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Abstract: The development of high-performance and cost-effective earth-abundant transition metal-
based electrocatalysts is of major interest for several key energy technologies, including water splitting.
Herein, we report the synthesis of ultrathin CoMoP nanosheets through a simple ion etching and
phosphorization method. The obtained catalyst exhibits outstanding electrocatalytic activity and sta-
bility towards oxygen and hydrogen evolution reactions (OER and HER), with overpotentials down to
273 and 89 mV at 10 mA cm−2, respectively. The produced CoMoP nanosheets are also characterized
by very small Tafel slopes, 54.9 and 69.7 mV dec−1 for OER and HER, respectively. When used as
both cathode and anode electrocatalyst in the overall water splitting reaction, CoMoP-based cells
require just 1.56 V to reach 10 mA cm−2 in alkaline media. This outstanding performance is at-
tributed to the proper composition, weak crystallinity and two-dimensional nanosheet structure of
the electrocatalyst.

Keywords: MOF; phosphide; nanosheet; water splitting

1. Introduction

Hydrogen, with a high gravimetric energy density (142 MJ kg−1) and zero-carbon emis-
sions, is both a key component in the chemical industry and a very appealing energy carrier
for clean and sustainable energy storage and supply [1,2]. Since molecular hydrogen is not
freely available in nature, it needs to be extracted from hydrogen-containing compounds.
Currently, fossil fuels are the main source of H2, which involves the release of large amounts
of carbon. The electrochemical water splitting is the main green alternative to produce H2,
but it is seriously hampered by the high cost and insufficient durability of current electro-
catalysts, based on scarce novel metals such as Pt, Ir and Ru [3–6], and the slow kinetics of
the hydrogen and oxygen evolution reactions (HER, OER), which makes water electrolysis
not competitive with steam reforming of natural gas or coal gasification processes [7–9].

In order to overcome the current challenges and enable the massive production of
H2 by water splitting, substantial efforts were devoted to the development of high ac-
tivity, stable and cost-effective electrocatalysts for overall water splitting (OWS). Among
the wide range of materials proposed for alkaline water electrolysis, including metal
oxides/hydroxides [10–12], chalcogenides [13–16], nitrides [17,18] and carbides [19,20],
metal phosphides demonstrated particularly attractive catalytic performances [21,22].
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The outstanding performance of phosphides was related to their high electrical conduc-
tivity, favorable electronic structure and high stability against corrosion [23,24]. Amongst
phosphides, cobalt phosphide (CoP) exhibits an exceptional HER activity associated with
a proper electronic structure and specifically to the effective capture of protons by the
negatively charged phosphorous atoms [25,26]. Besides, CoP is also characterized by a very
high OER activity associated with the high ability of the positively charged cobalt cations
to adsorb oxygen intermediates while the negatively-charged P facilitates the desorption
of O2 molecules [27,28]. However, the OWS in CoP still requires too large overpotentials
for practical applications, mainly ascribed to the high dissociation energy of water and the
sluggish OER kinetics involving a multi-electron transfer process [29,30].

An effective strategy to optimize a material’s performance is the introduction of
an additional element that provides additional degrees of freedom to modulate its elec-
tronic structure and surface properties. Within transition metal phosphide electrocatalysts,
additional metals enable a fine-tuning of the d-band position, optimizing the adsorption
free energy of the reactants/intermediates/products and thus improving the catalytic activ-
ity and even stability. In this direction, Xiao et al. reported the HER catalytic activity of CoP
to be boosted by vanadium doping [31]. The introduced V strongly interacts with the hosted
Co atoms, enhancing the VCoP electron density and thus accelerating the HER. Other ele-
ments, such as Zn [32], Mn [33], Ni [34], Ce [35], Cr [36] and W [21], were also demonstrated
to promote either the HER or OER through enhancing electron interactions [28].

Beyond composition, the structure, morphology and organization of the catalyst
particles are key parameters defining the density, accessibility and activity of the catalytic
sites, which ultimately determine the catalytic activity. In this regard, metal–organic
frameworks (MOFs), with a crystalline and porous structure formed by metal ion/cluster
bridged by organic ligands, were demonstrated to be excellent sacrificial templates to produce
porous carbon-based nanomaterials with tuned composition and morphology [37–40].

Inspired by the above considerations, we rationally designed a novel and highly
effective bifunctional electrocatalyst for OWS. This new catalyst is based on CoP, structured
as 2D ultrathin nanosheets and derived from the ZIF-67 MOF. It includes Mo6+ as a
high valence 4d transition metal ion, which ionic radius of 0.62 Å matches well with
that of Co3+ (0.63 Å), thus allowing the substitution of Co3+ by Mo6+ within the CoP
lattice [41,42]. We demonstrated here that the proposed porous nanosheet-based structure
and the incorporation of Mo within the CoP lattice enable rapid water dissociation and
effective and stable HER and OER performances.

2. Materials and Methods
2.1. Chemicals

Ammonium molybdate tetrahydrate ((NH4)6Mo7O24·4H2O, 90%), cobalt nitrate hex-
ahydrate (Co(NO3)2·6H2O, 99.9%), potassium hydroxide (KOH, 85%), iridium(IV) oxide
(IrO2, 99.9% metal basis) and Nafion (5 wt% within a blend of low aliphatic alcohols
and water) were obtained from Sigma-Aldrich (St. Louis, MO, USA). 2-Methylimidazole
(C4H6N2, 99%) was purchased from Acros Organics (Antwerp, Belgium). Analytical grade
methanol, ethanol and isopropanol were obtained from different sources. Milli-Q water
was produced using an Elga Purelab flex. All chemicals were used as received.

2.2. Preparation of ZIF-67

ZIF-67 was produced following a previously reported procedure with some modifica-
tions [16,43]. Briefly, 0.87 g Co(NO3)2·6H2O was dissolved in 30 mL of methanol to obtain
a clear solution. Subsequently, the above solution was poured into 30 mL of methanol
containing 1.97 g of 2-methylimidazole under vigorous stirring. After mixing completely,
the solution was incubated for 24 h at room temperature. Purple precipitates were col-
lected by centrifugation; they were washed with methanol three times and then dried at
60 ◦C overnight.
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2.3. Preparation of Mo–Co MOFs

One hundred and twenty milligrams of as-prepared ZIF-67 powder was ultrasonically
re-dispersed in 20 mL of ethanol. This solution was poured into 100 mL of an aqueous
solution containing 50 mg, 100 mg and 200 mg of ammonium molybdate under continuous
magnetic stirring. The mixture was then stirred vigorously for 24 h at room temperature.
Lavender precipitates were collected by centrifugation, washed with water at least three
times and freeze-dried overnight.

2.4. Preparation of CoP and CoMoP

The obtained ZIF-67 and Mo–Co MOFs powders were placed in a porcelain boat
within a horizontal tube furnace. In another boat, a 20× mass amount of NaH2PO2·H2O
was placed at the upstream side of the tube furnace. The material was then annealed at
350 ◦C under N2 flow. After calcination for 2 h, the final black products were denoted as
CoP and CoMoP, respectively.

2.5. Structural Characterization

Powder X-ray diffraction (XRD) was performed on a Bruker AXS D8 Advance X-ray
diffractometer (Bruker, Billerica, MA, USA) with Cu-Kα radiation (λ = 1.5406 Å). Scanning
electron microscopy (SEM) analysis was conducted with a Zeiss Auriga microscope (Carl
Zeiss, Jena, Germany) equipped with an energy dispersive spectroscope analyses (EDS)
detector operating at 20 kV. Transmission electron microscopy (TEM), High-resolution TEM
(HRTEM), Annular dark-field scanning transmission electron microscope (HAADF-STEM)
and electron energy loss spectroscopy (EELS) analysis were obtained using a field emission
gun FEI Tecnai F20 microscope (FEI, Hillsboro, OR, USA) with a Gatan Quantum filter
(Pleasanton, CA, USA) at 200 kV. X-ray photoelectron spectroscopy (XPS) measurements
were conducted on a SPECS using an Al anode XR50 source at 150 W and a 150 MCD-9
detector from Phoibos (SPECS, Berlin, Germany).

2.6. Electrochemical Measurements

Electrochemical characterization was performed in a standard three-electrode sys-
tem using an electrochemical workstation (CHI 760E, CH Instruments, Shanghai, China)
in 1 M KOH solution (PH = 14). A graphite rod counter electrode and a Hg/HgO ref-
erence electrode were employed. Electrochemical impedance spectroscopy (EIS) was
measured within a frequency from 0.01 Hz to 10 kHz at 10 mV amplitude. The initial
voltage was fixed at the overpotential required to obtain a current density of 10 mA cm−2.
The electrochemically active surface area (ECSAs) was determined using the electrochemi-
cal double-layer capacitance (Cdl) obtained with cyclic voltammetry data at different scan
rates (v = 20–100 mV·s−1). Stability was determined by CV using 3000 cycles at 100 mV·s−1

and by chronopotentiometry at 10 mA·cm−2. Overall water splitting tests were carried out
in a two-electrode system with the voltage range of 0–2.0 V at a scan rate of 5 mV·s−1 in
1.0 M KOH electrolyte.

3. Results and Discussion
3.1. Characterization of Electrocatalysts

CoMoP nanosheets were produced by a three-step process involving the synthesis
of a Co–MOF, its etching and partial cation exchange and a final phosphorization step,
as schematically illustrated in Figure 1a. First, a cobalt-based zeolitic imidazolate frame-
work (ZIF-67), consisting of polyhedral-shaped micrometer-size particles, was produced
as a self-sacrificial template (Figure 1b). The ZIF-67 was reacted with ammonium molyb-
date with the double role of etching the structure and partially replacing Co3+ cations by
Mo6+, yielding a porous wrinkled nanosheet-based material that we refer to as Co–Mo
MOF (Figure 1c). Finally, the Co–Mo MOF was annealed within a tube furnace contain-
ing NaH2PO2 at 350 ◦C for 2 h to produce a porous phosphide with a similar wrinkled
nanosheet-based morphology that we denoted as CoMoP (Figures 1d and S1). EDS analysis
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of CoMoP showed a Co–Mo atomic ratio of Co/Mo = 4, and a phosphorus–metal atomic
ratio of P/M =2.6 (M = Co + Mo) (Figure S2).
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Figure 1. (a) Schematic illustration of the CoMoP synthesis process. (b–d) SEM image of (b) ZIF-67
(c) Mo–Co MOFs and (d) CoMoP.

In order to study the effect of ammonium molybdate, we replaced this chemical with
an alternative Mo precursor. Using sodium molybdate as Mo source, the morphology of
the final product was much more compact, consisting of partially porous cubes (Figure S3).
Besides, EDS analysis revealed the molybdenum content of this material to be much
lower (Co/Mo = 18.8) than that of CoMoP. We will refer to this material as Mo–CoP. As a
reference, a Mo-free CoP was obtained by directly annealing the ZIF-67 in the presence
of the phosphorous source, with no etching step (Figure S4). The obtained material also
displayed a more compact geometry than that of the CoMoP nanosheets.

Figures 2a,b and S5 displays TEM images of CoMoP, further revealing their ultra-
thin nanosheet structure. HAADF-STEM analysis and EELS chemical composition maps
(Figures 2e, S6 and S7) displayed a homogenous distribution of C, Co, Mo and P within
each CoMoP nanosheet. HRTEM images (Figure 2c) and SAED patterns (Figure 2d) showed
CoMoP to present a weak crystallinity, with strong middle/long-range disordered [44–46].
In this regard, while the XRD patterns of ZIF-67 and Na2MoO4-ZIF-67 displayed a good
crystallinity (Figure 3a), the Co–Mo MOF already presented a mostly amorphous structure.
After phosphorization, CoP maintained a relatively well-organized lattice, and CoMoP
displayed a weak crystallographic order, consistently with HRTEM results (Figure 3b).

As expected, the XPS survey spectrum displayed the presence of C, N, O, P, Co and
Mo elements on the surface of CoMoP (Figure 3c). The high-resolution P 2p XPS spec-
trum displayed two doublets, which we associated with P within the metal phosphide
lattice (P 2p3/2 = 129.7 eV), and a phosphate chemical environment (P 2p3/2 = 133.8 eV)
(Figure 3d) [41,47]. The Co 2p XPS spectrum displayed six peaks (Figure 3e). The main
Co 2p contribution was assigned to Co within the phosphide lattice (Co 2p3/2 = 779.3 eV).
A second doublet was associated with Co within an oxide, hydroxide or phosphate chem-
ical environment (Co 2p3/2 = 781.5 eV). The last two bands were assigned to satellite
peaks [28–30,48,49]. Finally, the Mo 3d XPS spectrum displayed two doublets assigned to
Mo within the metal phosphide lattice (Mo 3d5/2 = 228.2 eV) and an oxidized chemical
environment (Mo 3d5/2 = 233.0 eV) (Figure 3f) [50–52].
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3.2. Oxygen Evolution Reaction

The OER activity of CoMoP was evaluated at room temperature using a three-electrode
system in a 1.0 M KOH alkaline solution. As a reference, Mo–CoP, CoP and a commercial
RuO2 catalyst were also evaluated in the same cell and reaction conditions. The LSV polar-
ization curves displayed the CoMoP to be characterized by an outstanding OER activity,
with an overpotential of only 273 mV at a current density of 10 mA cm−2 (Figures 4a and S8).
This overpotential is well below that of Mo–CoP, CoP and the RuO2 electrocatalyst tested here
and outperforms that of previously reported CoP-based OER catalysts, as shown in Table S1.
As displayed in Figure 4b, CoMoP was not only characterized by the lowest overpotential at
10 mA cm−2 but also provided the lowest Tafel slope, 54.9 mV dec−1. This value was signifi-
cantly below that of Mo–CoP (60.4 mV dec−1), CoP (71.5 dec−1) and RuO2 (86.4 mV dec−1),
which indicates CoMoP to have associated a faster OER reaction kinetics [53,54].
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Figure 4. (a) OER polarization curves in 1.0 M KOH. (b) Corresponding Tafel plots. (c) Double-layer
capacitances (Cdl). (d) Nyquist plots of the EIS data. (e) OER polarization curves before and after
3000 cycles. (f) OER chronoamperometric data for CoMoP at an overpotential of 273 mV.

The electrochemical active areas (ECSA) of CoMoP, Mo–CoP NCs, CoP and RuO2
were estimated according to the double-layer capacitance (Cdl) determined via CV in the
non-faradaic region at different scan rates, 20, 40, 60, 80 and 100 mV·s−1 (Figures S9 and 4c).
CoMoP displayed larger Cdl (12.6 mF cm−2) than Mo–CoP (8.7 mF cm−2), CoP (4.9 mF cm−2)
and RuO2 (2.3 mF cm−2). This result indicates that CoMoP offers a higher density of
accessible electrochemical active sites, which we relate to the proper composition and
nanosheet structure of CoMoP.

The charge transport/transfer ability of the electrocatalysts was evaluated by electro-
chemical impedance spectroscopy (EIS). An equivalent circuit model including a charge
transfer resistance (Rct) and a solution resistance (Rs) during the OER process was used
to fit the Nyquist plots displayed in Figure 4d [55,56]. CoMoP exhibited the smallest Rct
(17.99 Ω), well below that of Mo–CoP (Rct = 27.90 Ω), CoP (Rct = 36.70 Ω) and RuO2
(45.47). These results reveal the CoMoP nanosheets to enable a faster charge transfer at the
electrode/electrolyte interfaces, thus accelerating the OER electrocatalytic kinetics.

The long-term stability of CoMoP was further analyzed by CV and chronopotentiome-
try measurements [57,58]. Figure 4e shows how the LSV curve of CoMoP after 3000 CV
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cycles closely resembles that of the first cycle. The chronoamperometry test displayed
CoMoP to have an outstanding long-term catalytic activity with just a 3% current density
decay after 100 h of operation at 273 mV (Figure 4f). SEM images of the post-catalysts
after OER testing at high current showed the ultrathin CoMoP nanosheets to partially
sinter into a highly porous structure with thicker walls (Figure S10). At the same time,
the EDX result showed that a loss of P occurred during the OER. These results are consistent
with the reorganization of the metal phosphide into a metal (oxy)-hydroxide during the
OER reaction [59,60].

3.3. Hydrogen Evolution Reaction

The HER performance of CoMoP was evaluated in 1.0 M KOH using a three-electrode
system, and it was compared with that of Mo–CoP, CoP and a commercial Pt/C cata-
lyst. As shown in Figures 5a and S8b, the CoMoP electrocatalyst displayed a relatively
low HER overpotential of 89 mV at the current density of 10 mA cm−2, slightly above
that of Pt/C (42 mV) and well below that of Mo–CoP (154 mV), CoP (165 mV) and most
previously reported phosphide-based HER electrocatalysts (Table S2). The Tafel slope of
CoMoP (69.7 mV dec−1) was also much lower than those of Mo–CoP (83.7 mV dec−1),
CoP (113.4 mV dec−1) and close to that of Pt/C (56.1 mV dec−1) (Figure 5b), which indicated
rapid HER reaction kinetics following the Volmer–Heyrovsky mechanism [61,62]. CoMoP
also displayed the smallest semicircular diameter in the Nyquist plot of the EIS data among
the phosphide catalysts tested (Figure 5c), showing the lowest charge transfer resistance dur-
ing catalytic processes. In terms of stability under HER conditions, Figure 5d displays how
CoMoP suffered a minor change in the LSV curves after 3000 cycles. Additionally, the CA
measurement showed the current density to decrease just 6% after 100 h of continuous
operation under HER conditions at an overpotential 89 mV (Figure 5e). The morphology
and composition of the catalyst after long-term HER are displayed in Figure S11. In this
case, minor changes in structure and a moderate P loss were observed, which points to
notable catalyst stability under HER.
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3.4. Overall Water Splitting

Due to the excellent OER and HER performances demonstrated by CoMoP, a two-
electrode configuration electrolyzer with CoMoP both as the positive and negative elec-
trodes was constructed and tested for OWS in 1.0 M KOH solution (Figure 6a). As shown
from the polarization curves displayed in Figure 6b, the assembled device just required
a cell voltage of 1.56 V to reach a current density of 10 mA cm−2, which is significantly
below that of a cell containing Pt/C and RuO2 electrodes (1.61 V). More importantly,
after 40 h of continuous operation at 100 mA cm−2, the CoMoP-based cell still maintained
an outstanding performance, with just a 14.8% loss at high current density (Figure 6c).
Thus, the as-prepared CoMoP can be considered as a highly competitive electrocatalytic cat-
alyst for OWS compared with the previously reported OWS catalysts (Figure 6d, Table S3).
Besides, its outstanding stability demonstrates its potential for large-scale hydrogen pro-
duction from water splitting.
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4. Conclusions

In conclusion, ultrathin CoMoP nanosheets were engineered using the Co–MOF
ZIF-67 as a self-sacrificial template and ammonium molybdate as a shape-defining agent
and Mo source. CoMoP nanosheets exhibited outstanding performance towards HER
and OER in alkaline media, which we associate with the proper transport properties and
electronic energy levels provided by their composition and their porous nanosheet structure.
In particular, CoMoP presented low overpotentials of 89 and 273 mV at a current density
of 10 mA cm−2 for HER and OER, respectively. Furthermore, CoMoP electrocatalysts
also showed excellent long-term stabilities in alkaline electrolytes, with a minor current
density decrease after 100 h continuous operation. When used for OWS, a cell voltage of
only 1.56 V was needed to reach a current density of 10 mA cm−2. This work provides a
suitable strategy to synthesize high-performance Co–Mo–P electrocatalysts with abundant
exposed active sites and effective avenues for charge and electrolyte transport, and it can
be employed to further tune the structure and composition of other 2D nanostructures with
optimized performance towards OWS and other electrocatalytic reactions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/nano12071098/s1, Figure S1: (a–f) SEM images of CoMoP; Figure S2:
(a) SEM images of Co–Mo MOFs. (b,c) SEM images and (d) EDX spectrum of CoMoP. Figure S3:
(a) SEM images of Na2MoO4-ZIF-67. (b,c) SEM images and (d) EDX spectrum Mo–CoP.; Figure S4:
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(a) SEM images of ZIF-67. (b,c) SEM images and d) EDX spectrum CoP. Figure S5: (a–d) TEM
image of CoMoP. Figure S6: (a–d) HAADF-STEM micrographs of CoMoP. Figure S7: EELS chemical
composition maps obtained from the red squared area of the STEM micrograph. Individual Co
L2,3-edges at 779 eV (red), Mo M4,5-edges at 230 eV (green), P L2,3-edges at 132 eV (blue), N K-edge
at 401 eV (pink) and C K-edge at 284 eV (orange). Figure S8: (a) OER and (b) HER polarization
curves of CoMoP with different Mo content in 1.0 M KOH. Figure S9: Cyclic voltammograms for
(a) CoMoP; (b) Mo–CoP; (c) CoP and (d) RuO2 in the non-faradaic region of 1.12–1.22 V vs. RHE at
various scan rates. Figure S10: (a–c) SEM image and (d) EDX spectrum of CoMoP after long-term
OER stability testing. Figure S11: (a–c) SEM image and (d) EDX spectrum of CoMoP after long-term
HER stability testing. Table S1: Comparison of OER performance of CoMoP with some previously
reported CoP-based catalysts in 1.0 M KOH solution. Table S2: Comparison of HER performance
of CoMoP with some previously reported CoP-based catalysts in 1.0 M KOH solution. Table S3:
Comparison of OWS performance of CoMoP with some previously reported CoP-based catalysts in
1.0 M KOH solution. References [63–81] are cited in the supplementary materials.
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