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many cutting-edge projects over the past
decade by designing, implementing, and
deploying artificial intelligence (AI)/
machine-learning (ML) solutions for
advanced regulatory sciences. Specifically,
Dr Liu developed a standard pipeline for

AI-powered drug repositioning to help the industry seek the optimal
route to accelerate drug-development efficacy from an advanced
regulatory-sciences perspective. Furthermore, Dr Liu developed AI/ML
solutions for promoting predictive toxicology, with successful models

adopted by the industry and regulators. His achievements have been

reflected by Dr Liu being awarded five FDA-wide Awards, nine NCTR-level

Awards, two scientific community-level awards, and by more than 100
peer-reviewed publications.
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The discovery and development of new medicines is
expensive, time-consuming, and often inefficient, with
many failures along the way. Powered by artificial intelli-
gence (AI), language models (LMs) have changed the
landscape of natural language processing (NLP), offering
possibilities to transform treatment development more
effectively. Here, we summarize advances in AI-powered
LMs and their potential to aid drug discovery and devel-
opment. We highlight opportunities for AI-powered LMs in
target identification, clinical design, regulatory decision-
making, and pharmacovigilance. We specifically empha-
size the potential role of AI-powered LMs for developing
new treatments for Coronavirus 2019 (COVID-19) strate-
gies, including drug repurposing, which can be extrapo-
lated to other infectious diseases that have the potential to
cause pandemics. Finally, we set out the remaining chal-
lenges and propose possible solutions for improvement.
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Introduction
A LM aims to determine the probability of a given sequence of words occurring
in a sentence by using different statistical and probabilistic techniques. Powered
by AI, a LM acts as a human-like learning process, not only to predict words, but
also to understand languages. Moreover, the knowledge gained by the LM can
be transferred to other tasks, as humans do when they routinely learn from
one task and transfer the knowledge to another. This innovative revolution
has massively empowered NLP. Consequently, AI-based LMs have proved their
use in a variety of real-world applications, such as chatbots, automated transla-
tions, customer experience, sentiment-based news aggregation, and language
identification.1 Here, the AI-powered LMs we describe are mainly focused on
LM based on a neural architecture.

Innovations in emerging biological technologies have made enormous
improvements to our understanding of disease etiology and pathogenesis.2,3

However, drug discovery and development remain a time-consuming and costly
process, beset by high failure rates and uncertainty.4 Significant efforts are being
invested in refining, revising, and reforming the de novo drug discovery and
development process, with particular emphasis on data-driven approaches to
new treatments, improved patient outcomes, and lower costs.5 With a rapid
increase in the quantity of biomedical data, a better understanding of the char-
acteristics of the data generated and the types of analysis that can be carried out
will be valuable in understanding the potential of data resources.6

Although attention tends to focus on ‘omics data and bioassays generated
from large technology platforms, text-based data remains a valuable information
resource in the drug discovery and development process. Thus, conventional
NLP-based approaches and tools have been developed to uncover hidden infor-
mation embedded in such documents.7 However, more advanced strategies are
urgently needed to harness a growing wealth of available data and to stay abreast
of the latest accumulated text-based documents. Notably, AI-powered LMs have
the potential to unlock new possibilities for drug development and usher in an
era of faster, cheaper, and more effective drug discovery and development.8

Several text-based documents and applications of AI-powered LMs have been
shown to be useful in different stages of drug discovery and development
(Fig. 1). During the preclinical stages, the incomplete understanding of the
pathophysiology of complex diseases is one of the significant hurdles for target
identification. Furthermore, animal models might not reflect the underlying
mechanisms of human disorders. During the clinical phases, patient selection,
recruitment, and monitoring pose a strategic challenge. During the post-
marketing phase, there are shortfalls in the ability of the current system to effec-
tively and efficiently detect, interpret, and analyze safety signals. In addition,
complexity in the regulatory submission process could hinder harmonized com-
munication between pharmaceutical companies and regulatory agencies. In this
review, we provide an overview of tangible opportunities for AI-powered LMs in
drug discovery and development, and offer potential solutions for key remain-
ing challenges.
AI-powered language models
Rapidly evolving LMs have enormously increased our ability to uncover action-
able insights from text (Box 1). Powered by AI, many intriguing LM infrastruc-
tures, particularly transformer-based LMs, have been developed and have
shown potential in information retrieval, text classification, text summariza-
tion, and sentiment analysis. The heart of transformer-based LMs is sequence-
to-sequence learning (Seq2Seq) through self-attention and positional encoding,
which has changed the way we work with text data, from processing language to
learning language9 (Box 2).

A Seq2seq model comprises a combination of an Encoder and a Decoder, aim-
ing to convert sequences from one domain (e.g., a sentence in English) to
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FIGURE 1
Artificial intelligence (AI)-powered language models in the context of drug discovery and development. The overall stages of the development process are
illustrated in the top layer (green), and the objectives from this process are captured in the layer below (blue). The text documents related to each stage are
listed, and the opportunities of AI-powered language models are summarized in the following two layers (yellow and pink). Abbreviations: PD,
pharmacodynamics; PK, pharmacokinetics.
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another (e.g., the exact meaning of the sentence in French).10

Deep-learning model architectures, such as recurring neural net-
work (RNN) or long short-term memory (LSTM), could be used
for Encoder and Decoder development. The Encoder takes the
sequence as an input and maps the sequence into internal state
vectors or context vectors, where the output of the Encoder is
then discarded. The generated context vector could encapsulate
input sequence information to facilitate the prediction of the
Decoder. The training process of the Decoder is referred to as
‘teach forcing’. Specifically, the Decoder takes the extracted con-
text vector of the Encoder as the initial state to generate the out-
put sequence. These outputs are also taken into consideration for
future outputs. Seq2seq models have been used to solve complex
NLP tasks, such as Machine Translation, Question & Answering
(Q&A), Chatbots, Text Summarization, and so on. LSTMs func-
tion through a cell, an input gate, an output gate, and a forget
gate, avoiding the problem of a vanishing gradient seen, for
example, with RNN.11,12 The main revolutionary part of trans-
former models is the possibility of directly accessing all positions
in the sequence, equivalent to having full random-access mem-
ory of the sequence during encoding/decoding.

Transformer-based LMs can mimic some human-like charac-
teristics of constant acquisition, fine-tuning, and transfer of
knowledge and skills (Fig. 2). First, transformer-based LMs can
offer a transfer learning framework.13 For this, the learned knowl-
edge is stored in a pretrained model, allowing users to be further
trained with incrementally available information or domain-
specific knowledge. One example is BioBERT, which is a pre-
trained language representation model derived by training the
original BERT model with biomedical corpora in PubMed.14 Bio-
BERT outperformed the original BERT base model in most
biomedical text-mining tasks, including biomedical named
entity recognition, biomedical relation extraction, and biomedi-
cal question answering. The same learning strategy was also
adopted by ClinicalBERT, which trained the BERT-based models
with electronic medical records (EHRs) data to enhance its clini-
cal application.15 Second, transformer-based LMs could be fine-
tuned based on the downstream task. A human can apply the
right knowledge to solve related questions; this function also
appears to be possible with transformer-based LMs. For different
tasks, the pretrained language models could be fine-tuned with
just one additional output layer to create state-of-the-art models
for a range of NLP tasks. For example, the same pretrained BERT
model, with one fine-tuning layer, yielded better model
performance for 11 state-of-the-art NLP tasks with large margins
compared with XXXX. These NLP tasks fall primarily into three
categories: text classification, textual entailment, and question
answering. More encouragingly, BERT is the first to outperform
the human-level performance for two tasks: the Stanford Ques-
tion Answering Dataset (SQuAD), and the Situations With Adver-
www.drugdiscoverytoday.com 2595
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Box 1 Evolution of language models.
LMs enable a computer to make sense of the human language by
estimating the probability distribution of various linguistic units
(e.g., words, sentences, paragraphs, etc.). LMs are mainly divided
into two categories: count-based and continuous-space LMs. The
classic example of count-based LM is n-gram, which aims to con-
struct the joint probability distribution of sentences to predict
the words.103 However, several drawbacks of n-gram LM have
limited its real-world applications: (i) the n-gram LM is not
capable of inferring new word sequence combinations that
were not encountered in the training corpus; and (ii) the n-
gram model is not able to take into consideration the semantic
relationship among words. The shortcoming of count-based
LMs led to the idea of continuous-space LM by applying
neural network or dimension reduction techniques to extract
syntactic and semantic features of languages.104 Most
continuous-space LMs are neural probabilistic-based models.105

Mikolov et al.106 proposed Word2Vec to generate vector
representation of words (i.e., word embeddings) by training a
shallow neural network to learn the similarities between
words. Word2Vec is one of the most widely used neural-based
LM and takes breakthroughs to the whole field. Along with
other word representation models, (e.g., GloVe107 and
FastText108), these word-embedding techniques require less
memory and decreased compute time, and have been shown
to improve downstream model performance drastically.
However, word embeddings provide a one-to-one relationship
between word and vector representation that does not solve
the problem of polysemous words. Subsequently, RNNs and
LSTM were proposed to handle the processing of textual
sequence data.12 However, the two algorithms suffer from a
vanishing gradient problem and have a difficulty in dealing
with long sequence sentences.98 The most innovative
groundbreaking NLP framework is transform-based LMs, and
the BERT model from Google is an outstanding example of
such an approach.16

Box 2 Architectures of transformer-based language models.
Two kinds of transformer developed with distinct learning sce-
narios currently dominate the field: BERT and Generative Pre-
trained Transformer (GPT) models.BERT and its derivatives are
built using a complete encoder-decoder transformer, which is
fine-tuned for downstream NLP tasks.16 The BERT-based model
architecture is task agnostic. There is a need for task-specific
data sets and task-specific fine-tuning to achieve optimized
model performance. However, it could be challenging to
collect task-specific labeled data, especially in the biomedical
domain. Furthermore, the generalization made under this
paradigm can be inadequate because the model is overly
specific to the training distribution and does not generalize
well outside it. Two kinds of strategy were developed to
overcome these shortcomings. First, the training material was
increased in size and diversity to enhance model
generalizability for different NLP tasks. One example is the
Robustly Optimized BERT Pretraining Approach (RoBERTa).109

Besides the original BERT training corpus, RoBERTa extends
the training corpus with news and stories corpora from
Common Crawl.110 Subsequently, the model outperformed by
2–20% both BERT and XLNet on GLUE benchmark results
with a dynamic masking training strategy. Second, adjusted
training strategies were developed to improve model
performance. Examples, including ARBERT,27 ELECTRA,26 and
DistillBERT,25 provided lite model architectures without losing
predictive model performances.GPT models are autoregressive
transformer-based LMs. The models have a task-specific
learning architecture without an intensive fine-tuning process.
GPT models used the ‘in-context learning’ concept, in which
models develop a broad set of skills and pattern recognition
abilities at training time and then use those abilities at
inference time to adapt to or recognize the desired task rapidly.
GPT-3 was released recently, comprising a huge transformer
model with 175 billion parameters trained with 45 Tb of
compressed plaintext from Common Crawl, plus high-quality
reference corpora, such as Wikipedia.111 The GPT-3 model was
demonstrated to achieve better state-of-the-art results for
various NLP tasks with few-shot learners in task-specific data
sets.

KEYNOTE (GREEN) Drug Discovery Today d Volume 26, Number 11 d November 2021
sarial Generations (SWAG).16 Third, transformer-based LMs are
capable of summarizing the knowledge embedded in different
documents. One of the human learning abilities is to accurately
sum up information in documents and turn it into useful knowl-
edge. The long sequence-based transformer model has been
demonstrated to generate fluent, coherent multisentence para-
graphs; even whole Wikipedia articles could be created this
way as a multidocument summarization of source documents.17

However, the vast computational memory requirement of long
sequence summarization models has limited their applications.
The newly proposed Reformer model of Google shows a tremen-
dously increased capability for handling long sequences gained
by adopting a locality-sensitive hashing technique, which will
significantly expand the horizon of multidocument
summarization.18
Selection of ‘fit-for-purpose’ AI-powered language
models
The diversity of transformer-based LMs has massively enhanced
capabilities in tackling unstructured text for various real-world
applications. However, it is challenging to select and reposition
2596 www.drugdiscoverytoday.com
the transformer-based LMs in the context of biomedical applica-
tions. The implementation of a ‘fit-for-purpose’ transformer-
based LM in drug discovery and drug development is multifacto-
rial; significant factors are the availability of domain-specific
training data sets, downstream NLP tasks, and computational
power. Crucial steps essential for selecting a ‘fit-for-purpose’ AI-
based LM in drug discovery and development are ‘define a pur-
pose’, ‘manage data availability’, and ‘measure scalability’.

Define a purpose
AI-powered LMs have potential at every stage of drug discovery
and development, but it is essential to define the purpose before
seeking the right AI solution. For example, a scientist at a phar-
maceutical company might need to understand the biological
role of a protein target and then collate the patents on therapeu-
tic categories to support target identification and validation. For
this, an AI-powered Q&A system that can aggregate publicly
available literature and medical patent databases might be the
right solution. Patient recruiters might be more interested in
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FIGURE 2
Comparison of artificial intelligence (AI)-powered language models and human intelligence: (1) Transfer learning (green); (2) Apply knowledge (blue); and (3)
summarize knowledge (yellow).
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looking for an automated route to prioritize clinical sites and
patients. Accordingly, an AI-based contextual-based patient-
matching system might be useful. Drug dossier reviewers might
be more interested in a powerful tool to detect safety signals from
clinical documents. For this, AI-powered biomedical named-
entity recognition (NER) and entity relation extraction
approaches could be options. Given the diversity of data and
‘needs’, defining a purpose for any data-driven hypothesis
becomes a priority.
Manage data availability
A large body of the text is required to train AI-based language
models. The current publically available pretrained LMs are
mainly trained based on general knowledge, such as books, news,
webpages, social media, and Wikipedia. A few domain-specific
LMs, such as BioBERT14 and ClinicalBERT,19 have been proposed
to enhance the clinical application by using publicly available
biomedical literature or deidentified EHRs. However, labeled data
are still required for the fine-tuning process and to enable the
model fit for downstream tasks. However, the curation of labeled
data is a challenging and time-consuming process, in which sig-
nificant domain expertise and knowledge are necessary. Further-
more, data generated across drug discovery and development
might be company sensitive, posing a challenge around data
sharing in LM development.20,21 Consequently, it is recom-
mended to have a clear view of data availability and the effort
required to curate labeled data before selecting a suitable AI-
powered LM.
Although data annotation is still the bottleneck in AI-powered
LM development, several successful examples exist that can stim-
ulate interest in the community to accelerate further and pro-
mote ‘labeled data’ development in the biomedical field. First,
crowd-sourced biomedical labeling could be an effective way to
curate domain-specific labeling data. The concept of crowd-
sourced biomedical labeling aims to outsource biomedical data
annotation to a distributed ‘crowd’ of experts worldwide. Some
business models, such as Amazon Mechanical Turk, have been
developed for this purpose. We recommend establishing a
voluntary-based biomedical labeling consortium to facilitate
biomedical data annotation. Second, a reorganization of publicly
available biomedical corpus would be useful for addressing speci-
fic BioNLP tasks. For example, the combined different domain-
specific corpus could be a practical approach to creating anno-
tated bioconcept ambiguity data.22 Third, labeling tools could
be a solution to facilitate the manual data curation and annota-
tion process. The most common starting point is an Excel/Goo-
gle spreadsheet to handle common labeling tasks, such as part-
of-speech and named entity recognition labeling. However, this
could be error-prone because typographic errors in transcription
are common and the cells and columns are not the most intu-
itive way to read a text document. For example, gene name errors
are common in scientific literature, with up to 30% of gene
names misrepresented.23 Some standard labeling tools, such as
Prodigy, LightTag, TagTog, and Datasaur.ai, provide more stan-
dardized solutions for offering customizability and handling
advanced NLP tasks.24
www.drugdiscoverytoday.com 2597
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TABLE 1

Selected examples of transformer-based language models.

Architectures BERT OpenAI GPT XLNet ALBERT RoBERTa ELECTRA DistillBERT

Pre-training
corpus

BooksCorpus and
English Wikipedia
Size: 16 Gb

8 million web pages
from Common Crawl
Size: unknown

Base: BooksCorpus
and English
Wikipedia
Size: 16 Gb

Large: BooksCorpus
+ English Wikipedia
+ Giga5 + ClueWeb
2012-B + Common
Crawl
Size: 113 Gb

BooksCorpus and
English Wikipedia
Size: 16 Gb

BooksCorpus + English
Wikipedia + Common
Crawl news dataset + Web
text corpus + stories from
Common Crawl
Size: 160 Gb

BooksCorpus and English
Wikipedia
Size: 16 Gb

BooksCorpus and English
Wikipedia
Size: 16 Gb

Model
Parameters

Base: 110M
Large: 340M

GPT-2: 1.5 billion
parameters
GPT-3: 1.7 billion
parameters

Base: 110M
Large: 340M

Base: 12M
Large: 18M

Base: 125M
Large: 355M

Small: 14M
Base: 110M
Large: 335M

Base: 66M

Training
strategies

Masked Language
Model (MLM) and
Next Sentence
Prediction (NSP)

process the input
text left-to-right,
predicting the next
word given the
previous context

Permutation-based
modeling

BERT with reduced
parameters for
sentence order
prediction

BERT with a dynamic
masking strategy. Without
Next Sentence Prediction
(NSP)

ELECTRA models are trained
to distinguish “real” input
tokens vs. “fake” input tokens
generated by another neural
network.

BERT base model with a
distillation loss function

Training time Base: 12 days with
8 Nvidia Tesla V100
GPUs
Large: 4 days with
64 TPUs or 1 day
with 280 Nvidia
Tesla V100 GPUs

Unknown Large: 2.5 days with
512 TPUs

Large: 1.7 faster
than BERT

1 day with 1024 Nvidia
Tesla V100 GPUs

Small: �4 days on a v100
GPU

3.5 days with 8 Nvidia
Tesla V100 GPUs

Feature
dimension

Base: up to 768
Large: up to 1024

GPT-2: Up to 1024
GPT-3: Up to 2048

Up to 4096 Base: up to 768
Large: up to 1024

Base: up to 768
Large: up to 1024

Small: up to 256
Base: up to 768
Large: up to 1024

Base: up to 768

Performance Outperformed
state-of-the-art in
11 NLP tasks

GP7-2 Achieves
state-of-the-art
results on 7 out of 8
tested language
modeling datasets

2%�15%
improvement over
BERT

Large: 3%
improvement over
BERT

outperforms 2%-20% both
BERT and XLNet on GLUE
benchmark results

Small: perform roughly in
between GPT and BERT-Base
in terms of GLUE
performance
Large: ELECTRA achieves
state-of-the-art results on the
SQuAD dataset

retaining 97%
performance of BERT base
model on GLUE
benchmark results

Weblink https://
github.com/google-
research/bert

GPT-2: https://
github.com/
minimaxir/gpt-2-
simple
GPT_3: https://
github.com/openai/
gpt-3

https://github.com/
zihangdai/xlnet

https://
github.com/google-
research/ALBERT

https://github.com/
pytorch/fairseq/
tree/master/examples/
roberta

https://github.com/google-
research/electra

https://github.com/
huggingface/transformers

References 13 90–91 92 21 89 20 19
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TABLE 2

Selected examples AI-based NLP applied in drug discovery.

NLP task Data set Algorithm Notes Source code Refs

Target identification
Biomedical Named

Entity Recognition
BC2GM; BC5CD;
NCBI -Disease;
JNLPBA

BioBERT A multi-ask (MT)-BioNER proposed for
biomedical named entity recognition using
BioBERT as shared layers and different data
sets in task-specific layers

https://
github.com/cambridgeltl/MTL-
Bioinformatics-2016

30

Gene–disease
relationship
extraction

DisGeNET:
database of
gene–disease
associations

Convolution
neural network
(CNN) and
attention-based
BiLSTM

Proposed Deep-GDAE integrates
specificities of CNN and an attention-based
BiLSTM to classify gene–disease
associations

https://github.com/
EsmaeilNourani/Deep-GDAE/

33

Biomedical text
summarization

PubMed BERT and
hierarchical
clustering
algorithm

Biomedical text summarizer (BERT-based-
Summ) proposed by interrogating BERT and
hierarchical clustering algorithm to extract
biomedical content summarization

https://github.com/
BioTextSumm/BERT-based-
Summ

34

Drug properties
prediction

1 million SMILE
codes of
compounds in
ChEMBL
database

BiLSTM-based
transfer learning

Transfer learning framework, MolPMoFiT, to
predict physical and biological endpoints,
such as lipophilicity and blood–brain barrier
penetration, for given compounds

https://github.com/
XinhaoLi74/MolPMoFiT

40

Virtual screening SMILES BERT MOLBERT model proposed by applying
BERT model to SMILES for virtual screening

https://github.com/
BenevolentAI/MolBERT

41

Reshape clinical trails
Patient–trial matching Patient EHR data ClinicalBERT Proposed DeepEnroll based on ClinicalBERT

jointly encodes enrollment criteria and
patient EHRs into shared latent space for
patient–trial matching

https://github.com/
deepenroll/DeepEnroll

46

Trial eligibility criteria Patient EHR data CrOss-Modal
PseudO-SiamEse
network
(COMPOSE)

COMPOSE aims to address challenges for
patient–trial matching; one path of network
encodes EC using convolutional highway
network

https://github.com/v1xerunt/
COMPOSE

112

Assist the regulatory process
Biomedical entity

normalization
Clinical notes;
PubMed
abstract; drug
labeling

BERT; BioBERT;
ClinicalBERT

Authors proposed entity normalization
architecture by fine-tuning pretrained BERT/
BioBERT/ClinicalBERT models and applying
them to SNOMED-CT coding, MedDRA
coding, and Medical Subject Headings
(MESH) coding

– 63

Disease coding Clinical notes
and ICD-10

BERT Authors proposed ML model, BERT-XML, for
large-scale automated ICD coding from EHR
notes

https://
github.com/suamin/multilabel-
classification-bert-icd10

64

Biomedical mention
disambiguation

CTDbase and
gene2pubmed

CNN with LSTM Authors developed biomedical corpus for
curating biomedical terms ambiguous
between one or more concept types; model
is used by interrogating LSTM and CNN

– 22

Advance postmarketing surveillance
ADR detection Twitter Bidirectional

BiLSTM
Authors proposed RNN model using
pretrained word embeddings created from
a large, nondomain-specific Twitter data set
for ADR extraction

https://github.com/chop-dbhi/
twitter-adr-blstm

113

Twitter Ensemble models
of BERT, BioBERT,
and ClinicalBERT

Authors proposed ensemble model by
integrating BERT, BioBERT, and ClinicalBERT
for ADR detection from social media data

– 75
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Measure scalability
The performance improvement of transformer-based LMs results
from increased data and model size, computational power, or
training procedures. Comparing similarities and differences
among popular AI-powered LMs frameworks (Table 1) is useful
to support model selection. First, speed matters in applying AI-
powered LMs in different tasks. For example, suppose the AI-
powered LM is targeted toward the patient-monitoring process.
In that case, a faster inference speed is set as the highest priority
to meet real-time data collection and analysis requirements.
Thus, the distilled model architecture, such as DistilBERT,25

ELECTRA,26 and ALBERT,27 might be a reasonable starting point,
although a few percentage points might compromise the predic-
tion performance. Second, AI-powered LM development
demands vast computation power. Larger documents and higher
model parameters lead to better performance, whereas more
www.drugdiscoverytoday.com 2599

https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/cambridgeltl/MTL-Bioinformatics-2016
https://github.com/EsmaeilNourani/Deep-GDAE/
https://github.com/EsmaeilNourani/Deep-GDAE/
https://github.com/BioTextSumm/BERT-based-Summ
https://github.com/BioTextSumm/BERT-based-Summ
https://github.com/BioTextSumm/BERT-based-Summ
https://github.com/XinhaoLi74/MolPMoFiT
https://github.com/XinhaoLi74/MolPMoFiT
https://github.com/BenevolentAI/MolBERT
https://github.com/BenevolentAI/MolBERT
https://github.com/deepenroll/DeepEnroll
https://github.com/deepenroll/DeepEnroll
https://github.com/v1xerunt/COMPOSE
https://github.com/v1xerunt/COMPOSE
https://github.com/suamin/multilabel-classification-bert-icd10
https://github.com/suamin/multilabel-classification-bert-icd10
https://github.com/suamin/multilabel-classification-bert-icd10
https://github.com/chop-dbhi/twitter-adr-blstm
https://github.com/chop-dbhi/twitter-adr-blstm
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computational power is a prerequisite to retrain these models
with the custom corpus. For example, if the AI-powered LMs
aim to identify potential adverse events from clinical notes, pre-
trained BioBERT or ClinicalBERT are appropriate options to test
the necessity of developing the model de novo. Third, an ensem-
ble approach might allow for further performance improvement.
For complicated drug discovery and development tasks, such as
patient recruitment, a single model might capture one aspect
of complexity, whereas a consensus approach might improve
patient matching.

AI-powered language models in drug discovery
AI offers great potential in drug discovery and development
(Table 2). Here, we highlight potential opportunities for AI-
powered LMs in different drug development stages and suggest
possible directions and solutions for further improvement.

Opportunity 1: AI-powered language models to accelerate
target identification
Target identification is one of the most crucial steps in the drug
discovery pipeline to establish the biological origin of disease and
design appropriate interventions.28 Typically, target identifica-
tion involves various considerations from both scientific and
economic perspectives. The project team, with experts from
diverse disciplines, need to define the disease area and the
expected therapeutic effects. Then, they need to look for poten-
tial biochemical, cellular, or pathophysiological mechanisms tai-
lored to the disease. Next, a comprehensive investigation of the
targets involving different tools might be conducted to further
prioritize targets for development. Importantly, the prioritized
targets should be competitive in terms of therapeutic efficacy,
safety, and intellectual property perspectives. However, the vast
array of information might be widely distributed in the public
domain literature, patent documents, and biomedical databases.
It is often too great a challenge to curate the data manually using
conventional simple search-based approaches.

AI-powered LMs can advance findings and accelerate target
identification. Automatic biomedical named entity recognition
(BioNER) is a practical approach to uncover the hidden relation-
ship among chemicals, genes, targets, and diseases embedded in
free-text documents.29 Khan et al.30 proposed a multiple-tasking
learning architecture for BioNER using the BioBERT. These
approaches outperformed state-of-the-art approaches, such as
bidirectional LSTM (BiLSTM), conditional random fields
(CRF),31 and multitask learning neural network with shared char-
acter and word layers (MTM-CW),32 for chemical, disease, and
gene entity recognition. Nourani et al.33 developed a hybrid
transfer learning framework (Deep-GDAE) for biomedical associ-
ation extraction from PubMed literature, which integrates
attrition-based BiLSTM and a convolutional neural network
(CNN) based on feature information extracted from BERT and
BioBERT base models. Deep-GDAE yielded a high performance
(79.8% of F-measure) for gene–disease relationship extraction.
Another promising application of AI-powered LMs is to summa-
rize the essential information from biomedical literature for
accelerating target identification. Moradi et al.34 applied the
BERT base and large models for biomedical text summarization
to create a synthetic abstract based on full PubMed articles. The
2600 www.drugdiscoverytoday.com
approaches achieved state-of-the-art results; performance could
be further improved by using domain-specific contextual embed-
ding from BioBERT.

The concept of transformer-based LM has been leveraged into
chemoinformatics to advance drug–target relationship predic-
tion.35 The Simplified Molecular Input Line Entry System
(SMILES) is a comprehensive yet straightforward chemical lan-
guage in which molecules and reactions can be specified using
ASCII characters representing atom and bond symbols. Similarly,
FASTA is useful in analyzing protein structure and function
because it finds regions of local or global similarity between pro-
tein or DNA sequences.36 Inspired by transformer-based pre-
trained LMs, the large body of information in SMILES or FASTA
files could be assimilated in the same way that humans do with
sentences to grasp the semantics of molecules and their relation-
ship to downstream tasks. Unlike early attempts at chemical
representation based on deep-learning frameworks, such as
Wod2vec and Variational Autoencoders (VAEs),37,38

transformer-based chemical representation incorporates the
attention mechanism (positional encoding) into the learning
process to maximize information extraction. One such example
is SMILES transformer, which trained 861 000 SMILES from the
ChEMBL database, a chemical bioassay repository. The learned
chemical representations were fine-tuned to different chemo-
physical properties, therapeutic targets, and toxicity predictions.
This approach significantly outperformed conventional
fingerprint-based strategies.39

Other AI frameworks have also been used for virtual screening
based on SMILE sequences. Li et al.40 proposed a transfer learning
framework, named Molecular Prediction Model Fine-Tuning
(MolPMoFiT), to predict physical and biological endpoints, such
as lipophilicity and blood–brain barrier penetration, for the
given compounds. The proposed MolPMoFiT comprised two
components. First, the authors developed a weight-dropped
LSTM model based on 1 million SMILE sequences in the
ChEMBL database to predict the masked atoms in the SMILE
sequencing. Second, a trained weight-Dropped LSTM model
was transferred and fine-tuned for downstream tasks. Similarity,
Fabian et al.41 also adopted the transfer learning framework by
training the SMILES sequences with BERT, which was then
applied for virtual screening of compound-binding affinity of
69 individual protein targets.

AI-powered LMs have the potential to assess unmet medical
needs and provide prioritized targets for high-throughput screen-
ing (HTS). The opportunity to accelerate understanding of the
current market and potential gaps could facilitate early drug
development planning. However, target identification still relies
on the generation of experimental data; AI-powered LMs have
the potential to promote understanding of the data and to sup-
port target identification and prioritization. Currently, AI-
powered LMmodels provide a more informative way to represent
text-based input as an n-dimensional vector or high-level repre-
sentation. However, to further improve target identification per-
formance, fine-tuned models are vital for different downstream
tasks. Some more comparative studies and evaluations appeared
to set out the pros and cons of AI-powered models compared
with conventional approaches, potentially guiding the fit-for-
purpose selections of different AI models.
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Opportunity 2: AI-powered language models to reshape clinical
trials
Clinical trials are resource intensive, accounting for around half
of the cost and time in the drug development life cycle, yet there
is a high failure rate.42 Unsuccessful clinical trials are attributed
to various reasons, some of which are suboptimal patient cohort
selection, ineffective patient recruitment strategies, and unso-
phisticated patient monitoring systems.43 Diverse text-based
data sets, including electronic health records (EHRs), clinical trial
databases, trial announcements, eligibility databases, social
media, and medical literature, provide a unique and immediate
entry point for AI-powered LMs to improve clinical trial
outcomes.44

Approximately 80% of clinical trials in the USA fail to meet
their timelines on patient recruitment.43 The complexity of
inclusion/exclusion criteria in terms of suitability, eligibility,
motivation, and empowerment poses a challenge for patient
recruitment. Poorly matched disease subtypes might make
patients unsuitable, and inconsistencies in medical-history
recording could render suitable patients ineligible. Patient infor-
mation is often inconsistent and recorded in an unstructured for-
mat, hampering comprehensive patient screening for a given set
of inclusion/exclusion criteria.

AI-powered LMs enable automation of the patient recruit-
ment process, alleviating the manual workload burden through
advanced information retrieval and prioritization mechanisms.
First, AI-powered LMs can learn medical terms and their syn-
onyms to retrieve useful information from clinical documents
that might be free-flowing and unstructured. For example, dis-
ease heterogeneity often hinders the determination of patient
suitability; recurrent models based on the Bidirectional GRU
architecture with contextual embedding could effectively boost
multilabel disease extraction from EHRs.45 This approach has
the potential to stratify patients precisely based on disease sub-
types for patient recruitment. Second, AI-powered LMs could
synthesize the eligibility criteria into a standardized contextual
query to improve the clinical trial-matching process. One such
example described the use of BERT-based contextual embedding
to match eligibility criteria for patient selection.46 Powered by a
cross-model learning infrastructure, the proposed DeepEnroll
could jointly encode enrollment criteria and patient EHRs into
a shared latent space for matching inference. Eventually, the
model outperformed the rule-based matching strategies, with
up to a 12.4% improvement in the F-measure (a measure of the
accuracy of a test). Third, AI-powered LMs could be combined
with other emerging technologies seamlessly to expedite patient
stratification. A combination of EHR data, genomics data, or
image data holds significant promise to advance precision
medicine.47,48 AI-powered LMs could be used to boost phenotyp-
ing capabilities by deep mining from EHRs, registries, hospital
records, and health insurance data alongside biobank, genomic,
and digital phenotyping information. Finally, AI-powered LMs
enable higher patient enrollment rates and better site identifica-
tion, leading to efficient recruitment of patients. However, site
identification is a multifactorial decision. Factors, such as prior
experience of the site for a therapeutic area, connection with
health nonprofits and patient advocates, historical data of
patient retention, and cost-effectiveness are significant contribu-
tors. AI-powered LMs could be leveraged to support clinical
decision-making by considering these diverse factors, allowing
for a balanced decision and the best possibility of success.

Successful completion of clinical trials justifies the massive
investment in patient recruitment, but the average patient drop-
out rate across all clinical trials is ~ 30%.44 Efforts to overcome
challenges in clinical trial recruitment and retention continue.
These efforts could safeguard the well-being of trial participants,
ensure adherence to trial rules and procedures, enhance compli-
ance and retention, collect reliable and high-quality trial data
points, and improve real-world outcome monitoring.49 AI-
powered LMs, as a combination of ML and digital technologies,
could have an essential role in enhancing patient monitoring
toward a lower dropout rate and a more efficient data uptake
framework.

Digital health technologies, such as wearables, voice tech-
nologies, and computer vision, make remote patient monitoring
possible.50 These emerging technologies also enable the collec-
tion of longitudinal and real-time biometric data sets to provide
unique insights into the long-term, real-world impact of pharma-
cotherapies and treatment protocols. Meanwhile, the implemen-
tation of such technologies could relieve patients of their more
burdensome tasks during the clinical trial and increase their
adherence. More importantly, AI and ML (particularly deep-
learning models) could be used to carry out real-time patient
monitoring for detecting and logging relevant information.51,52

For example, powered by AI, voice assistants have been gradually
adopted in clinical trials for various tasks, including reminding
patients of appointments, recording patient diaries, fostering col-
laboration between site investigators and sponsors, and increas-
ing physician awareness.53

Although AI-powered LMs, along with digital technologies,
have the potential to transform clinical trials, most of the inter-
ventions to date have yet to deliver on that potential. Debate
over the adoption of AI and mobile platforms in clinical trials
is ongoing.54 Regulatory guidance is urgently needed to leverage
these promising tools and technologies to advance clinical trials.
To fill the gap, the US Food and Drug Administration (FDA)
announced a new strategic framework to promote the use of
real-world evidence (RWE) to support the development of drugs
and biologicals.55 On the other side, to gain the trust of patients
in AI and digital technologies, the benefit of RWE should be ver-
ified and communicated. One Community of Patients for
Research (ComPaRe) study on patient uptake of wearable devices
and AI showed that only 20% of participants considered that the
benefits of the technology greatly outweighed the dangers.56 Fur-
thermore, the authors found that 35% of patients would refuse
to integrate at least one existing or soon-to-be-available interven-
tion using biometric monitoring devices (BMDs) and AI-based
tools into their care.

Opportunity 3: AI-powered language model to assist the
regulatory process
Regulatory submissions comprise a dossier of documents sent by
pharmaceutical companies to health regulatory agencies as evi-
dence of compliance. The process includes many laws, regulatory
www.drugdiscoverytoday.com 2601
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requirements, and regulatory guidance, which help define how
drug companies manufacture their drugs, design clinical trials,
report safety findings, and create promotional material. The
FDA promotes regulatory submissions of standardized study data
in electronic format for investigational new drugs (INDs), new
drug applications (NDAs), and biologics license applications
(BLAs). For example, the FDA Data Standards Catalog indicates
that these data sets should be formatted following the Clinical
Data Interchange Standards Consortium (CDISC) Standard
Exchange for Nonclinical Data (SEND).57 These standards cur-
rently support single-dose general toxicology, repeat-dose gen-
eral toxicology, and carcinogenicity studies.

Meanwhile, the FDA has an internal database to maintain and
organize submission in a data warehouse, such as its Document
Archiving, Reporting, and Regulatory Tracking System
(DARRTS).58 Essential regulatory documents are required to pro-
ceed through the drug development life cycle. These documents,
such as regulatory guidance, IND safety reports, NDA/BLA sub-
missions, patient narratives, drug labeling, and FDA Adverse
Event Reporting System (FAERS), are a rich source of informa-
TABLE 3

Publicly available FDA documents for promoting AI-powered LMs in

Data sets Descriptions

Drug labeling Drug labeling comprises a summary of information
for safe and effective use of the drug, which is
proposed by manufacturer and approved by FDA

FAERS FAERS is a database that contains information on
AE and medication error reports submitted to FDA

Orange Book Orange Book identifies drug products approved on
basis of safety and effectiveness by FDA under the
Federal Food, Drug, and Cosmetic Act and related
patent and exclusivity information

Drugs@FDA Drugs@FDA includes most drug products approved
since 1939. Most patient information, labels,
approval letters, reviews, and other information are
available for drug products approved since 1998

FDA Guidance
Documents

Guidance documents describe FDA’s interpretation
of policy on a regulatory issue (21 CFR 10.115(b)).
These documents usually discuss more specific
products or issues that relate to design, production,
labeling, promotion, manufacturing, and testing of
regulated products

FDA Acronyms and
Abbreviations

FDA Acronyms and Abbreviations database
provides a quick reference to acronyms and
abbreviations related to FDA activities

2602 www.drugdiscoverytoday.com
tion. AI-powered LMs offer an unprecedented opportunity for
medical officers and others who ensure that drugs are safe and
effective in supporting RWE generation for regulatory decision
making and better patient outcomes. The FDA promotes devel-
oping knowledge management systems to enable better leverag-
ing of AI to advance NLP in the regulatory process.59 Although
NLP-derived clinical evidence has not yet been included in regu-
latory submission documents, it is time to consider how this
could be enabled without disrupting assumptions of data integ-
rity and acceptance in the future.

A standardized medical terminology could accurately repre-
sent medical knowledge stored in regulatory documents for effi-
cient, evidence-based decision making, and optimal
communication among stakeholders.60 Standardized terminolo-
gies have been assigned and regulated by health agencies.61

The suggested coding systems were recommended for different
domains, such as the International Classification of Diseases
(ICD) for disease, WHO Anatomical Therapeutic Chemical
(ATC) Classification for medicine, the Systematized Nomencla-
ture of Medicine–Clinical Terms (SNOMED-CT) for diagnoses,
regulatory applications.

Potential use in LMs URL of data files

Drug labeling could be a useful resource
(>120 000 product labelings) to develop
biomedical named-entity recognition/
normalization, and relation extraction between
drug and AEs, drug–drug interaction, etc.

https://dailymed.nlm.
nih.gov/dailymed/spl-
resources-all-drug-
labels.cfm

FAERS is designed to support the post-
marketing safety surveillance program for
drug and therapeutic biologic products of the
FDA. There are more than 19 million case
reports in FAERS; AI-powered LMs could be
applied to carry out AE detection, causal
relationship extraction, etc.

https://fis.fda.gov/
extensions/FPD-QDE-
FAERS/FPD-QDE-FAERS.
html

Orange book provides crucial regulatory
information, such as biological equivalence,
reference listed drug (RLD), Reference
Standard (RS), and patent status. This
information could be included in AI-powered
LMs to compare drug product information
with RLD and RS to facilitate abbreviated new
drug application (ANDA) submissions

www.
fda.gov/drugs/drug-
approvals-and-
databases/orange-book-
data-files

Drugs@FDA provides rich information on drug
approval history, which could be used as AI-
powered LMs to explore underlying reasons
for labeling changes and increase business
success

www.
fda.gov/drugs/drug-
approvals-and-
databases/drugsfda-
data-files

FDA Guidance Documents could be useful to
implement AI-powered LMs for standardizing
and monitoring crucial steps in drug discovery
and development in terms of their consistency
and alignment with regulatory requirements

www.fda.gov/
regulatory-information/
search-fda-guidance-
documents

Emphasis of FDA Acronyms and Abbreviations
is on scientific, regulatory, government
agency, and computer application terms. The
database includes some FDA organizational
and program acronyms. It is a useful resource
to define vocabularies in AI-powered LMs and
increase model generalization

www.accessdata.
fda.gov/scripts/cder/
acronyms/index.cfm

https://dailymed.nlm.nih.gov/dailymed/spl-resources-all-drug-labels.cfm
https://dailymed.nlm.nih.gov/dailymed/spl-resources-all-drug-labels.cfm
https://dailymed.nlm.nih.gov/dailymed/spl-resources-all-drug-labels.cfm
https://dailymed.nlm.nih.gov/dailymed/spl-resources-all-drug-labels.cfm
https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html
https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html
https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html
https://fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html
https://www.fda.gov/drugs/drug-approvals-and-databases/orange-book-data-files
https://www.fda.gov/drugs/drug-approvals-and-databases/orange-book-data-files
https://www.fda.gov/drugs/drug-approvals-and-databases/orange-book-data-files
https://www.fda.gov/drugs/drug-approvals-and-databases/orange-book-data-files
https://www.fda.gov/drugs/drug-approvals-and-databases/orange-book-data-files
https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-data-files
https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-data-files
https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-data-files
https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-data-files
https://www.fda.gov/drugs/drug-approvals-and-databases/drugsfda-data-files
https://www.fda.gov/regulatory-information/search-fda-guidance-documents
https://www.fda.gov/regulatory-information/search-fda-guidance-documents
https://www.fda.gov/regulatory-information/search-fda-guidance-documents
https://www.fda.gov/regulatory-information/search-fda-guidance-documents
https://www.accessdata.fda.gov/scripts/cder/acronyms/index.cfm
https://www.accessdata.fda.gov/scripts/cder/acronyms/index.cfm
https://www.accessdata.fda.gov/scripts/cder/acronyms/index.cfm
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FIGURE 3
Artificial intelligence (AI)-powered language models for accelerating
Coronavirus 2019 (COVID-19) treatment development. Potential opportuni-
ties, data resources, and key questions are illustrated. Abbreviation: CDC,
Centers for Disease Control and Prevention.
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Health Level 7 (HL7) for messaging, and Medical Dictionary for
Regulatory Activities (MedDRA) for adverse events.62 However,
the uptake of standardized medical terminologies in regulatory-
related documents is a time-consuming and labor-intensive task.
AI-powered LMs could facilitate the coding of regulatory docu-
ments for more efficient and effective review, delivery, and infor-
mation recall.

Biomedical named-entity normalization aims to identify
biomedical entities from documents and further link detected
entities to their corresponding concepts in a given knowledge
base or ontology. Ji et al.63 proposed a BERT-based ranking model
for biomedical entity normalization for SNOMED-CT coding,
MedDRA coding, and Medical Subject Headings (MESH) coding.
The model adopted domain-specialized BERT architectures,
including BioBERT and ClinicalBERT, and yielded a superior per-
formance compared with state-of-the-art approaches without
any prior knowledge of medical terminology. BERT-XML was
also developed for large-scale automated ICD coding from
EHRs.64 Notably, the authors trained the BERT model de novo
on EHR notes with multilabel attention for better clinical vocab-
ulary identification. Thus, the proposed model outperformed
reported models and further demonstrated that the domain-
specific BERT model could improve the performance of down-
stream tasks.

Apparent ambiguity between different bioconcept types is a
potential obstacle for automated bio-NER method development.
This ambiguity exists within the particular domains and across
other biological concepts. Abbreviation ambiguity means that
one entity could map to multiple bioconcepts. For example,
the abbreviation ‘BD’ could not only represent Binswanger’s dis-
ease, but also Behçet’s disease; this example is relatively easy to
resolve.65 However, some ambiguities across bioconcepts are
challenging for automated bio-NER methods. For example,
CO2 could mean carbon dioxide in chemicals and cytochrome
c oxidase subunit 2 gene. Bio-NER is developed based on the
different standardized corpus in various domains. The unified
biomedical corpus could be a potential solution for biomedical
mention disambiguation. For instance, Wei et al. developed a
biomedical corpus for curating biomedical terms that are
ambiguous between one or more concept types. Using the
ensemble model by interrogating LSTM and CNN, the model
could achieve F1-scores of 91.94% (micro-averaged) and
85.42% (macro-averaged) for ambiguous entity identification,
outperforming the transformer models, such as BioBERT.22 Thus,
we recommend further efforts to standardize bioconcepts for
enhancing the performance of automated bio-NER methods.

The decision-making process is tied to the regulatory frame-
work, which yields consensual results by integrating different
data sets. Medical officers are required to not only review the sub-
mission documents, but also take account of historical data and
related documents to generate evidence and support decision-
making, which is a complicated and time-consuming process.
The current regulatory-related databases are independently
indexed and maintained, with no interconnection between each
other. More importantly, the indexing strategy is mainly identity
based, and there exist no semantic relations of entity–entity and
document–document types. Reviewers must move from one
database to another to collect the relevant information. Powered
by AI, a semantic search engine might be a potential solution to
improve the effectiveness of information retrieval for extracting
the most relevant documents for reviewer convenience.66

Unlike a lexical search, in which the search engine looks for
literal matches of query words or variants of them, semantic
search can search and rank the relevance with meaning.67 Some
early attempts at biomedical question & answering (Q&A) sys-
tems, such as BioBERT, have given rise to a new direction.14

Building on this, a publicly available evaluation infrastructure
for biomedical semantic indexing and Q&A was developed to
evaluate the performance of the developed semantic search
engines.68 To take full advantage of the semantic search engine
in the regulatory arena, we strongly suggest that regulators
should work with the community to develop a regulatory-
based semantic search engine that would assist the review of reg-
ulatory dossiers. To facilitate this, we list the regulatory data sets
that are open to the public in support of these efforts (Table 3).
Opportunity 4: AI-powered model to advance postmarketing
surveillance
Postmarket surveillance refers to the process of drug safety mon-
itoring once drugs have reached the market, and is an essential
part of the science of pharmacovigilance.69 The primary purpose
of postmarket surveillance is to further refine, confirm, or refute
the safety of a drug or device after use in the general population
with a variety of medical conditions. Postmarket surveillance
www.drugdiscoverytoday.com 2603
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data are primarily derived from: (i) spontaneous/voluntary
reporting of cases (e.g., FAERS, Local or Regional Joint Commis-
sion Requirement) and scientific literature publications; (ii)
observational studies, including automated healthcare
databases/social media, and randomized clinical trials; and (iii)
active surveillance, such as the Drug-Induced Liver Injury Net-
work (DILIN)70 and FDA Sentinel initiative.71 These real-world
data (RWD) and RWE data sets are having an increasing role in
healthcare decisions and are adopted by the FDA to monitor
postmarket safety and AEs and to make regulatory decisions.72

The safety data accumulated in the postmarket stage provide
an excellent resource for AI to deeply mine safety signals and
advance pharmacovigilance.

AI-powered LMs have also been shown to be useful in improv-
ing the detection of drug–AE associations and in deciphering the
causal relationship between the AE and clinical parameters.73,74

Social media has gradually become one of the major resources
for adverse drug reaction (ADR) monitoring. Breden et al.75 pro-
posed an ensemble model by integrating the BERT-large model,
BioBERT, and ClinicalBERT to generate an enhanced automatic
ADR detection within Twitter tweets. Relation extraction from
clinical notes is a practical approach to detect the causality rela-
tionship between AE and relations. Guan et al.76 combined the
BERT model and Edge sampling to identify ADR and disease rela-
tionships from Electronic Health Records 1.0 (MADE) with
improved performance. This developed model could be used to
extract causal relationships from unstructured documents.
User cases: AI-powered model to combat emerging
infections
Emerging infectious diseases have been an ever-present threat to
public health, and COVID-19 is a recent example.77 At the time
of this review, COVID-19 had infected more than 31 million peo-
ple, killed over 961 000, and resulted in catastrophic social and
economic losses. Global efforts have been put into the develop-
ment of effective treatments to combat this devastating deadly
disease. Unfortunately, there are still no approved drugs or vac-
cines.78 Encouragingly, AI is proving invaluable in the battle
against the coronavirus pandemic. Here, we illustrate how AI-
powered LMs could aid the development of treatments for
COVID-19 (Fig. 3).
COVID-19 search engine
COVID-19 may be the hottest topic in the scientific arena at this
moment, resulting in more than 20,000 papers published in
2020 alone. The number is still increasing exponentially, and
an average of 300 articles are being published every day. The pub-
lished literature is a rich resource for promoting the development
of COVID-19 treatments. However, there are far too many publi-
cations for any researcher to read. Some first efforts (CORD-19
data set) have been made to create the most extensive
machine-readable coronavirus literature collection of COVID-
19 available for data mining to date.79 The AI-powered COVID-
19 search engine is a great solution to help researchers navigate
the scientific literature for addressing different questions. More
than 50 search and discovery tools have been developed and
2604 www.drugdiscoverytoday.com
used for various topics, such as drug repurposing, interaction
with other diseases, infection, mortality by demographic, and
management policies.80 These AI-powered search engines allow
researchers to ask specific questions, such as ‘what approved drug
could potentially treat COVID-19?’.

Safer repurposing candidates
Drug repositioning and repurposing is being promoted as a rapid
drug development paradigm for COVID-19 therapy.81–84 Some
repurposing candidates, including chloroquine and
hydroxychloroquine, were initially authorized by the FDA for
hospitalized patients only under careful heart monitoring
because of the risk of heart rhythm problems.85,86 The use of
these two drugs for COVID-19 has now been revoked because
the evidence suggests that they are unlikely to be an effective
treatment. The potential risk of experiencing QTc prolongation
with chloroquine or hydroxychloroquine was included in the
FDA-approved drug label for their original indications.86 AI-
powered LMs could be applied to extract the relationship
between repurposed drugs and their potential AEs to prioritize
repurposing candidates regarding their safety profiles.

Furthermore, COVID-19 has affected vulnerable populations
and patients with pre-existing conditions disproportionately
across the world.87 Patients with COVID-19 and pre-existing
conditions and older patients have a high probability of encoun-
tering drug–drug interactions (DDIs) because they are more likely
to take multiple medications.88 Therefore, caution should be
considered before prescribing COVID-19 therapy to vulnerable
populations. AI-powered models could be used to extract poten-
tial DDIs between COVID-19 repurposing candidates and other
medicines for prevention.89

Clinical trial optimization
Treating patients with COVID-19 is forcing doctors to make hard
decisions between two equally unattractive options: (i) prescribe
drugs off-label in the hope that there will be some benefit; or (2)
treat patients with standard supportive care for severe respiratory
disease. This will continue to be the case until a confirmed ran-
domized controlled trial establishes an effective treatment. Based
on statistics from clinicaltrial.gov, there are currently more than
2900 clinical trials related to COVID-19. The number of enrolled
patients, age groups, and demographic distributions within the
clinical trials are highly variable, with the potential for contro-
versies among trial sponsors. For example, disputes regarding
treatment or preventative effects of hydroxychloroquine were
reported based on different clinical trials.79,90–92 A randomized
controlled trial is currently underway in dozens of hospitals
around the world proposed by REMAP-CAP using AI to guide
researchers toward the most effective treatments for COVID-
19.93

Concluding remarks
AI-powered LMs have enormous potential to transform every
step of the drug discovery and development pipeline. As such,
we expect different stakeholders to implement more investiga-
tion and real-world applications. We have illustrated the poten-
tial opportunities of AI-powered models in drug discovery and
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development, focusing on the role of AI-powered LMs for accel-
erating target identification, optimizing clinical trials, facilitating
regulatory decision-making, and enhancing pharmacovigilance.
Moreover, we highlighted how AI-powered LMs could promote
treatment development in combating the COVID-19 pandemic.
However, the implementation of AI-powered LMs in drug discov-
ery is still in its infancy. Furthermore, besides AI-powered LM,
other AI-based models been proposed and show promise in tack-
ling different drug discovery and development questions. These
are out of the scope of the current review, but we recommended
a closer look at other AI-based models, which might combine
with AI-power language models to enhance drug discovery and
development.94–96

AI-powered LMs are a fast-evolving field, and many model
architectures have been proposed. However, most of the applica-
tions in drug discovery and development are based on BERT and
its derivates. Other newly developed LMs have claimed superior
performance and strength based on evaluation data in the gen-
eral domain. The utility of these transformer-based LMs in drug
discovery and development remains to be established via further
investigation and critical evaluation. To carry out a comprehen-
sive assessment of different transformer-based LMs for various
tasks in drug discovery and development, more standard bench-
mark data sets in the biomedical domain, such as BioASQ68 and
Biomedical Language Understanding Evaluation (BLUE),97 are
urgently needed.

The benefit of learning domain-specific corpus and knowledge
has been demonstrated for LMs.14,19,98 However, these models
have been retrained on top of the BERT-base model. Improved
model performance is expected by using the BERT large model.
Furthermore, we strongly recommend these advanced
transformed-based LMs be retrained by using other regulatory-
related documents to enhance their application in the regulatory
process. Moreover, novel model architecture, such as GPT-3,
showed potential in tackling downstream tasks without task-
related fine-tuning data sets. A further investigation of biomedi-
cal applications should be conducted if a favorable performance
is obtained, which could expand this utility in drug discovery
and development.

Being able to explain how AI-powered LMs could be used in
drug discovery and development is vital to building trust. Large
LMs can produce powerful contextual representations that lead
to improvements across many NLP tasks. Our ability to explore
the biological relevance of these contextual representations will
enhance adoption in the drug discovery and development pro-
cess. Initial efforts, such as ExBERT, have been proposed to pro-
vide insights into the meaning of the contextual
representations by matching a human-specified input to similar
contexts in a large, annotated data set.99 More in-depth efforts
to develop explainable transformers would be beneficial.

AI faces challenges in reproducibility because researchers have
difficulty reproducing many vital results, hindering their real-
world applications.100 Few efforts have been made to explore
the reproducibility of AI-powered LMs.101 Some consortium
efforts, such as the Kaggle challenge, might be a suitable platform
to organize a comprehensive assessment of the reproducibility of
AI-powered LMs with biomedical data, such as EHRs or PubMed
literature.

AI-powered LMs have been applied in many different areas of
biomedical science. The impact of AI-powered models in all areas
of drug discovery and healthcare is already noticeable, especially
in transforming clinical trial design. Conventional NLP, along
with rule-based matching strategies, has also been extensively
applied in drug discovery and development.7,102 We believe the
AI-based LMs could be complementary to conventional
approaches to promote drug discovery and development. Here,
we have summarized the challenges and opportunities presented
by AI-powered LMs to stimulate community efforts for further
evaluation and to better position and promote AI-powered LMs
in drug discovery and development.
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