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Abstract

Background: Heterotopic ossification (HO) is a significant problem for wounded warriors surviving high-energy
blast injuries; however, currently, there is no biomarker panel capable of globally characterizing, diagnosing, and
monitoring HO progression. The aim of this study was to identify biomarkers for HO using proteomic techniques
and blood serum.

Methods: Isobaric tags for relative and absolute quantitation (iTRAQ) was used to generate a semi-quantitative
global proteomics survey of serum from patients with and without heterotopic ossification. Leveraging the iTRAQ data,
a targeted selection reaction monitoring mass spectrometry (SRM-MS) assay was developed for 10 protein candidates:
alkaline phosphatase, osteocalcin, alpha-2 type I collagen, collagen alpha-1(V) chain isoform 2 preprotein, bone
sialoprotein 2, phosphatidate phosphatase LPIN2, osteomodulin, protein phosphatase 1J, and RRP12-like protein.

Results: The proteomic survey of serum from both healthy and disease patients includes 1220 proteins and was
enriched for proteins involved in the response to elevated platelet Ca+2, wound healing, and extracellular
matrix organization. Proteolytic peptides from three of the ten SRM-MS proteins, osteocalcin preprotein, osteomodulin
precursor, and collagen alpha-1(v) chain isoform 2 preprotein from serum, are potential clinical biomarkers for HO.

Conclusions: This study is the first reported SRM-MS analysis of serum from individuals with and without heterotopic
ossification, and differences in the serum proteomic profile between healthy and diseased subjects were identified.
Furthermore, our results indicate that normal wound healing signals can impact the ability to identify biomarkers, and
a multi-protein panel assay, including osteocalcin preproprotein, osteomodulin precursor, and collagen alpha-1(v) chain
isoform 2 preprotein, may provide a solution for HO detection and monitoring.
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Background
Heterotopic ossification (HO) is the formation of mature
lamellar bone in nonosseous (soft) tissues [1]. HO has been
associated with war injuries since World War I and is now
recognized as a significant comorbidity for wounded
warriors surviving high-energy blast injuries [1–3]. A study
of combat-related extremity injuries in Operation Enduring
Freedom (OEF) and Operation Iraqi Freedom (OIF) found
the risk of HO is highest following a blast mechanism in-
jury and an amputation within the zone of injury [1]. HO
in the military population often results in chronic pain,
difficulties fitting prostheses, joint ankylosis, functional
limitations, prolonged rehabilitation, and substantial
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morbidity [4, 5]. Rates of HO in combat-related extremity
injuries are greater than 60% [1, 2].
In civilian populations, HO may occur after a trau-

matic event, including hip arthroplasty, distal humerus
fractures, spinal cord injuries (SCI), and closed brain
injuries [6]. The etiology of HO remains unknown, but
clinical risk factors include trauma, amputation, trau-
matic brain injury (TBI), SCI, thermal injury, major hip
arthroplasty, and other major orthopedic surgery [7].
The exact cellular events leading to HO are not yet
identified and as a result, treatment has been limited to
nonsteroidal anti-inflammatory (NSAID) drugs and local
radiation therapy used prophylactically. Many patients
require one or more surgical excisions of ectopic bone
[7]. Individuals with combat injuries often have add-
itional diagnoses for which these prophylactic treatments
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are contraindicated further limiting treatment options.
NSAIDs can cause severe gastrointestinal problems,
renal toxicity, and platelet deficiency. Similarly, radiation
therapy carries significant risks including fracture non-
union, genetic mutation, malignancy, and reproductive
organ damage. No current pharmaceutical treatment is
approved by the FDA to treat HO [7].
The etiology of HO is not well characterized. Aberrant

bone growth associated with the disease is diagnosed
using radiographs. In order to prevent the development
of HO, early detection of biomarkers associated misre-
gulated wound healing mechanisms is necessary. Serum
is readily available and easily accessible for repeated
sampling for biomarker identification, and robust serum
biomarkers have been established for other disorders,
including cardiovascular disease [8]. The development of
HO requires a cell capable of bone production, an
osteoinducive factor, and an environment supportive of
osteoinduction [7]. Researchers have evaluated changes
in proteins associated with osteoinduction in the serum
following traumatic brain injury (TBI) in rats and
humans [9], and serum from TBI patients accelerated
the proliferation of osteoblastic differentiation in cells
from human muscle [10]. In contrast to blood serum,
tissue biopsy relative to the lesion samples are invasive
and location of the biopsy can impact results. Collectively,
this work supports the use of serum for the identification
of markers associated with the development of HO.
Recent advancements in mass spectrometry (MS)

technology have enabled proteomic analysis of complex
biological samples and have aided in the identification of
potential biomarkers in various diseases, including
evaluation of bone metabolism [11]. A high-throughput
MS technique, isobaric tags for relative and absolute
quantitation (iTRAQ), enables a global analysis of the
proteome differences between biological samples, which
provides the foundation for identifying potential bio-
markers, but additional quantitative assays are required.
Proteomic differences identified using iTRAQ are
expressed as a ratio between samples and are therefore
relative and semi-quantitative. There are several quanti-
tative assays available for protein biomarker analysis,
such as antibody approaches used in ELISAs or peptide
approaches used in advanced mass spectrometry assays.
Antibody-based approaches are limited based on reagent
specificity and availability, whereas a targeted MS assay
is limited only by the proteolytic and ionization charac-
teristics of the protein of interest. One type of MS assay,
selection reaction monitoring (SRM-MS), is an advanced
proteomics technology enabling the identification and
precise quantification of peptides with high sensitivity,
specificity, and reproducibility [12, 13]. Analytical infor-
mation from peptides obtained using SRM-MS allows by
inference, quantification of the corresponding proteins
in complex biological samples. This technique is capable
of producing high-quality diagnostic data in disease pro-
cesses [14] and is a more sensitive and reproducible
method for quantifying low-abundance proteins in com-
plex biological samples. SRM-MS uses synthetic peptides
to optimize detection transition parameters for each
peptide target and as such is not an appropriate method
for a high-throughput proteomics analysis. The objec-
tives of this study were to develop an SRM-MS assay
specific for overexpressed proteins present in the serum
of subjects with HO and test their predictive ability
using serum from subjects with and without HO.

Methods
Subject enrollment
This study was part of a larger project to study the
proteomics of HO in tissue and serum (manuscript in
preparation), focusing on mass spectrometry analyses
of serum samples from 41 subjects. Subjects were eligible
for enrollment in the study if they had or were being
treated for high-risk fractures, acetabular fracture, burns
with orthopedic injury, traumatic brain injury with
extremity trauma, undergoing amputation, and exci-
sion of ectopic bone or major arthroplasty. Subjects
below the age of 18 or currently being treated for
cancers or metastatic disease involving the bone were
excluded.

Study protocol and overview
Participants were enrolled prior to surgery, and outcome
was determined by evaluation of x-rays collected at the
time of surgery and during follow-up visits at 6 weeks,
12 weeks, 6 months, and 12 months. Blood (5 cm³) was
collected at time of the patient’s scheduled surgical pro-
cedure. Blood samples were collected into sterile vacu-
tainer tubes with clot activator and gel for serum
separation. Serum was removed after 30 min to a sterile
screw top polypropylene tube and snap frozen in liquid
nitrogen before storage at −80 °C. Samples were
assigned to HO-positive or HO-negative group-based
disease status at the time of surgery and blood collec-
tion. Blood serum samples were pooled in equal volumes
by disease status and analyzed using iTRAQ. Individual
serum samples were analyzed for the abundance of spe-
cific proteins identified in the iTRAQ results using
SRM-MS, a targeted quantitative analysis (Fig. 1).

Sample and peptide preparation for iTRAQ
Reagents were purchased from Sigma-Aldrich (St. Louis,
MO) unless otherwise indicated. The top 14 most abun-
dant proteins in the serum were depleted using the Seppro
IgY14 column systems: albumin, IgG, α2-antitrypsin, IgA,
IgM, transferrin, haptoglobin, α2-macroglobulin, fibrino-
gen, complement C3, α1-acid glycoprotein (orosomucoid),



Fig. 1 Sample processing overview. A total of 41 serum samples were collected at time of surgery from subjects with (n = 10) and without (n = 31)
heterotopic ossification. Serum samples were pooled by disease state and subjected to an isobaric tag for relative and absolute quantitation (iTRAQ)
mass spectrometry (MS) analysis. The iTRAQ data was used to drive the selection of specific proteins to target via a selected reaction monitoring (SRM)
MS technique, a qualitative MS technique that enables the robust quantification of specific peptides within a single subject’s serum sample
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HDL (apolipoproteins A-I and A-II), and LDL (mainly
apolipoprotein B). Serum samples were diluted 5× in IgY
dilution buffer, filtered (0.22 μm), and then injected into
IgY LC10 columns attached to an Agilent 1200 HPLC
system. The unretained fraction was collected.
In-solution depleted serum samples were further proc-

essed by MyOmicsDx, Inc (Towson, MD, USA) using
“filter-assisted sample preparation” (FASP) method
[15]. Briefly, protein samples in 9 M urea were reduced with
5 mM tris-(2-carboxyethyl) phosphine (TCEP) at 37 °C for
45 min and reduced cysteines were blocked using 50 mM
IAA at 25 °C for 15 min. Protein samples were cleaned
using 10 kDa Amicon Filter (UFC501096, Millipore) three
times using 9 M urea and two times using MyProt-Buffer 1
(MyOmicsDx, Inc). Samples were proteolyzed with trypsin
(V5111, Promega) for 12 h at 37 °C.
The peptide solution was acidified by adding 1%

trifluoroacetic acid (TFA) and incubated at room
temperature for 15 min. A Sep-Pak light C18 cartridge
(Waters Corporation) was activated by loading 5 mL
100% (vol/vol) acetonitrile and washed by 3.5 mL 0.1%
TFA solution two times. The acidified digested peptide
solution was centrifuged at 1800 × g for 5 min, and the
supernatant loaded into the cartridge. To desalt the
peptides bound to the cartridge, 1, 3, and 4 mL of 0.1%
TFA were used sequentially. To elute the peptides from
the cartridge, 2 mL of 40% (vol/vol) acetonitrile with
0.1% TFA was used. The eluted peptides were lyophi-
lized overnight and reconstituted in 37 μL MyProt-
Buffer 3 (MyOmicsDx, Inc, Towson, MD, USA).

Multiplexed iTRAQ labeling
Digested peptides from samples in a volume of 37 μl
MyProt-Buffer 2 were labeled using 4-plex iTRAQ re-
agents (ABSciex, Framingham, MA, USA). After 2 h, la-
beled peptides were dried to remove organic solvents and
reconstituted in 500 μl MyProt-Buffer 3 (MyOmicsDx,
Inc, Towson, MD, USA), combined and fractionated on a
bRPLC (basic reverse phase liquid chromatography)
column (XBridge BEH C18 Column, 5 μm, 2.1 × 100 mm)
via XBridge BEH C18 Guard Column (Waters Corpor-
ation) using an Agilent 1260 HPLC system. Peptides in
each fraction were dried and re-suspended in 8 μl 0.1%
formic acid (EMD Millipore, Billerica, MA, USA) with 3%
acetonitrile for LC-MS/MS analysis.
A Sep-Pak light C18 cartridge (Waters Corporation)

was activated by loading 5 mL 100% (vol/vol) acetonitrile
(JT Baker) and was washed by 3.5 mL 0.1% TFA solu-
tion two times. Acidified digested peptide solution was
centrifuged at 1800g for 5 min, and the supernatant was
loaded into the cartridge. To desalt the peptides bound
to the cartridge, 1, 3, and 4 mL of 0.1% TFA were used
sequentially. To elute the peptides from the cartridge,
2 mL of 40% (vol/vol) acetonitrile with 0.1% TFA was
used, and this elution was repeated two more times for a
total of 6 mL of eluate. It was important to ensure that
the cartridge had stopped dripping before each sequen-
tial wash and elution solution was applied. The eluted
peptides were lyophilized overnight and reconstituted in
37 μL of MyProt-Buffer 2 (MyOmicsDx, Inc, Towson,
MD, USA).

Nanoflow electrospray ionization tandem mass
spectrometry analysis
Data-dependent MS/MS analyses of the iTRAQ-labeled
peptides were carried out by MyOmicsDx, Inc. (Towson,
MD) on a Q Exactive™ Hybrid Quadrupole-Orbitrap
Mass Spectrometer (https://www.thermofisher.com/us/
en/home.html) interfaced with Proxion nanoflow LC
system. Peptides were fractionated by reverse phase
HPLC on a 75 μm× 15 cm PicoFrit column packed with
Magic C18AQ (5 μm, 120 Å, https://www.bruker.com/)

https://www.thermofisher.com/us/en/home.html
https://www.thermofisher.com/us/en/home.html
https://www.bruker.com/
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using 0–60% acetonitrile/0.1% formic acid gradient over
90 min at 300 nL/min. Eluting peptides were sprayed
directly into Q Exactive™ at 2.0 kV.
Survey scans (full MS) were acquired from 350 to

1800 m/z with up to 15 peptide masses (precursor ions)
individually isolated with a 2-Da isolation window and
fragmented (MS/MS) using a collision energy of 29%
and 30 s dynamic exclusion. Precursor and the fragment
ions were analyzed at 70,000 and 17,500 resolutions,
respectively. Peptide sequences were identified from
isotopically resolved masses in MS and MS/MS spectra
extracted with and without de-convolution using
Thermo Scientific MS2 processor and Xtract software.
iTRAQ-MS data processing
Mass spectrometry raw files were automatically proc-
essed through Proteome Discoverer 2.1 software using
Xtract and MS2-processor spectrum processor in
addition to default spectrum selector node. The data
was searched in Refseq 2015 human entries using Mas-
cot search engine interfaced with different processing
nodes of Proteome Discoverer 2.1. Search parameters
included oxidation on methionine, iTRAQ 4-plex on
tyrosine, deamidation on residues N and Q as different
variable modifications, iTRAQ 4-plex on N-terminus
and lysine residue, and methylthio on cysteine residue as
different fixed modifications. Mass tolerances on precur-
sor and fragment masses were set to 15 ppm and
0.03 Da, respectively. Peptide validator node was used
for peptide validation with stringent cutoff of 0.01 and
relaxed cutoff of 0.05 false discovery rate (FDR), and 1%
FDR cutoff was used to filter the data.
High confidence (0.1% FDR) and top ranked peptides

were considered with protein grouping options. Pro-
tein ratios were normalized through MyProt-QuantiR
(MyOmicDx, Inc) software package, and peptides with
>30% isolation interference were excluded from protein
quantification to avoid potential interference of reporter
ions from contaminant peaks. MA plots were used to
evaluate any potential bias between quantification chan-
nels within experiment and between experiments.
Proteomic bioinformatics analysis
The entire iTRAQ dataset, regardless of protein ratio,
was uploaded into Cytoscape v3.3.0 [16] and analyzed
using the ReactomeFI plugin (database 2015) [17] to
generate an interactome, followed by a pathway
enrichment analysis. Gene ontology enrichment analysis
for biological process, cellular component, and molecu-
lar function were completed using the cytoscape app
BiNGO [18] and REVIGO [19]. The iTRAQ ratio
(expression) data was overlaid with biological annota-
tions to prioritize proteins for SRM analysis.
Reagents SRM-MS
TCEP (tris-(2-carboxyethyl) phosphine) was purchased
from Thermo Scientific (Waltham, MA). LysC and tryp-
sin proteases were purchased from Promega (Fitchburg,
WI). C18 Cartridges for sample preparation and chro-
matography columns for bRPLC and online HPLC of
Triple Quadrupole mass spectrometer were purchased
from Waters (Milford, MA). Acetonitrile was purchased
from JT Baker, and formic acid was obtained from EMD
Millipore (Billerica, MA, USA). MyProt-Buffer 1,
MyProt-Buffer 2, and MyProt-Buffer 3 were utilized by
MyOmicsDx, Inc (Towson, MD, USA). All other
reagents were purchased from Sigma-Aldrich (St. Louis,
MO) unless otherwise indicated.

SRM-MS data processing
Peptide samples reconstituted in 37ul MyProt-Buffer 3
(MyOmicsDx, Inc) were spiked with MyProt-SRM
Internal Control Mixture (MyOmicsDx, Inc) composed
of a pool of 1 f mole heavy isotope-labeled peptides cov-
ering a large hydrophobicity window and a large M/z
range (M/z 200 ~ 1300) and were subject to SRM ana-
lysis. Peptide samples were eluted through an online
Agilent 1290 HPLC system into the Jet Stream ESI
source of an Agilent 6495 Triple Quadrupole Mass
spectrometer.
Thirty peptides representing 10 proteins were chosen

as SRM targets from MyOmicsDx’s manually curated
SRM target peptide database, MyProt-SRM Map, based
on their iTRAQ ratio. Transition parameters and reten-
tion times of the 30 peptides were confirmed individu-
ally using an Agilent 6495 Triple Quadrapole Mass
Spectrometer for both doubly and triply charged precur-
sor ions. Five or 6 transitions per peptide precursor were
selected for SRM analysis.
Three hundred and fifty sets of transition parameters

(corresponding to 30 peptides, representing the abun-
dance of 10 proteins) and 30 SRM data files containing
the quantitative data of 30 peptides in 30 human serum
samples (Additional file 1) were imported into Skyline
3.1 [20]. The abundance of each target peptide was
represented by the total area under the curve (AUC) of
all its transitions normalized to the total AUC of all
transitions from the most nearby (sharing a similar
hydrophobicity) heavy isotope-labeled peptide from
MyProt-SRM Internal Control Mixture (MyOmicsDx,
Inc) spiked in before the SRM analysis. The abundance
of each target peptide was represented by the total AUC
of all its transitions normalized to the total AUC of each
control peptide’s transitions. The relative abundance
level of a target peptide in different samples was repre-
sented by its relative ratio to the abundance level of the
internal control peptide in the same sample. The abun-
dance dataset was further normalized by the ratio
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obtained from a subject without HO, (ND-1), chosen
randomly as a reference disease negative sample in this
study. Differences in SRM peptide abundance were
tested using R and Welch’s t test.

Model construction
The dataset obtained from the SRM-MS assay was com-
posed of 30 samples, 10 HO positive and 20 HO negative,
with 17 peptide abundance values for each sample. The
number of samples in this pilot study was limited, and the
number of parameters (p) for each subject (n) is relatively
large compared to the total number of samples (n = 30).
The SRM assay dataset was analyzed using three models,
random forest (RF), generalized linear model (GLM), and
support vector machine learning (SVM).
Random forest, originally proposed by Breiman in

1999, is an ensemble classification algorithm composed
of a series of decision trees. Each tree is built independ-
ently through a technique called “bagging” based on ran-
dom selection of input variables. The prediction result is
based on the vote made by all trees. This modeling
approach provides a very accurate classifier, but it has
not been widely used in clinical diagnostics. In contrast,
logistic regression is a widely used standard regression
model for binary data. It has been widely used to
construct biomarker panels for clinical diagnostics.
Support vector machine learning is a supervised ma-
chine learning model that identifies the optimal separ-
ating hyperplane between two classes or states based
on least-squares regression of the data.
Seventy percent of the dataset was used to construct

models, and thirty percent of the dataset was withheld
to evaluate model performance. Resampling, regression,
and prediction were repeated 1000 times for each model.
Model performance was evaluated by comparing the
results generated from at least 100 predictions for each
of the three models, and the subset of models used to do
the prediction in each category were preselected with a
AUC of ROC no smaller than 0.98.

Results
iTRAQ results
Proteomics analysis and serum biomarker selection
In total, 41 subjects including 27 men and 14 women
ranging in age from 22 to 83 were enrolled (Table 1).
HO-negative samples were derived largely from total hip
arthroplasty (ages 28–83) in both male and female sub-
jects ages 22–83. All HO-positive samples were collected
during HO excision or hip revision procedures in men
and women ages 22–40. Serum samples were analyzed
via qualitative proteomics analysis and/or a targeted
quantitative analysis (Fig. 1). The high-throughput prote-
omics analysis consisted of a 4-plex iTRAQ experiment,
which utilized separately pooled serum samples from
HO-positive (n = 10) and HO-negative (n = 31) subjects.
No bias between biological or technical replicates was
observed, and median normalization was applied to the
raw data to allow direct comparison of the reported
ratios of the proteins between HO-positive and HO-
negative groups. Collectively, 1220 unique proteins
(UniProtKB Accession) were measured, and a ratio per
protein was calculated between separately pooled HO-
positive and HO-negative serum samples. The majority
of the proteins had an expression ratio between 0.5 and
1.5 (data not shown).
The interactome (Fig. 2) and subsequent pathway

enrichment analysis (Table 2) indicated extracellular
matrix organization, ECM-receptor interaction, response
to elevated platelet cytosolic Ca+2, and complement and
coagulation cascades were enriched. The gene ontology
biological process enrichment analysis included response
to wounding, acute inflammatory response, and activa-
tion of plasma proteins involved in acute inflammatory
response as top enriched biological processes (Fig. 3;
and Additional file 2).
In total, 10 candidate proteins were selected for SRM-

MS from the iTRAQ studies based on relative fold
changes in iTRAQ ratios and the characteristics of the
proteotypic peptides for each protein (Table 3). Eight pro-
teins, osteomodulin (OMD), collagen alpha-2(l) chain pre-
cursor (COL1A2), collagen alpha-1(V) chain isoform 2
preprotein (COL5A1), alkaline phosphatase (ALPL), phos-
phatidate phosphatase LPIN2 (LPIN2), RRP12-like protein
(RRP12), TRAF3-interacting protein 1 (TRAF3), and pro-
tein phosphatase 1J (PPM1J), were selected from the
serum iTRAQ results and subsequent bioinformatics ana-
lysis. Two additional proteins, bone sialoprotein 2 precur-
sor (IBSP) and osteocalcin preprotein (BGLAP), were
selected from an iTRAQ survey of tissue samples from
HO-positive and HO-negative samples from the same
study subjects because the ratio reported from the tissue
data suggested a significant increase of this protein in the
disease state compared to non-disease (manuscript in
preparation).

SRM analysis
SRM transition parameters of all 30 peptides targeting
the top overexpressed proteins quantified by iTRAQ
were incorporated into a SRM-MS assay method. Each
protein was independently quantified by 3 peptides in 30
individual patient serum samples. Seventeen peptides
representing 9 of the 10 proteins from the initial experi-
mental design, alkaline phosphatase, osteocalcin, alpha-2
type I collagen, collagen alpha-1(V) chain isoform 2 pre-
protein, bone sialoprotein 2, osteomodulin, protein
phosphatase IJ, and RRp12-like protein, were validated
as SRM targets after successfully being detected and
quantified in serum (Additional file 3). Phosphatidate



Table 1 Surgical procedures and heterotopic ossification status of serum samples

HO negative HO positive

Subjects M F Age Subjects M F Age

All 31 18 13 22–83 10 9 1 22–40

Total hip arthroplasty (THA) 18 10 8 28–83 –

Open reduction and internal fixation (ORIF) 7 5 2 26–64 –

Hip revision (HR) 3 3 45–62 2 1 1 36–40

HO excision (HOE) – 8 8 22–31

Other 3 3 22–36 –

A total of 31 serum samples were collected from subjects (18 male and 13 female) with wounds but no signs of disease, heterotopic ossification negative (HO−).
A total of 10 serum samples were collected from heterotopic ossification positive (HO+) subjects (9 male and 1 female). Serum samples were collected at time of
surgery. The surgical procedure (or wound) differed between subjects, with the most common procedures being total hip arthroplasty (THA), open reduction and
internal fixation, hip revision, and HO excision. Subjects ranged in age from 22 to 83 years old
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phosphatase LPIN2 isoform X2 was detectable only by
one peptide in five HO− and five HO+ samples and was
dropped from the panel.
The RF, GLM, and SVM algorithms produced predict-

ive models that were comparable in performance (Fig. 4),
but RF predictions were closest to the true disease state
for 9 of the 10 HO+ subjects (binary value where 0 indi-
cates HO negative or non-disease (ND) and 1 indicates
HO positive or disease (D)) (Fig. 4). Using the RF gener-
ated model, the SRM peptides were ranked by the mean
square error (MSE) increase if the peptide is randomly
permuted. If a peptide is an important predictor, then
a b

Fig. 2 ReactomeFI analysis of iTRAQ data from serum samples. a Workflow
iTRAQ experiment, regardless of the disease state, were uploaded in cytoscape
and sub-network annotations. A pathway enrichment analysis indicated that 9
b Reactome analysis serum samples. Proteins were clustered using ReactomeF
was completed for each module using an FDR >0.01
the model fit decreases when it is randomly permuted
and the overall MSE increases. Peptides SRM-8, SRM-
13, SRM-4, SRM-5, and SRM-6 representing proteins
osteocalcin preprotein, osteomodulin precursor, and col-
lagen alpha-1(v) chain isoform 2 preprotein were identi-
fied as potential biomarkers for HO (Fig. 5).
Relative expression levels of the peptide biomarkers

were significantly different for SRM peptides, SRM-4,
SRM-5, SRM-6, SRM-13, SRM-14, SRM-8, SRM-3,
SRM-23, derived from osteocalcin, collagen alpha-1(V)
chain, osteomodulin, bone sialoprotein 2, and RRP12-
like protein (Fig. 6). Three osteocalcin peptides (SRM4,
pathway enrichment analysis iTRAQ data. All proteins quantified in the
via ReactomeFI application. Genes were clustered based on pathway
0 pathways were enriched within the proteomic space of serum samples.
I, and 13 major modules were identified. A pathway enrichment analysis



Table 2 Pathway enrichment summary iTRAQ data

Biological pathway Pathway database Ratio Pathway proteins Dataset proteins p value FDR

Extracellular matrix organization R 0.0243 248 64 1.11E−16 1.30E−14

ECM-receptor interaction K 0.0085 87 31 1.11E−16 1.30E−14

Response to elevated platelet cytosolic Ca2+ R 0.0081 83 45 1.11E−16 1.30E−14

Complement and coagulation cascades K 0.0068 69 46 1.11E−16 1.30E−14

Beta1 integrin cell surface interactions N 0.0065 66 27 1.11E−16 1.30E−14

Formation of fibrin clot (clotting cascade) R 0.0038 39 24 1.11E−16 1.30E−14

Focal adhesion K 0.0203 207 37 8.46E−12 8.46E−10

Staphylococcus aureus infection K 0.0054 55 18 2.67E−10 2.35E−08

Beta3 integrin cell surface interactions N 0.0042 43 16 4.32E−10 3.37E−08

L1CAM interactions R 0.0077 79 20 2.15E−09 1.38E−07

All proteins quantified in the iTRAQ experiment, regardless of the disease state, were uploaded in cytoscape via ReactomeFI application. A pathway enrichment
analysis was executed for the entire reactome
R Reactome, K KEGG, N NCI PID
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5, and 6) had similar patterns between the disease and
non-disease state, supporting a higher abundance in HO+
compared to HO−. Collagen alpha 1 (SRM13, 14, 15) had
two peptides (SRM13 and 14) that support this protein in
higher abundance in HO, whereas SRM15 showed no
difference between HO− and HO+. Two peptides were
measured for osteomodulin (SRM7 and 8), and both
peptides were elevated in HO+ compared to HO−. Two pep-
tides were measured for alkaline phosphatase (SRM17 and
18), and SRM18 had greater dispersion in the upper quartile
in HO+ compared to HO−. A single peptide was measured
for bone sialoprotein (SRM3), and the data support higher
peptide abundance in HO+ compared to HO−. A single
peptide was measured for RRP12 (SRM 23) and demon-
strated greater dispersion in expression in HO+ versus HO−
samples. One peptide was quantified for TRAF3 (SRM27),
which showed no difference between HO+ and HO−.
Fig. 3 Gene ontology enrichment analysis iTRAQ data. All proteins quantified
into cytoscape via BiNGO. BiNGO results were analyzed via REVIGO (reduce an
Protein-protein interactions between SRM candidates
were identified by ReactomeFI (Fig. 7) such that their
connections with each other (panel a) and within the
context of differentially regulated proteins in iTRAQ
experiment (panel b) could be analyzed. Of interest, six
of the SRM candidates, BGLAP, COL1A2, COL5A1,
IBSP, LPIN2, and OMD, were clustered together using
linker regions and are involved in extracellular matrix
organization and ECM-receptor interaction (panel a).
When these candidates were examined in conjunction
with other differentially regulated proteins, response
to elevated platelet cystosolic Ca+2 sub-network was
enriched (panel b). Collectively, these data suggest
that there are several sub-networks, which are highly
connected through protein-protein interactions that
contain proteins that are differentially expressed in
HO.
in the iTRAQ experiment regardless of the disease state were uploaded
d visualize gene ontology)
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Fig. 4 Summary of model comparison SRM assay. Samples were annotated as either disease state (heterotopic ossification positive—HO+) or
non-disease (ND) state (heterotopic ossification negative—HO−). Three different statistical models were utilized to analyze the SRM-MS data:
random forest (RF; red line), generalized linear model (GLM; green line), and support vector machine learning (SVM; purple line). A non-disease
state for HO− prediction was 0 (blue line left panel) and a disease state for HO+ prediction was 1 (blue line right panel). All three statistical models
performed similarly

Fig. 5 Mean square error analysis for random forest model. Using the random forest (RF) model, peptides with a mean square error (MSE) increase >8
were considered important variables because random permutation of these variables had a significant impact on the model prediction of disease state
versus non-disease state
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Fig. 6 Box-whisker plots for selection reaction monitoring peptide candidates for heterotopic ossification (HO+/D) and non-disease (HO−/ND)
serum samples. Distribution of selection reaction monitoring (SRM) normalized abundance ratios for each peptide for heterotopic ossification
negative samples (non-disease; ND) and heterotopic ossification positive samples (disease; D)
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Discussion
The presence of HO is determined using radiographs,
which limits the ability to predict patients that are sus-
ceptible to HO and complicates early diagnosis of the
disease as aberrant bone formation must first be detect-
able. Furthermore, using tissue samples to identify early
signs of HO can be difficult because the proteome of
tissue within a wound bed can vary widely depending on
location within the wound bed [21]. Using tissue for
disease identification requires invasive sampling and like
all biopsy results, is dependent on the location of the
sample in relation to the suspected disease foci.
A biomolecular screening tool using serum from

wounded patients could allow for earlier diagnosis, inter-
vention, and the potential development of novel thera-
peutics, to prevent development of HO [2, 9]. A major
challenge with identifying systemic markers is the need
for data-driven approaches. Applying a priori knowledge
limits the advancement of screening assays because the
majority of protein candidates, for example, MMPs are
involved in normal healing and disease processes [22].
Effective diagnostic panels require multiple biomarkers
across different gene families because the disease state is
more often a consequence of misregulation of protein
expression rather than a single mutation of a critical
protein.
Another challenge for devising a pharmaceutical treat-

ment for HO is the lack of knowledge regarding meta-
bolic processes and misregulated cellular signaling
events underlying the disease. Since HO has similar
characteristics as seen in the normal physiology of
fracture healing, treatment options for HO need to be
very specific to avoid impairment of normal bone heal-
ing [22]. Identifying biomarkers that allow for early iden-
tification of HO is confounded by the active and
ongoing inflammatory response present due to injury.
During the inflammatory phase of the wound healing
process, without the formation of heterotopic ossifica-
tion, there will be a strong signal in the biological space
of proteins related to wound healing.
Utilizing a shotgun proteomics assay, iTRAQ, qualita-

tive expression levels were determined for all detectable
proteins (1220) from serum samples collected from HO
+ and HO− subjects and used to identify proteins that



a b

Fig. 7 Summary target candidates for selection reaction monitoring assay. a The 10 proteins used in the selection reaction monitoring (SRM)
assay were analyzed via ReactomeFI in cytoscape. Six of the candidates (circles) were clustered with six linker genes (diamonds). Relevant
pathways for wound healing and ossification within this small interactome were extracellular matrix organization and extracellular matrix-receptor
interaction. b The 10 proteins (red nodes) used in the selection reaction monitoring (SRM) assay were analyzed via ReactomeFI in cytoscape with all
proteins that were differentially regulated (green nodes) in the iTRAQ experiment
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are differentially regulated between the disease and non-
disease state. This global proteomics approach enabled a
data-driven methodology. The bioinformatics analyses
built networks of functionally related proteins capable of
identifying crosstalk through protein-protein interactions
between sub-networks. The goal of this approach was to
identify biomarkers, proteins linked to misregulated
pathways and that are differentially expressed in the dis-
ease state compared to non-disease state. The current
research found that serum from both healthy and
disease patients is enriched for proteins involved in the
response to elevated platelet Ca+2, wound healing, and
extracellular matrix organization, and that these pathways
include proteins that are differentially regulated in the
disease state (Table 2).
Shotgun proteomic techniques including iTRAQ pro-

vide a knowledgebase for identifying potential clinical
biomarkers without the need for a priori knowledge, but
results are semi-quantitative and require follow-up valid-
ation using a quantitative assay. To transition the semi-
quantitative iTRAQ results into a clinical diagnostic
system, we developed and utilized SRM-MS assays to
precisely and robustly quantify 10 proteins chosen based
on expression ratios from the iTRAQ experiment com-
bined with functional annotations, including gene
ontology and pathway information. Using a random for-
est model and the SRM-MS data, osteocalcin prepropro-
tein, osteomodulin precursor, and collagen alpha-1(V)
chain isoform 2 preprotein were determined to be the
best candidates for predicting the disease state (HO+).
The model predictions of these targets as diagnostic

markers are supported by a study of osteoclast and
osteoblast activity after total hip arthroplasty, which
found that osteocalcin increased in individuals who
developed HO [23]. Osteocalcin (gene BGLAP; P02818)
is secreted by bone-forming osteoblasts [24], and a
strong overexpression of osteocalcin mRNA in HO
isolated cells has been observed [25]. The wound fluid
from blast-injured patients has osteoinductive signaling
properties [5]. Serum from patients with TBI induced an
increase in skeletal muscle cells, and the high levels of
alkaline phosphatases suggested an increased osteogenic
capability [10].
Bone formation and remodeling require a balance

between osteoclast and osteoblast activity [26]. Osteo-
modulin (OMD), or osteoadherin, is part of the leucine-
rich repeat proteins (SLRPs) located in the extracellular
matrix. OMD is expressed by osteoblasts and is involved
in the regulation of bone formation [27]. OMD has also
been shown to regulate the diameter and shape of
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collagen fibrils [28]. The SRM findings presented here
for both osteocalcin and osteomodulin in HO are con-
sistent with the cell data from resected human HO bone
that expressed the osteoblast phenotype (type I collagen)
[29]. Other investigators have reported that collagen
expression was increased in tissue from wounds with
HO for COL10A1, COL4A3, and COL11A1 [4, 30].

Conclusions
This study is the first reported SRM-MS analysis of serum
from individuals with and without heterotopic ossification.
Differences in the serum proteomic profile between healthy
and diseased subjects were identified. Furthermore, our re-
sults indicate that normal wound healing signals can impact
the ability to identify biomarkers, and a multi-protein panel
assay, including osteocalcin preproprotein, osteomodulin
precursor, and collagen alpha-1(v) chain isoform 2 prepro-
tein, may provide a solution for HO detection and
monitoring. The proteomic analysis within this report
focuses on protein abundance, ignoring protein post-
translational modifications (PTM). Of interest, osteocalcin
has several amino acid residues that are susceptible to
PTM that influence the function of this protein [31].
Future studies are planned to identify the presence and
potential of differentially regulated PTMs in HO.

Additional files

Additional file 1: Selection reaction monitoring (SRM) peptide transition
parameters for protein candidates. Transition parameters and retention
times of the 30 peptides were confirmed individually using an Agilent
6495 Triple Quadrapole Mass Spectrometer for both doubly and triply
charged precursor ions. Five or 6 transitions per peptide precursor were
selected for SRM analysis. In total, 350 transitions were optimized to
identify and quantify 30 peptides. SRM target protein names, representative
proteotypic peptide sequences, and SRM transition parameters are provided.
(XLSX 68 kb)

Additional file 2: iTRAQ serum gene ontology enrichment analysis. All
proteins quantified in the serum via iTRAQ were analyzed using BiNGO
and cytoscape on June 23, 2016. An over-representation analysis,
hypergeometric test with a Benjamini & Hochberg False Discovery
Rate (FDR) correction, was executed with a significance level of
<0.05. (XLSX 130 kb)

Additional file 3: Scatterplots selection reaction monitoring assay. Plot
matrix of SRM peptide abundance in blood serum from heterotopic
positive (blue) and negative (gold) subjects. (PNG 3461 kb)

Abbreviations
ALPL: Alkaline phosphatase; AUC: Area under the curve; BAMC: Brooke Army
Medical Center; BGLAP: Osteocalcin preprotein; COL1A2: Collagen alpha-2(l)
chain precursor protein; COL5A1: Collagen alpha-1(V) chain; FDA: Food and Drug
Administration; GLM: Generalized linear model; HO: Heterotopic ossification; HO
−: Heterotopic ossification, disease negative; HO+: Heterotopic ossification, disease
positive; HPLC: High-performance liquid chromatography; IBSP: Bone sialoprotein
2 precursor; IRB: Institutional Review Board; iTRAQ: Isobaric tags for relative and
absolute quantitation; KEGG: Kyoto Encyclopedia of Genes and Genomes;
LPIN2: Phosphatidate phosphatase; MMP: Matrix metalloproteinase; MS: Mass
spectrometry; MSE: Mean square error; ND: Non-disease; NSAID: Nonsteroidal anti-
inflammatory drug; OEF: Operation Enduring Freedom; OIF: Operation Iraqi
Freedom; OMD: Osteomodulin; PPM1J: Protein phosphatase 1J; PTM: Post-
translational modifications; RF: Random forest; ROC: Receiver operating
characteristic; RRP12: RRP12-like protein; SCI: Spinal cord injury; SRM-
MS: Selection reaction monitoring mass spectrometry; SVM: Support vector
machine learning; TBI: Traumatic brain injury; TCEP: Tris-(2-carboxyethyl)
phosphine; TFA: Trifluoroacetic acid; TRAF3: TRAF3-interacting protein 1;
USAMRMC: US Army Medical Research and Materiel Command

Acknowledgements
The authors thank Ryan V. Wang, PhD, MHS, MS, MyOmicsDx, Inc. for expertise
and assistance in the development of the SRM-MS diagnostic panel and
Thomas T. Wood, MD, San Antonio Military Medical Center for assistance
with determining patient HO status.

Funding
The research was funded by the Department of Defense, grant W81-WXH-10-2-
0139, LEE Co-PI. ELC was supported by the Nemours Biomedical Research
department and the National Institute of General Medical Sciences of
the National Institutes of Health, grant U54-GM104941 (DE-CTR).

Availability of data and materials
The raw mass spectrometry data, both iTRAQ and SRM, are available via
MyOmixDx, Inc., Towson, MD, USA. Restrictions apply to the availability of
these data, which were used under license for the current study, and so are
not publicly available. Data are available from the authors upon reasonable
request and with permission of MyOmixDX, Inc. Processed MS data are
included in the manuscript, and raw data files are available from the
corresponding author on reasonable request.

Authors’ contributions
LEE contributed to the conception and design of the study, data interpretation,
and manuscript preparation. ELC contributed to the bioinformatics analysis, data
interpretation, and manuscript and figure preparation. PMO contributed to the
analysis of the data and manuscript revision. JTW contributed to the experimental
design, data analysis and interpretation, and manuscript preparation. All authors
read and approved the final version and agreed to be accountable for all aspects
of the work in ensuring that questions related to the accuracy or integrity of any
part of the work are appropriately investigated and resolved.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
This research was performed in accordance with the Declaration of Helsinki.
Subjects were enrolled at Brooke Army Medical Center (BAMC) after giving
consent. The study protocol and consent received Institutional Review Board
(IRB) from BAMC IRB, Daemen College IRB, and the US Army Medical Research
and Materiel Command (USAMRMC) Human Research Protection Office.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author details
1Center for Wound Healing Research, Natural Sciences, Daemen College,
Amherst, NY 14226, USA. 2Bioinformatics, Nemours Biomedical Research,
Nemours Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA.
3San Antonio Military Medical Center, San Antonio, TX, USA. 4Center for
Bioinformatics & Computational Biology, University of Delaware, Newark, DE
19711, USA.

Received: 7 September 2016 Accepted: 12 April 2017

References
1. Potter BK, Burns TC, Lacap AP, et al. Heterotopic ossification following

traumatic and combat-related amputations. Prevalence, risk factors, and
preliminary results of excision. J Bone Joint Surg Am. 2007;89:476–86.
doi:10.2106/JBJS.F.00412.

dx.doi.org/10.1186/s13018-017-0567-2
dx.doi.org/10.1186/s13018-017-0567-2
dx.doi.org/10.1186/s13018-017-0567-2
http://dx.doi.org/10.2106/JBJS.F.00412


Edsberg et al. Journal of Orthopaedic Surgery and Research  (2017) 12:69 Page 13 of 13
2. Forsberg JA, Pepek JM, Wagner S, et al. Heterotopic ossification in high-energy
wartime extremity injuries: prevalence and risk factors. J Bone Joint Surg Am.
2009;91:1084–91. doi:10.2106/JBJS.H.00792.

3. Alfieri KA, Forsberg JA, Potter BK. Blast injuries and heterotopic ossification.
Bone Jt Res. 2012;1:174–9. doi:10.1302/2046-3758.18.2000102.

4. Davis TA, O’Brien FP, Anam K, et al. Heterotopic ossification in complex
orthopaedic combat wounds: quantification and characterization of
osteogenic precursor cell activity in traumatized muscle. J Bone Joint
Surg Am. 2011;93:1122–31. doi:10.2106/JBJS.J.01417.

5. Potter BK, Forsberg JA, Davis TA, et al. Heterotopic ossification following
combat-related trauma. J Bone Joint Surg Am. 2010;92 Suppl 2:74–89.
doi:10.2106/JBJS.J.00776.

6. Foruria AM, Lawrence TM, Augustin S, et al. Heterotopic ossification after
surgery for distal humeral fractures. Bone Joint J. 2014;96–B:1681–7.
doi:10.1302/0301-620X.96B12.34091.

7. Ranganathan K, Loder S, Agarwal S, et al. Heterotopic ossification: basic-
science principles and clinical correlates. J Bone Joint Surg Am. 2015;97:
1101–11. doi:10.2106/JBJS.N.01056.

8. Babuin L, Jaffe AS. Cardiac injury. Review. 2005;173:1191–202.
9. Toffoli AM, Gautschi OP, Frey SP, et al. From brain to bone: evidence for the

release of osteogenic humoral factors after traumatic brain injury. Brain Inj.
2008;22:511–8. doi:10.1080/02699050802158235.

10. Cadosch D, Toffoli AM, Gautschi OP, et al. Serum after traumatic brain injury
increases proliferation and supports expression of osteoblast markers in muscle
cells. J Bone Joint Surg Am. 2010;92:645–53. doi:10.2106/JBJS.I.00097.

11. Lee J-H, Cho J-Y. Proteomics approaches for the studies of bone
metabolism. BMB Rep. 2014;47:141–8. doi:10.5483/BMBRep.2014.47.3.270.

12. Anderson L. Quantitative mass spectrometric multiple reaction monitoring
assays for major plasma proteins. Mol Cell Proteomics. 2005;5:573–88.
doi:10.1074/mcp.M500331-MCP200.

13. Lange V, Malmstrom JA, Didion J, et al. Targeted quantitative analysis of
Streptococcus pyogenes virulence factors by multiple reaction monitoring.
Mol Cell Proteomics. 2008;7:1489–500. doi:10.1074/mcp.M800032-MCP200.

14. Li X, Hayward C, Fong P-Y, et al. A blood-based proteomic classifier for the
molecular characterization of pulmonary nodules. Sci Transl Med. 2013;5:
207ra142. doi:10.1126/scitranslmed.3007013.

15. Wisniewski JR, Zougman A, Nagaraj N, Mann M. Universal sample preparation
method for proteome analysis. Nat Methods. 2009;6(5):359–62.
doi:10.1038/nmeth.1322.

16. Smoot ME, Ono K, Ruscheinski J, et al. Cytoscape 2.8: new features for
data integration and network visualization. Bioinformatics. 2011;27:431–2.
doi:10.1093/bioinformatics/btq675.

17. Wu G, Feng X, Stein L. A human functional protein interaction network and
its application to cancer data analysis. Genome Biol. 2010;11:R53.
doi:10.1186/gb-2010-11-5-r53.

18. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess
overrepresentation of gene ontology categories in biological networks.
Bioinformatics. 2005;21:3448–9. doi:10.1093/bioinformatics/bti551.

19. Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes
long lists of gene ontology terms. PLoS One. 2011;6:e21800. doi:10.1371/
journal.pone.0021800.

20. MacLean B, Tomazela DM, Shulman N, et al. Skyline: an open source document
editor for creating and analyzing targeted proteomics experiments.
Bioinformatics. 2010;26:966–8. doi:10.1093/bioinformatics/btq054.

21. Edsberg LE, Wyffels JT, Brogan MS, Fries KM. Analysis of the proteomic profile
of chronic pressure ulcers. Wound Repair Regen. 2012;20:378–401. doi:10.1111/
j.1524-475X.2012.00791.x.

22. Nauth A, Giles E, Potter BK, et al. Heterotopic ossification in orthopaedic
trauma. J Orthop Trauma. 2012;26:684–8. doi:10.1097/BOT.0b013e3182724624.

23. Wilkinson JM, Stockley I, Hamer AJ, et al. Biochemical markers of bone turnover
and development of heterotopic ossification after total hip arthroplasty. J Orthop Res.
2003;21:529–34. doi:10.1016/S0736-0266(02)00236-X.

24. Patti A, Gennari L, Merlotti D, et al. Endocrine actions of osteocalcin.
Int J Endocrinol. 2013;2013:1–10. doi:10.1155/2013/846480.

25. Chauveau C, Devedjian J-C, Blary M-C, et al. Gene expression in human
osteoblastic cells from normal and heterotopic ossification. Exp Mol Pathol.
2004;76:37–43.

26. Ninomiya K, Miyamoto T, Imai J, et al. Osteoclastic activity induces osteomodulin
expression in osteoblasts. Biochem Biophys Res Commun. 2007;362:460–6.
doi:10.1016/j.bbrc.2007.07.193.
27. Sommarin Y, Wendel M, Shen Z, et al. Osteoadherin, a cell-binding keratan
sulfate proteoglycan in bone, belongs to the family of leucine-rich repeat
proteins of the extracellular matrix. J Biol Chem. 1998;273:16723–9.

28. Tashima T, Nagatoishi S, Sagara H, et al. Osteomodulin regulates diameter
and alters shape of collagen fibrils. Biochem Biophys Res Commun. 2015;
463:292–6. doi:10.1016/j.bbrc.2015.05.053.

29. Handschin AE, Egermann M, Wedler V, et al. A comparative analysis of
phenotype expression in human osteoblasts from heterotopic ossification
and normal bone. Langenbeck’s Arch Surg. 2006;391:376–82. doi:10.1007/
s00423-005-0021-5.

30. Evans KN, Potter BK, Brown TS, et al. Osteogenic gene expression correlates
with development of heterotopic ossification in war wounds. Clin Orthop
Relat Res. 2014;472:396–404. doi:10.1007/s11999-013-3325-8.

31. Gundberg CM, Lian JB, Booth SL. Vitamin K-dependent carboxylation
of osteocalcin: friend or foe? Adv Nutr An Int Rev J. 2012;3:149–57.
doi:10.3945/an.112.001834.
•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

http://dx.doi.org/10.2106/JBJS.H.00792
http://dx.doi.org/10.1302/2046-3758.18.2000102
http://dx.doi.org/10.2106/JBJS.J.01417
http://dx.doi.org/10.2106/JBJS.J.00776
http://dx.doi.org/10.1302/0301-620X.96B12.34091
http://dx.doi.org/10.2106/JBJS.N.01056
http://dx.doi.org/10.1080/02699050802158235
http://dx.doi.org/10.2106/JBJS.I.00097
http://dx.doi.org/10.5483/BMBRep.2014.47.3.270
http://dx.doi.org/10.1074/mcp.M500331-MCP200
http://dx.doi.org/10.1074/mcp.M800032-MCP200
http://dx.doi.org/10.1126/scitranslmed.3007013
http://dx.doi.org/10.1038/nmeth.1322
http://dx.doi.org/10.1093/bioinformatics/btq675
http://dx.doi.org/10.1186/gb-2010-11-5-r53
http://dx.doi.org/10.1093/bioinformatics/bti551
http://dx.doi.org/10.1371/journal.pone.0021800
http://dx.doi.org/10.1371/journal.pone.0021800
http://dx.doi.org/10.1093/bioinformatics/btq054
http://dx.doi.org/10.1111/j.1524-475X.2012.00791.x
http://dx.doi.org/10.1111/j.1524-475X.2012.00791.x
http://dx.doi.org/10.1097/BOT.0b013e3182724624
http://dx.doi.org/10.1016/S0736-0266(02)00236-X
http://dx.doi.org/10.1155/2013/846480
http://dx.doi.org/10.1016/j.bbrc.2007.07.193
http://dx.doi.org/10.1016/j.bbrc.2015.05.053
http://dx.doi.org/10.1007/s00423-005-0021-5
http://dx.doi.org/10.1007/s00423-005-0021-5
http://dx.doi.org/10.1007/s11999-013-3325-8
http://dx.doi.org/10.3945/an.112.001834

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Subject enrollment
	Study protocol and overview
	Sample and peptide preparation for iTRAQ
	Multiplexed iTRAQ labeling
	Nanoflow electrospray ionization tandem mass spectrometry analysis
	iTRAQ-MS data processing
	Proteomic bioinformatics analysis
	Reagents SRM-MS
	SRM-MS data processing
	Model construction

	Results
	iTRAQ results
	Proteomics analysis and serum biomarker selection

	SRM analysis

	Discussion
	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

