genotyped at high resolution are now being rese-
quenced. Whenever the technology adopted generates
a signal that contains some information on copy num-
ber, there is an incentive to analyze the available signals
jointly.
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Tumor samples from the same patient obtained at different
sites or different progression stages
In an effort to identify mutations that are driving a spe-
cific tumor, as well as study its response to treatment,
researchers might want to study CNVs in cells obtained at
different tumor sites or at different time points [32]. Copy
number is highly dynamic in cancer cells, so that it is to be
expected that some differences will be detected over time
or across sites. By contrast, the presence of the same CNVs
across these samples can be taken as an indication that
the tumors share the same origin. Therefore, a compara-
tive analysis of CNV can be used to distinguish resurgence
of the same cancer from insurgence of a new one, or to
identify specific cancer cell populations. Given that the
tissue extracted always consists of a mixture of normal
and cancer cells, which are in turn a mixture of different
populations, joint analysis of the signals from the varied
materials is much more likely to lead to the identification
of common CNVs when these exist.

Related subjects
Family data is crucial in genetic investigations, and hence
it is common to analyze related subjects. When study-
ing individuals from the same pedigree, it is reasonable to
assume that some CNVs might be segregating in multi-
ple people and that joint analysis would reduce Mendelian
errors and increase the power of detection.

The rest of the paper is organized as follows: In the
Methods section, we first present the penalized estimation
framework, and then describe how the model can be used
for data analysis by: (a) outlining an efficient estimation
algorithm, (b) generalizing it to the case of uncoordinated
data, and (c) describing the choice of the penalization
parameters. In the results section, we discuss our find-
ings on two simulated data sets (descriptive of normal and
tumor samples) and two real data sets. In one case mul-
tiple platforms are used to analyze the same sample, and
in the other case samples from related individuals benefit
from joint analysis.

Methods
A model for joint analysis of multiple signals
Assume we have observed M signals, each measured at
N locations, corresponding to ordered physical positions
along the genome, with yij being the observed value of
sequence i at location j. The copy number process can be
modeled as

yij = βij + εij, (1)

where εij represent noise, and the mean values βij
are piece-wise constant. Thus, there exists a linearly
ordered partition {R(i)

1 , R(i)
2 , . . . , R(i)

Ki
} of the location index

{1, 2, . . . , N} such that βis = · · · = βit = μ
(i)
k for s, . . . , t ∈

R(i)
k and 1 ≤ k ≤ Ki. In other words, most of the incre-

ments |βij − βi,j−1| are assumed to be zero. When two
sequences k and l share a CNV with the same bound-
aries at location j, both |βkj − βk,j−1| and |βlj − βl,j−1|
will be different from zero at the change point j. Mod-
ulo an appropriate signal normalization, βij = 0 can
be interpreted as corresponding to the appropriate nor-
mal copy number equal to 2. We propose to reconstruct
the mean values β by minimizing the following function,
called hereafter the generalized fused lasso (GFL):

f (β) = 1
2

M∑
i=1

N∑
j=1

(yij − βij)
2 + λ1

M∑
i=1

N∑
j=1

|βij|

+ λ2

M∑
i=1

N∑
j=2

|βij − βi,j−1|

+ λ3

N∑
j=2

[ M∑
i=1

(βij − βi,j−1)
2
] 1

2

, (2)

which includes a goodness-of-fit term and three penal-
ties, whose roles we will explain one at a time. The
�1 penalty

∑M
i=1

∑N
j=1 |βij| enforces sparsity within β , in

favor of values βij = 0, corresponding to the normal
copy number. The total variation penalty

∑N
j=2 |βij−βi,j−1|

minimizes the number of jumps in the piece-wise con-
stant means of each sequence and was introduced by [24]
in the context of CNV reconstruction from array-CGH
data. Finally, the Euclidean penalty on the column vec-
tor of jumps

√∑M
i=1(βij − βi,j−1)2 is a form of the group

penalty introduced by [33] and favors common jumps
across sequences. As clearly explained in [34], “the local
penalty around 0 for each member of a group relaxes as
soon as the |βij − βi,j−1| for one member i of the group
moves off 0.” Bleakley and Vert (2011) [35] also suggested
the use of this group-fused-lasso penalty to reconstruct
CNV. We consider here the use of both the total varia-
tion and the Euclidean penalty on the jumps to achieve
the equivalent effect of the sparse group lasso, which, as
pointed out in [36], favors CNV detection in multiple sam-
ples, allowing for sparsity in the vector indicating which
subjects are carriers of the variant. This property is impor-
tant in situations of multiple tumor samples and related
subjects, where one does not want to assume that all the
M sequences carry the same CNV.

The incorporation of the latter two penalties can also
be naturally interpreted in view of image denoising.
To restore an image disturbed by random noise while
preserving sharp edges of items in the image, a 2-
D total variation penalty λ

∑M
i=1

∑N
j=2 |βij − βi,j−1| +

ρ
∑N

j=1
∑M

i=2 |βij − βi−1,j| is proposed in a regularized
least-square model [37], where βij is the true underlying
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intensity of pixel (i, j). In CNV detection problems, sig-
nals from multiple sequences can be aligned in the shape
of an image, except that pixels in each sequence are lin-
early ordered while sequences as a group have no certain
order a priori. Thus, one of the two total variation penal-
ties is replaced by the group penalty on the column vector
of jumps.

Using matrix notation, and allowing the tuning parame-
ter λ1, λ2 and λ3 to be sequence specific, we can reformu-
late the objective function as follows. Let Y = (yij)M×N
and β = (βij)M×N . Let β i be the ith row of β and β(j) the
jth column of β . Also, let λ3 = (λ3,i)M×1. Then we have

f (β) = 1
2
||Y − β||2F +

M∑
i=1

λ1,i||β i||�1

+
M∑

i=1
λ2,i||β i,2:N − β i,1:(N−1)||�1

+
N∑

j=2
||λ3 ∗ (β(j) − β(j−1))||�2 , (3)

where ||·||F is the Frobenius matrix norm, ||·||�1 and ||·||�2
are the �1 and �2 vector norms, β i,s:t indicates the sub-
vector with elements βi,s, . . . , βi,t of the row vector β i, and
“∗” denotes entry-wise multiplication between two vec-
tors. It would be easy to modify the tuning parameters so
as to make them location specific by reducing the penalty
for a jump in genomic regions known to harbor CNVs.

An MM algorithm
While the solution to the optimization problem (3) might
have interesting properties, this approach is useful only if
an effective algorithm is available. The last few years have
witnessed substantial advances in computational meth-
ods for �1-regularization problems, including the use of
coordinate descent [38,39] and path following methods
[35,40-42]. The computational complexity of these meth-
ods in the best situation is O(MNK), where K indicated
the number of knots along the solution path. Here knots
are conjunction points between a series of piecewise func-
tions of tuning parameters. It is important to note that
these algorithms – some of which are designed for more
general applications – may not be the most efficient for
large scale CNV analysis for at least two reasons. On the
one hand, reasonable choices of λ might be available, mak-
ing it unnecessary to solve for the entire path; on the other
hand, the number of knots K can be expected to be as
large as O(N), making the computational costs of path
algorithms prohibitive.

With specific regard to the fused-lasso application to
CNV detection, we were successful in developing an algo-
rithm with per iteration cost O(N) and empirically fast
convergence rate for the analysis of one sequence [25]. We

apply the same principles here and start by modifying the
norms in the penalty to achieve better computational sta-
bility. For the �1 norm we substitute ||x||2,ε = √

x2 + ε

for sufficiently small ε, and for the �2 norm we substitute
||x||2,ε = (∑n

i=1 x2
i + ε

) 1
2 . This produces the differentiable

objective function

fε(β) = 1
2

M∑
i=1

N∑
j=1

(yij − βij)
2 +

M∑
i=1

λ1,i

N∑
j=1

||βij||2,ε

+
M∑

i=1
λ2,i

N∑
j=2

||βij − βi,j−1||2,ε

+
N∑

j=2
||λ3 ∗ (β(j) − β(j−1))||2,ε . (4)

Adopting an MM framework [43], we want to find a sur-
rogate function gε(β | β(m)) for each iteration m such that
gε(β

(m) | β(m)) = fε(β(m)) and gε(β | β(m)) ≥ fε(β) for all
β . At each iteration, the MM principle chooses β(m+1) =
arg min gε(β | β(m)). A majorizing function with the
above properties is readily obtained using the concavity of
the square-root function ||x||2,ε ≤ 1

2||z||2,ε
(x2 − z2), and

its vector equivalent ||x||2,ε ≤ 1
2||z||2,ε

(||x||2�2
− ||z||2�2

). The
resulting surrogate function

gε(β | β(m)) = 1
2

M∑
i=1

N∑
j=1

(yij − βij)
2

+
M∑

i=1
λ1,i

N∑
j=1

β2
ij

2||β(m)
ij ||2,ε

+
M∑

i=1
λ2,i

N∑
j=2

(βij − βi,j−1)2

2||β(m)
ij − β

(m)
i,j−1||2,ε

+
N∑

j=1

||λ3 ∗ (β(j) − β(j−1))||2�2

2||λ3 ∗ (β
(m)
(j) − β

(m)
(j−1))||2,ε

+c(m)

separates as a sum of similar functions in the the row
vectors β i; namely,

gε(β | β(m)) =
M∑

i=1
gi(β i | β(m)),

where

gi(β i | β(m)) = 1
2
β iA

(m)
i βT

i −[ b(m)
i ]T βT

i + c̃(m)
i . (5)

Here each A(m)
i is a tridiagonal symmetric matrix, and

c̃(m)
i is a constant, irrelevant for optimization purposes.

In view of the strict convexity of the surrogate function,
each A(m)

i is also positive definite. The nonzero entries of
A(m)

i and b(m)
i (i = 1, . . . , M) are listed in Additional file

1: Supplementary Text . Each of the surrogate functions
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in (5) can be minimized by solving the linear system β i =
[ β

(m)
i ]T [ A(m)

i ]−1 by the Tri-diagonal Matrix (TDM) algo-
rithm [44]. This results in a per-iteration computational
cost of O(MN). This algorithm is empirically observed
to achieve an exponential convergence rate [25], although
we do not yet have an analytic proof. In practice, this
method scales well with joint analysis of tens to hundreds
of samples with measurements at millions of locations,
with limitations dictated by memory requirements. For
analysis of real data, we suggest one or a group of sam-
ples to be analyzed chromosome by chromosome, since a
CNV region can never extend beyond one chromosome to
another. Actual computation times are shown along with
different examples in the results section. Readers might be
interested in comparing the outlined approach with other
segmentation methods that are not based on the use of �1
penalties, as [45].

Stacking observations at different genomic locations
While copy number is continuously defined across the
genome, experimental procedures record data at dis-
crete positions, for which we have used the indexes j =
1, . . . , N . In reality, repeated evaluations of the same sam-
ple (or related samples) will typically result in measure-
ments at only partially overlapping genomic locations,
either because different platforms use different sets of
probes or missing data occur at different positions across
the sequences. For example, for mBAF and LRR measure-
ments from the same experiment on the same subject, the
mBAF signal is defined on a subset of the locations where
the LRR signal is defined.

Let S indicate the union of all genomic positions where
some measurement is available among the M signals
under study. And let Si be the subset of locations with
measurements in sequence i. We reconstruct βij for all
j ∈ S. When j /∈ Si, βij will be determined simply on the
basis of the neighboring data points, relying on the regu-
larizations introduced in (3). The goodness-of-fit portion
of the objective function is therefore redefined as

1
2

M∑
i=1

N∑
j=1

(δijyij−δijβij)
2 with δij =

{
1, if j ∈ Si,
0, otherwise.

(6)

The MM strategy previously described applies with
slight modifications of the matrix A(m)

i (see Additional file
1: Supplementary Text).

The attentive reader will have noted that the yij values
with j /∈ Si can be considered missing data, and evalua-
tion of the missingness pattern is appropriate. In general,
the yij cannot be considered missing at random. The most
important example is the case of mBAF, where homozy-
gous markers result in missing values. Homozygosity is

clearly more common when copy number is equal to 1
than when copy number is equal to 2. Therefore, there
is potentially more information on βij to be extracted
from the signals than what we capture with the proposed
method. Although most of the information on deletions is
obtained through LRR, BAF does convey additional infor-
mation on duplications, where the changes in LRR are
limited by saturation effects. On the other hand, it does
appear that our method does not increase the rate of false
positives. Hence, it can be considered as an operational
improvement over segmentation based on LRR only, even
if in theory, it does not completely use the information on
BAF.

Choice of tuning constants and segmentation
One of the limitations of penalization procedures is that
values for the tuning parameters need to be set, and
clear guidelines are not always available. Path methods
that obtain a solution of the optimization problem (3) for
every value of a tuning parameter can be attractive, but
recent algorithmic advances [35,41,42] remain impracti-
cal for problems of the size of ours. A number of recent
publications obtain optimal values of penalty parameters
under a series of conditions [46-49]. We rely on these find-
ings to propose a strategy for obtaining a solution of (3)
for reasonably liberal values of the tuning parameters, fol-
lowed by a sequence-by-sequence hard thresholding of
the detected jumps with a data-adaptive threshold.

We have found the following guidelines to be useful in
choosing penalty parameter values:

λ1,i = c1σ̂i,

λ2,i = ρ(p)c2σ̂i
√

log N , (7)

λ3,i =[ 1 − ρ(p)] c3σ̂i
√

pM
√

log N ,

for i = 1, . . . , M, where σ̂i is a robust estimate of stan-
dard deviation of yi, p is roughly the proportion of the
M sequences we anticipate to carry CNVs, and c1, c2 and
c3 are positive multipliers adjusted to account for differ-
ent signal-to-noise ratios and CNV sizes. We discuss the
function ρ below.

While a more rigorous justification is provided in the
Additional file 1: Supplementary Text, we start by under-
scoring some of the characteristics of this proposal.

• The sequence-specific penalizing parameters are
proportional to an estimate of the standard deviation
of the sequence signal. In other words, after initial
normalization, the same penalties would be used
across all signals.

• The tuning parameter for the total variation (fused
lasso) and the Euclidean (group fused lasso) penalties
on the jumps depend on

√
log N , where N is the

possible number of jumps. This has a “multiple
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comparison controlling” effect and resembles rates
that have been proven optimal under various sparse
scenarios [46-49]. This term does not appear in the
expression of λ1, as the lasso penalty can be
understood as providing a soft thresholding of the
solution of (3) when λ1 = 0. Given the penalization
due to λ2 and λ3, the solution of (3) when λ1 = 0 will
have much smaller dimension than N .

• The group penalty depends on
√

M, where M is the
number of grouped sequences, as in the original
proposal [33].

• The relative weight of the fused-lasso and
group-fused-lasso penalties is regulated by ρ, which
depends on p, the proportion of the M sequences
expected to carry the same CNV. For example, if
M = 2 and the two sequences record LRR and mBAF
from the same individual, one expects p = 1 with
ρ = 0, enforcing jumps at identical places in the two
signals. Or, when studying the sequences relative to
one parent and her/his offspring, it is reasonable to
set p = 1/2, reflecting the fact that the two share half
of their genome. For completely unrelated sequences,
p = 0 and ρ = 1. In this setting, p is defined by
genome-wide characteristic of the samples. However,
when analyzing specific genomic segments,
corresponding to copy number polymorphisms, it is
possible to use p to reflect the population frequencies
of each of the copy number variants. We do not
consider the problem of estimating a variable p in the
present work.

The standard deviation σ̂i can be estimated robustly as
follows. Let 	ij = yi,j+1 − yi,j, for j = 1, . . . , N − 1, be the
first-order differences of adjacent yij for sequence i. Then
most Var(	ij) = 2σ 2

i except those bridging real change
points, so we can take

σ̂i = ŜD(�i)/
√

2,

where ŜD(�i) = Standard Deviation(�i) or ŜD(�i) =
Median Absolute Deiviation(�i) for �i = {	i,1, . . . ,
	i,N−1}.

As mentioned before, the exact values of the penalty
parameters should be adjusted depending on the expecta-
tions of signal strengths. Following the approach in [50],
one can approximate the bias induced by each of the
penalties and hence work backwards in terms of accept-
able levels. As detailed in Additional file 1: Supplementary
Text,

Bias(λ1) ∝ λ1

Bias(λ2) ∝ λ2/Length of segment
Bias(λ3) ∝ λ3/

(
Length of segment

×√
# sequences sharing segment

)

Following again the approach in [50], one can show that
under some relatively strong assumptions, the choices in
(7) lead to a consistent behavior as N → ∞ and M
stays bounded (see Additional file 1: Supplementary Text).
Despite the fact that N is indeed large in our studies, it
is not clear that we can assume it to be in the asymptotic
regime. As finer scale measurements become available,
scientists desire to investigate CNVs of decreasing length.
The CNVs we are interested in discovering are often cov-
ered by a small number of probes. Furthermore we have
often little information on the sizes and frequencies of
CNVs. In this context, we find it advisable to rely on a
two-stage strategy:

1. Sequences are jointly segmented by minimizing (3)
for a relatively lax choice of the penalty parameters.

2. Jumps are further thresholded on the basis of a
data-driven cut-off.

Step 2 allows us to be adaptive to the signal strength and
can be carried on with multiple methods. For example,
one can adopt the modified Bayesian Information Crite-
ria (mBIC) [51]. For sequence i, the jumps are sorted as
{d̂i(1), . . . , d̂i(N−1)} in the descending order of their abso-
lute values. Then we choose the first k̂ change points
where k̂ is given by

k̂ = arg max
k

mBIC(k).

In data analysis, we often apply an even simpler proce-
dure where the threshold for jumps is defined as a fraction
of the maximal jump size observed for every sequence.
Specifically, for sequence i, let D̂i = max2≤j≤N {|d̂ij|},
where d̂ij = β̂ij − β̂i,j−1 is the largest observed jump for
sequence i. Then we define

γi = max{aσ̂i, min{D̂i, bσ̂i}}, for a < b,

as a “ruler” reflecting the scale of a possible real jump size,
taking cγi as the cut-off in removal of most small jumps. In
all analyses for this paper, we fix a = 1, b = 5 and c = 0.2.
In our experience, this heuristic procedure works well for
both tumor and normal tissue CNV data.

Calling procedure
Even if this is not the focus of our proposal, in order
to compare the performance of our segmentation algo-
rithm with HMM approaches, it becomes necessary to
distinguish gains from losses of copy number. While the
same segmentation algorithm can be applied to a wide
range of data sets, calling procedures depend more closely
on the specific technology used to carry out the experi-
ments. Since our data analysis relies on Illumina genotyp-
ing arrays, we limit ourselves to this platform and briefly
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describe the calling procedure adopted in the results
section.

Analyzing one subject at the time, each segment with
constant mean is assigned to one of five possible copy
number states (c = 0, 1, 2, 3, 4). Let R collect the indexes
of all SNPs comprising one segment and let (xR, yR) =
{(xj, yj), j ∈ R} be the vectors of values for BAF and LRR in
the segment. On the basis of typical patterns for BAF and
LRR in the different copy number states (see [10,13,18]),
we can write log-likelihood ratio

LR(c) = log
LBAF(xR; c)
LBAF(xR; 2)

+ log
LLRR(yR; c)
LLRR(yR; 2)

, c = 0, 1, 3, 4,

(8)

explicitly defined in Additional file 1: Supplementary Text.
Segment R is assigned a CNV state ĉ that maximize LR(c),
only if LR(ĉ) > r1, where r1 is a pre-specified cut-off.

As noted in [16], the LRR data for a segment with c = 2,
ideally normalized to have mean 0, often has a small non-
zero mean due to experimental artifacts. If the number of
SNPs in R is sufficiently large, the above log-likelihood-
ratio criterion would result in the erroneous identification
of a copy number different from 2. To avoid this, we also
require that the size of the absolute difference of the mean
of LRR from zero be larger than a threshold |ȳR| > r2σ .

Results and discussion
We report the results of the analysis of two simulated and
two real data sets, which overall exemplify the variety of
situations where joint segmentation of multiple sequences
is attractive, as described in the motivation section. In
all cases, we compare the performance of the proposed
procedure with a set of relevant, often specialized, algo-
rithms. The penalized estimation method we suggest in
this paper shows competitive performance in all cases and
often a substantial computational advantage. Its versatility
and speed make it a very convenient tool for initial explo-
ration. To calibrate the run times reported in the sequel,
we state for the record that all of our analyses were run on
a Mac OS X (10.6.7) machine with 2.93 GHz Intel Core 2
Duo and 4 GB 1067 MHz DDR3 memory.

Simulated CNV in normal samples
We consider one of the simulated datasets described
in [25] with relatively short deletions and duplications
(300 comprising 5, 10, 20, 30, 40, 50 SNPs each) are
inserted in the middle of 13000 SNPs long sequences,
using a combination of male and female X chromosome
data from the Illumina HumanHap550 array, appropri-
ately pre-processed to avoid biases. These steps included a
scrambling of SNP positions so as to avoid long-range sig-
nal fluctuation. This setting mimics the small rare CNVs
possibly occurring in the genome of normal individuals.

In our main analysis, therefore, we process one individ-
ual at the time, reflecting the typical level of information
available to scientists in these contexts. HMM methods,
like PennCNV, are expected to be the most effective in
this problem; segmentation methods like CBS are closer
to our own and therefore also make an interesting com-
parison. As repeatedly discussed, the Illumina platform
produces two signals for one subject, LRR and BAF. A
segmentation method that can process one signal at the
time would give its best results using LRR, which car-
ries most of the information. Given this background, we
compare four methods: PennCNV, CBS on LRR, fused
lasso on LRR only, and group fused lasso on LRR and
mBAF. The implementations we use are those reflected
in the software packages: PennCNV (version 2010May01),
R package DNAcopy for CBS (version 1.24.0) [52] and
our own R package Piet (version 0.1.0). Tuning parame-
ters for PennCNV and CBS are set at the default values;
the fused lasso implementation corresponds to λ1 = 0.1,
λ2 = 2 × √

13000, and λ3 = 0 and the group fused lasso
to λ1 = 0.1, λ2 = 0, and λ3 = 2 × √

13000. To call
deletions and duplications with CBS and the two fused-
lasso approaches, we use both LRR and BAF data (prior to
transformation to mBAF) with the following cut-off val-
ues: r1 = 10 and r2 = 1(1.5) for duplication (deletion).
Performance is evaluated by the same indexes we used in
[25], the true positive rate (TPR or sensitivity) and the
false discovery rate (FDR), all defined on a per SNP basis.
Results are summarized in Table 1.

Not surprisingly, all algorithms perform similarly well
for larger deletions/duplications, and it is mainly for vari-
ants that involve 10 or fewer SNPs that differences are vis-
ible. Algorithms that rely only on LRR (for example, CBS
and fused lasso) underperform in the detection of small
duplications. Comparison is particularly easy for dupli-
cations involving 10 SNPs, where the selected parame-
ter values lead to similar FDRs in the three segmenta-
tion methods. The group fused lasso can almost entirely
recover the performance of PennCNV and outperforms
CBS in this context.

Out of curiosity, we analyzed all sequences simultane-
ously. While this represents an unrealistic amount of prior
information, it allows us to evaluate the possible advan-
tages of joint analysis. FDR practically became 0 (<0.02%)
for all CNV sizes, but power increases only for CNVs
including fewer than 10 SNPs.

Finally, it is useful to compare running times. Summary
statistics of the per sample time are reported in Table 1.
While all algorithms are rather fast, the two implementa-
tions of the fused lasso dominate.

A simulated tumor data set
To explore the challenges presented by tumor data, we
rely on a data set created by [17], with the specific goal of
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Table 1 Detection accuracy and computation time of four methods on simulated normal samples

CNV size CNV type PennCNV CBS Fused Lasso Group Fused Lasso

TPR FDR TPR FDR TPR FDR TPR FDR

5 Deletion 83.80 4.92 78.20 0.68 63.93 1.74 64.27 1.83

Duplication 58.53 4.67 11.67 10.26 20.00 37.76 39.87 14.33

10 Deletion 95.03 1.45 88.37 0.56 88.50 0.60 88.87 0.56

Duplication 93.43 0.78 56.50 4.40 83.90 12.60 91.60 3.85

20 Deletion 94.63 0.58 90.50 0.39 90.80 0.47 90.83 0.47

Duplication 96.13 0.92 86.22 3.58 92.77 4.95 94.98 2.13

30 Deletion 94.57 0.28 93.30 0.29 89.38 0.52 89.77 0.53

Duplication 96.09 0.05 90.77 1.61 94.32 1.78 94.98 1.29

40 Deletion 97.83 0.59 97.58 0.09 97.28 0.19 97.28 0.19

Duplication 94.61 0.46 92.77 0.98 93.94 1.15 94.63 0.75

50 Deletion 94.33 0.07 92.76 0.04 90.47 0.11 90.48 0.11

Duplication 94.50 0.09 93.81 0.74 93.11 0.79 93.64 0.49

Overall Deletion 95.02 0.55 93.06 0.19 91.08 0.33 91.19 0.34

Overall Duplication 93.82 0.44 86.92 1.55 90.56 2.85 92.46 1.38

Overall 94.42 0.49 89.99 0.85 90.82 1.60 91.83 0.87

Time (sec.) 0.48 (0.01) 0.78 (0.69) 0.22 (0.13) 0.28 (0.05)

TPR and FDR are measured as the percentage of related SNPs. Overall accuracy is calculated by pooling all sequences with a given type of CNV. Also reported are the
average and standard deviation of the number of seconds required for the analysis of one sequence.

studying the effect of contamination between normal and
cancer cells. The HapMap sample NA06991, genotyped
on the Illumina HumanHap550 array, was used to simu-
late a cancer cell line by inserting a total of 10 structure
variation regions, including one-copy losses, one-copy
gains, and copy neutral loss-of-hetrozygosity (CN-LOH)
(see Additional file 2: Table S1). The signal from this artifi-
cial “tumor” sample was then contaminated in silico with
that of the original “normal” sample, resulting in 21 data
sets, with a percentage of normal cells ranging from 0%
to 100%. Note that most simulated CNV or CN-LOH
regions are very large (some spanning an entire chromo-
some), and the challenge in detection is really due to the
contamination levels.

For ease of comparison, we evaluate the accuracy of call-
ing procedures as in the original reference [17]. Sensitivity
is measured for each variant region as the percentage
of heterozygous SNPs that are assigned the correct copy
number, and specificity is measured as the percentage
of originally heterozygous SNPs in unperturbed regions
that are assigned CN=2. We compare the performance
of GFL to BAFsegmentation [17] and PSCN [53] repre-
senting, respectively, a version of segmentation and HMM
approaches specifically developed to deal with contami-
nated tumor samples. Both of these algorithms have been
tested with success on this simulated data set.

Following other analyses, we do not pre-process the
data prior to CNV detection. BAFsegmentation and PSCN

were run using recommended parameter values. For each
of the diluted data sets, we applied the GFL model on each
chromosome, simultaneously using both LRR and mBAF,
whose standard deviations are normalized to 1. Tuning
constants are set to λ1 = 0, λ2 = 0.5 × 3 × √

log N , and
λ3 = 0.5 × 3 × √

log N for chromosomes interrogated by
N SNPs. The change points resulting from hard segmen-
tation on LRR and mBAF are combined to make a finer
segmentation of the genome. Finally, we adopt the same
calling procedure described by [17]. For ease of compari-
son with PSCN, only analyses of simulated tumor data are
reported, even if BAFsegmentation and GFL would gain
from using the genotype of the normal cell in defining
mBAF.

Figure 1 summarizes the sensitivity of each method, as
a function of the percentage of normal cells in the sam-
ple. Sensitivity is calculated for each of the 10 regions
separately. All three methods work reasonably well under
a wide range of percentages of normal cell contamina-
tion. In 5 out of the 10 regions, GFL appears to lead
to best results, while in the other 5, PSCN does. The
CNV region involving the fewest SNPs is the hemizy-
gous loss on Chromosome 13. In this case GFL in our
hands behaved in the most stable manner. GFL outper-
forms the two comparison methods in terms of specificity
(Figure 2). While the specificity values might appear very
high in any case, this is somewhat an artifact of how
we define this index. In the interest of fairness, it is
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Figure 1 Sensitivity as a function of percentage contamination by normal cells in the 10 different simulated CNV regions. Sensitivity is not
defined at 100% contamination.

relevant to note that the performance of PSCN in our
hands did conform to the published performance [53].
While we tried our best to set the parameter values, we
have not succeeded in replicating the authors’ original
results.

PSCN, like GFL, is implemented in R with some com-
putationally intensive subroutines coded in C. BAFseg-
mentation relies on the R package DNAcopy, whose core
algorithms are implemented in C and Fortran. BAFseg-
mentation wraps these in Perl. A comparison of run times
indicate that GLF and BAFsegmentation are comparable,
while PSCN is fifty times slower than GFL (see Additional
file 3: Table S2).

One sample assayed with multiple replicates and multiple
platforms
We use the data from a study [54] assessing the per-
formance of different array platforms and CNV calling

methods to illustrate the advantages of joint analysis of
multiple measurements on the same subject. DNA from
four individuals was analyzed in triplicate on each of 5
platforms: Affymetrix 6.0, Illumina 1M, 660W, Omni1-
Quad (O1Q) and Omni2.5-Quad (O2Q) (among others
[54]). We use the results on the first three to define “true”
copy numbers and try to reconstruct them using data from
O1Q and O2Q. The nine “reference” experiments were
analyzed with 4 or 5 CNV calling algorithms [54] and a
CNV was identified using majority votes. Consistent evi-
dence was required from at least 2 analysis tools, on at
least 2 platforms, and in at least 2 replicates (see Addi-
tional file 4: Table S3). Here overlapping CNVs detected
in two replicates/algorithms/platforms are collapsed to a
single CNV.

The test experiments are based on 1,020,596 and
2,390,395 autosomal SNPs, which after quality control
reduce to a total of 2,657,077 unique loci. Since our focus
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Figure 2 Specificity as a function of percentage contamination by normal cells. Note that [53] reports better performance of PSCN in dealing
with contamination levels of 85%, 95% and 100%.

here is to investigate how to best analyze multiple signals
on the same subject, rather than on the specific properties
of any CNV calling method, we carry out all the analy-
ses using different settings of GFL in segmentation while
keeping the same CNV calling and summarizing proce-
dures. All segmentation is done on LRR only, while calling
procedure uses both LRR and BAF (with cut-off r1 = 10
and r2 = 1). Here we compare three segmentation settings
to analyze these 6 experiments per subject (see Additional
file 5: Table S4 for more details about tuning parameters):

1. The signals from the three technical replicates with
one platform are averaged and then segmented and
subjected to calling procedure separately. The final
CNV list is the union of CNV calls from the two
platforms.

2. The signals from the three technical replicates with
one platform are each segmented and separately
subjected to calling. A majority vote of at least two
out of three is used to summarize each CNV result
for each platform. The final CNV list is the union of
the two platforms’ lists.

3. The signals from the three technical replicates of both
platforms (6 LRR sequences) are segmented jointly.

Calling is still done on each replicate separately, and
the same majority vote is used to summarize the
CNV result for each platform. Again, the final CNV
list is the union of the two platforms’ results.

To benchmark the result of joint analysis, we use
MPCBS [20], a segmentation method, specifically
designed for multi-platform CNV analysis. The segments
output from MPCBS are subjected to the same calling,
majority voting, and summarizing procedures.

Table 2 presents our results. Averaging from different
technical replicates leads to loss of power, while joint
analysis of all the signals leads to the most effective per-
formance. GFL joint analysis leads to results comparable
to those of MPCBS, but it is at least 30 times faster than
MPCBS.

Multiple related samples assayed with the same platform
In the context of a study of the genetic basis of bipo-
lar disorder, the Illumina Omni2.5-Quad chip was used
to genotype 455 individuals from 11 Columbian and 13
Costa Rican pedigrees. We use this data set to explore the
advantages of a joint segmentation of related individuals.
In the absence of a reference evaluation of CNV status in

Table 2 Comparison of four CNV analyses on four real normal samples

Analysis NA15510 NA18517 NA18576 NA18980 Time (min.)

#Det. #Ovlp. #Det. #Ovlp. #Det. #Ovlp #Det. #Ovlp

Analysis 1 170 38 144 34 160 25 145 22 1.2

Analysis 2 102 36 109 33 93 25 91 20 3.7

Analysis 3 80 38 82 32 69 25 56 15 8.5

MPCBS 98 34 88 28 59 18 68 21 313.9

The number of CNV detected (Det.) and overlapping (Ovlp.) and the average computation time (in minutes) for each sample under the different analyses.
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these samples, we rely on two indirect methods to assess
the quality of the predicted CNVs. We used the collec-
tion of CNVs observed in HapMap Phase III [5] to compile
a list of 426 copy number polymorphisms (selecting all
those CNVs with frequency ≥ 0.05 in pooled samples
from 11 populations) and assumed that if we identify in
our sample a CNV corresponding to one of these regions,
we should consider it a true positive. For the purposes
of this analysis we considered a detected CNV to cor-
respond to one identified in HapMap if there was any
overlap between the two regions.

Another indirect measure of the quality of CNV calls
derives from the number of Mendelian errors encoun-
tered in the pedigrees when we consider the CNV as a
segregating site. De novo CNVs are certainly a possibil-
ity, and in their case Mendelian errors are to be expected.
However, when the CNV in question is a common one
(already identified in HapMap), it is reasonable to expect
that it segregates in the pedigrees as any regular polymor-
phism. We selected a very common deletion on Chromo-
some 8 (HapMap reports overall frequency > 0.4 in 11
populations) and compared different CNV calling proce-
dures on the basis of how many Mendelian errors they
generate.

As mentioned before, PennCNV represents a state-of-
the-art HMM method for the analysis of normal sam-
ples and, therefore, we included it in our comparisons.
However, the parameters of the underlying HMM algo-
rithm had not been tuned on the Omni2.5-Quad at this
time, resulting in sub-standard performance. Segmenta-
tion methods are less dependent on parameter optimiza-
tion; hence, GFL analysis of LRR and BAF one subject
at a time can provide a better indication of the potential
of single-sample methods. We considered two multiple-
sample algorithms: GFL and MSSCAN [16], both applied
on LRR with the group structure defined by pedigree
membership. (While a trio-mode is available in PennCNV
[55], this does not adapt to the structure of our fami-
lies.) A final qualification is in order. While the authors
of MSSCAN kindly shared with us a beta-version of their
software, we did not find it to be robust. Indeed, we were
unable to use it to segment the entire genome. However,
we successfully used it to segment Chromosome 8, so that
we could include MSSCAN in the comparison based on
Mendelian errors.

Prior to analysis, the data was normalized using the GC-
content correction implemented in PennCNV [29]. For
individual analysis, the GFL parameters were λ1 = 0.1,
λ2 = 0, and λ3 = 2 × √

log N , where N is the number of
SNPs deployed on each chromosome; for pedigree analy-
sis, the GFL parameters were λ1 = 0.1, λ2 = 0.5 × 2 ×√

log N , and λ3 = 0.5 × 2 × √
0.3M × √

log N , where M is
the number of individuals in each pedigree. For MSSCAN,
CNV size is constrained to be fewer than 200 SNPs, and
the maximum number of change points is set at 50. The
calling procedure with r1 = 10 and r2 = 1 was applied to
both the GFL and MSSCAN results.

Table 3 summarizes the total number of copy number
polymorphisms (CNPs) identified in our sample by dif-
ferent approaches and their overlap with known CNPs
from HapMap. For the purpose of this comparison we
considered a variant to be a CNP when its frequency in
our sample was at least 10%. All analysis modes of GFL
show a higher percent of overlap with the HapMap list
than the PennCNV list. It is also clear that GFL pedigree
analysis achieves a larger overlap with the HapMap data
than the GFL individual analysis. The time cost per sample
is reasonable and scales well with the increment of sample
size.

Table 4 summarizes the results of our investigation of a
154kb CNP region on Chromosome 8p (from 39,351,896
to 39,506,122 on NCBI Build 36 coordinate). All methods
but PennCNV show detected deletions only; this coin-
cides with the observation from HapMap data. We used
option Mistyping of Mendel (version 11.0) [56,57] to
detect Mendelian errors. Joint segmentation methods dis-
cover more hemizygous deletions than individual analysis,
resulting in fewer Mendelian errors. MSSCAN discovers
the largest number of hemizygous deletions. Figure 3
shows four families derived from a large pedigree where
3 out of 4 Mendelian errors are removed by joint
analysis.

Conclusions
We have presented a segmentation method based on
penalized estimation that is capable of processing mul-
tiple signals jointly. We have shown how this leads to
improvements in the analysis of normal samples (where
segmentation can be applied to both total intensity and
allelic proportions), tumor samples (where we are able to

Table 3 Comparison of three CNV analyses in the bipolar disorder study

Method #Detected CNVR #Overlap %Overlap Time (min.)

PennCNV 189 63 33.33% 3.44

GFL-Individual (LRR+BAF) 95 50 52.63% 3.90

GFL-Pedigree (LRR) 106 62 58.49% 1.57

The number and overlap of CNP regions with frequency ≥ 0.1 detected in our sample by different methods. These CNP regions were compiled from HapMap.
Computation time is given in minutes per sample.
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Table 4 Detected CNVs in a common deletion on Chromosome 8

Method #CN=0 #CN=1 #CN=3 #Families with Time (min.)
Mendelian errors

PennCNV 125 39 102 35 0.19

GFL-Individual 123 97 0 20 0.21

GFL-Pedigree 123 137 0 15 0.09

MSSCAN-Pedigree 123 154 0 15 0.11

Across the various algorithms, subjects are assigned to one of 4 copy numbers. For each algorithm, we report the total numbers of CN 
= 2 identified, the total number
of nuclear families with Mendelian errors, and the average computation time (in minutes) per sample for the analysis of Chromosome 8.

deal with contamination effectively), measurements from
multiple platforms, and related individuals. Given that
copy number detection is such an active area of research,
it is impossible to compare one method to all other avail-
able methods. However, for each of the situations we
analyzed, we tried to select state of the art alternative
approaches. In comparison to these, the algorithm we

present performs well. Its accuracy is always comparable
to that of the most effective competitor and its computa-
tion times are better contained. Given its versatility and
speed, GFL is, in our opinion, particularly useful for initial
screening.

There are of course many aspects of CNV detection,
ranging from normalization and signal transformation to
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Figure 3 CNV detection and Mendelian errors for a Central American pedigree. Displayed are four families derived from an extended pedigree.
Circles and squares correspond to females and males. The dashed line is used to indicate identical individuals. Beneath each individual, from top to
bottom, are CNV genotypes by PennCNV and by GFL. The subjects for whom PennCNV and GLF infer different CNV genotypes are highlighted in red
and blue. Red is used when PennCNV genotypes result in Mendelian error, while GFL genotypes do not. Blue is used when both genotypes are
compatible with Mendelian transmissions. Orange singles out a member for whom both PennCNV and GFL genotypes result in Mendelian error.
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FDR control of detected CNV, that we have not analyzed
in this paper. There are also a number of improvements
to our approach that appear promising, but at this
stage are left for further work. For example, it is easy to
modify algorithms so that the penalization parameters
are location dependent and incorporate prior informa-
tion on known copy number polymorphisms. It will
be more challenging to develop theory and methods to
select the values of these regularization parameters in a
data-adaptive fashion.

Finally, while our scientific motivation has been the
study of copy number variations, the joint segmentation
algorithm we present is not restricted to specific
characteristics of these data types, and we expect it will be
applied in other contexts.

Implementation and availablity
We have implemented the segmentation routine, which is
our core contribution, in an R package (Piet) available at
R-forge [58]. To demonstrate a visualization of the CNV
results on Chromosome 8 in the bipolar disorder study,
we refer readers to Additional file 6: Figure S1.
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Additional file 1: Supplementary Text. Specification of surrogate
function, justification of choice of tuning parameters, details of calling
procedure.

Additional file 2: Table S1. Regions of allelic imbalance imputed to the
HapMap sample NA06991.

Additional file 3: Table S2. Speed comparison of three methods: GFL,
BAFsegmentation and PSCN.

Additional file 4: Table S3. Sample information and reference CNV
regions summarized for each sample by their types and sizes.

Additional file 5: Table S4. Summary of results for four real samples
under different CNV analyses.

Additional file 6: Figure S1. Visualization of pedigree-wise CNV analysis
results of Chromosome 8 data in the bipolar disorder study. In the main
body of the plot, CNVs estimated for each individual are marked by small
segments with color code: CN=0 in blue, CN=1 in light blue, CN=3 in red
and CN=4 in brown. Each subject is a row, each SNP a column. Subjects
belonging to the same pedigree are stacked together. The pedigree names
are indicated on the left-hand side with the number of pedigree members
included in parentheses. On the right-hand side, the barplot represents the
number of CNVs detected per subject. Two shades of green are switched
alternately to indicate the pedigree to which the subject belongs. At the
bottom, the gray histogram shows the GC content along the chromosome.
Coordinated with the representation of CNVs in the main body, the green
histogram counts the frequency of CNVs among the subjects represented.
Vertical dotted line marks the centromere.
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