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Abstract

Statistical methods to test for differential expression traditionally assume that each gene’s expression summaries are
independent across arrays. When certain preprocessing methods are used to obtain those summaries, this assumption is
not necessarily true. In general, the erroneous assumption of dependence results in a loss of statistical power. We introduce
a diagnostic measure of numerical dependence for gene expression summaries from any preprocessing method and discuss
the relative performance of several common preprocessing methods with respect to this measure. Some common
preprocessing methods introduce non-trivial levels of numerical dependence. The issue of (between-array) dependence has
received little if any attention in the literature, and researchers working with gene expression data should not take such
properties for granted, or they risk unnecessarily losing statistical power.
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Introduction

Background
The expression values of thousands of genes can be monitored

simultaneously using microarray technology [1,2]. Applications of

this technology abound in the literature. This paper assumes that

the reader is somewhat familiar with this technology, particularly

the GeneChip microarray from Affymetrix (www.affymetrix.com),

which is the most commonly used platform for gene expression

studies. Some common terminology is defined herein only for the

sake of clarity.

Preprocessing refers to the steps taken to convert the raw probe-

level intensities to a collection of estimates of each gene’s

expression values on each array [3,4]. With the Affymetrix

platform, preprocessing typically includes background correction

(to remove local noise and other small artifacts), normalization (to

make inter-array comparisons meaningful), and summarization (to

combine probe-level data to a gene-level summary). A variety of

preprocessing methods have been proposed for Affymetrix data,

with MAS5 [5,6], Li-Wong (also referred to as dChip, or MBEI for

model-based expression index) [7–9], RMA [3,10], GCRMA [11],

PLIER [12,13], and PUMA [14–16] among the most commonly

used. Each of these methods has a convenient implementation

among the Bioconductor tools [17] for the R computing

environment [18]. The result of each of these methods can be

thought of as a matrix of gene expression estimates (or gene

expression summaries), with a row for each gene and a column for

each array in an experiment. Rather than fully summarizing each

of these preprocessing methods here, we refer interested readers to

the references.

After preprocessing, a wide variety of analysis options are

available. When the arrays can be classified by some categorical

variable, such as disease state (healthy vs. beginning disease vs.

advanced disease, for example) or treatment state (control vs.

treatment, for example), a test of differential expression can be

considered. A test of significance is conducted to identify

individual genes (or groups of genes) that exhibit systematic shifts

in expression values between levels of the categorical variable.

While there are perhaps less than a dozen major preprocessing

methods in the literature (plus their variants), the number of

proposed methods for evaluating differential expression continues

to grow. We do not attempt to catalog every possible test here, nor

do we claim to have a best test. Instead, we focus our attention on

a common assumption in these tests, that a gene’s expression

summaries from multiple arrays are independent. This is different

from the issue of dependence among genes, which has been

addressed previously by others [19,20]. The linear models

framework in the limma approach [21] assumes the independence

of a gene’s expression levels, with any dependence ‘‘assumed to be

such that it can be ignored to a first order approximation.’’ Other

t-statistic-based approaches such as SAM [22] also implicitly

assume this independence.

Depending on the preprocessing method, the expression

summaries for a given gene may not be truly independent across

arrays. For example, RMA essentially shares information across

arrays at both the (quantile) normalization and (median polish)

summarization steps, so the RMA expression summaries on one

array will depend to some degree on the original intensities on

other arrays. On the other hand, MAS5 preprocesses each array

PLoS ONE | www.plosone.org 1 August 2012 | Volume 7 | Issue 8 | e39570



individually, sharing no information across arrays at any step of

preprocessing.

A general principle of statistical inference is that if model

assumptions are violated, no claim of statistical significance can be

made. A common goal of statistical applications to gene expression

data is to perform statistical inference by identifying significantly

differentially expressed genes. We seek to draw attention to the fact

that any such statistical inference is suspect when the assumption

of independence is violated. Our motivation in this paper is

primarily to shed light on the numerical properties of several

common gene expression summaries, as they relate to this

assumption of independence, rather than to account for depen-

dence in a particular test for differential expression.

Illustrative Scenario
To illustrate the impact of erroneously assuming independence,

we present a small illustrative scenario. We emphasize that this

small scenario is merely used to illustrate the principle that

ignoring dependence matters in statistical inference, and hope that

this scenario does not detract from the main focus of this paper,

which is given in the Methods section.

Consider a two-sample z-test, where for replicate i of treatment

j (i~1, . . . ,n; j~1,2),

Yij~b0zb1I½j~2�zEij , ð1Þ

where the indicator function I½j~2�~1 when j~2, and equals 0

otherwise. Here, the vector E~(E1,1, . . . ,E2,n) is multivariate nor-

mal with mean 0 and compound symmetric covariance matrix S:

S~

1 r

P

r 1

2
64

3
75: ð2Þ

That is, S is 1 on the diagonal and r for all off-diagonal elements,

with 0vrv1 defining the degree of dependence. This scenario

can be represented in matrix form:

Y*~Xb
*
zE*, ð3Þ

where X is the 2n|2 design matrix with all 19s in the first column,

and with n 09s followed by n 19s in the second column, and b
*

is

the vector of ‘‘intercept’’ and ‘‘slope’’ (or ‘‘treatment effect’’)

parameters

b
*
~

b0

b1

� �
, ð4Þ

and E*N(0,S) so that Y**N(Xb
*

,S), where the vector

Y*~(Y1,1, . . . ,Y2,n).

Using ordinary least squares (i.e., ignoring the dependence r)

and linear models theory [23],

b̂b
*

(o)~(X T X ){1X T Y

*N(b
*

,V (o)),

where V (o)~(X T X ){1X TSX (X T X ){1 is a 2|2 matrix. Here,

the (o) in superscript is for ordinary least squares. It can be shown

(using a symbolic computation package such as Maple) that the

variance of b̂b
(o)
1 is V

(o)
2,2~

2

n
(1{r). Based on this ordinary least

squares approach (which assumes r~0), b̂b
(o)
1 ~ �YY2:{ �YY1:, and the

z-statistic to test H0: b1~0 is

z(o)~
ffiffiffiffiffiffiffiffiffiffiffi
(n=2)

p
�YY 2:{ �YY 1:ð Þ: ð6Þ

If b�1 is the true value of b1 and za=2 is the upper a=2 critical value

of the standard normal distribution, then the statistical power for

the test of H0: b1~0 (while ignoring dependence) is

P(o)~1{P(Dz(o)Dƒza=2 D b1~b�1)

~1{P({za=2ƒ

ffiffiffiffiffiffiffiffiffiffiffi
(n=2)

p
�YY 2:{ �YY 1:ð Þƒza=2 D b1~b�1)

~1{P
{za=2ffiffiffiffiffiffiffiffiffiffi

1{r
p {

b�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2=n)(1{r)
p ƒ

�YY2
:{ �YY1

:ð Þ{b�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2=n)(1{r)
p ƒ

za=2ffiffiffiffiffiffiffiffiffiffi
1{r

p {
b�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2=n)(1{r)

p j b1~b�1

� �

~1{P {
za=2ffiffiffiffiffiffiffiffiffiffi
1{r

p z

ffiffiffiffiffiffiffiffiffiffiffi
(n=2)

p
b�1ffiffiffiffiffiffiffiffiffiffi

1{r
p

 !
ƒZ�ƒ

za=2ffiffiffiffiffiffiffiffiffiffi
1{r

p {

ffiffiffiffiffiffiffiffiffiffiffi
(n=2)

p
b�1ffiffiffiffiffiffiffiffiffiffi

1{r
p

 ! !
, ð7Þ

where Z� is a truly N(0,1) random variable. Specifically,

Z�~ b̂b(o)
1 {b�1

� �
=
ffiffiffiffiffiffiffiffiffi
V

(o)
2,2

q
.

Using weighted least squares (i.e., accounting for the depen-

dence r) and linear models theory [23],

b̂b
*

(w)~(X TS{1X ){1X TS{1Y

*N(b
*

,V (w)),

where V (w)~(X TS{1X ){1 is a 2|2 matrix. Here, the (w) in

superscript is for weighted least squares. It can be shown (using a

symbolic computation package such as Maple) that the variance of

b̂b(w)
1 is V

(w)
2,2 ~

2

n
(1{r). Based on this weighted least squares

approach, b̂b(w)
1 ~ �YY2:{ �YY1:, and the z-statistic to test H0: b1~0 is

z(w)~
�YY 2:{ �YY 1:ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

n
(1{r)

r : ð9Þ

The statistical power for the test of H0: b1~0 (while accounting

for dependence) is

P(w)~1{P(Dz(w)Dƒza=2 D b1~b�1)

~1{P({za=2ƒ

�YY 2:{ �YY 1:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2=n)(1{r)

p ƒza=2 D b1~b�1)

~1{P {za=2{
b�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(2=n)(1{r)

p ƒ

�YY2
:{ �YY1

:ð Þ{b�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2=n)(1{r)
p ƒ za=2{

b�
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

(2=n)(1{r)
p j b1~b�1

� �

ð7Þ
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~1{P { za=2z

ffiffiffiffiffiffiffiffiffiffiffi
(n=2)

p
b�1ffiffiffiffiffiffiffiffiffiffi

1{r
p

 !
ƒZ��ƒ za=2{

ffiffiffiffiffiffiffiffiffiffiffi
(n=2)

p
b�1ffiffiffiffiffiffiffiffiffiffi

1{r
p

 ! !
, ð10Þ

where Z�� is a truly N(0,1) random variable. Specifically,

Z��~ b̂b
(w)
1 {b�1

� �
=
ffiffiffiffiffiffiffiffiffi
V

(w)
2,2

q
.

We can compare the statistical power when dependence is

ignored (P(o) in Equation 7) with the statistical power when

dependence is accounted for (P(w) in Equation 10) by focusing on

the left and right endpoints of their respective final probability

formulae. If 0vrv1, then 1=
ffiffiffiffiffiffiffiffiffiffi
1{r

p
w1, so

{
za=2ffiffiffiffiffiffiffiffiffiffi
1{r
p z

ffiffiffiffiffiffiffiffiffiffiffi
(n=2)

p
b�1ffiffiffiffiffiffiffiffiffiffi

1{r
p

 !
v{ za=2z

ffiffiffiffiffiffiffiffiffiffiffi
(n=2)

p
b�1ffiffiffiffiffiffiffiffiffiffi

1{r
p

 !
ð11Þ

and

za=2ffiffiffiffiffiffiffiffiffiffi
1{r
p {

ffiffiffiffiffiffiffiffiffiffiffi
(n=2)

p
b�1ffiffiffiffiffiffiffiffiffiffi

1{r
p

 !
w za=2{

ffiffiffiffiffiffiffiffiffiffiffi
(n=2)

p
b�1ffiffiffiffiffiffiffiffiffiffi

1{r
p

 !
: ð12Þ

It follows then that P(o)
vP(w).

The contour plots in Figure 1 summarize this difference in

power for a range of r and b1 values. Clearly, greater magnitude

of ‘‘treatment effect’’ b1 leads to greater statistical power at any

given level of dependence r. However, ignoring dependence leads

to a loss of statistical power, with greater losses for greater

dependence (higher r) and more subtle magnitudes of ‘‘treatment

effect’’ (smaller b1). Although the tests for differential expression

with real gene expression data may be different than a simple two-

sample z-test, this general principle remains – that erroneously

assuming independence leads to a loss of statistical power. This

motivates our attention to the numerical dependence introduced

by various common preprocessing methods.

Methods

Jackknife Expression Difference (JED)
Here we propose a simple method to assess the (between-array)

numerical dependence of gene expression summaries. For a

particular gene, let m̂mx and m̂my be the gene’s non-negative log-scale

expression level summaries for arrays x and y, respectively, after

some preprocessing method. (For certain preprocessing methods,

including PLIER and PUMA, it is possible to find negative

expression summaries. We treat such cases as having very little

evidence of expression, and reset negative expression summaries

on an array to the smallest positive expression summary observed

for all genes on the array.) For the same gene, let m̂mx(y) be the

expression level estimate for array x when array y is not included

in any step of the preprocessing, with convention m̂mx(x):0 to

represent no information for array x when excluded. Then we

define the Jackknife Expression Difference (JED) between arrays x
and y for the gene to be

JED(x,y)~
Dm̂mx{m̂mx(y)D

2:maxfm̂mx,m̂mx(y)g
z

Dm̂my{m̂my(x)D
2:maxfm̂my,m̂my(x)g

: ð13Þ

Notice that by definition, 0ƒJED(x,y)ƒ1, and JED(x,x)~1,

indicating strict numerical dependence of an array (or its

summaries) with itself. Also, this JED measure is standardized

such that JED(x,y)~0 when m̂mx and m̂my are strictly numerically

independent, i.e., when m̂mx(y)~m̂mx and m̂my(x)~m̂my. JED(x,y) can be

interpreted as the average percent change in the expression value

of the gene because of the inclusion or exclusion of arrays x and y
in the preprocessing.

JED values of 0 indicate total independence between pairs of

arrays, while values of 1 indicate total dependence between pairs

of arrays. If JED(x,y)~0:25 for a particular gene and arrays x

Figure 1. Power Contours From Illustrative Scenario. Ignoring dependence leads to a loss of statistical power, with greater losses for greater
dependence (larger r) and more subtle magnitudes of differential expression or ‘‘treatment effect’’ (smaller b1). The color scale for statistical power is
summarized in the legend at right.
doi:10.1371/journal.pone.0039570.g001
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and y, then the expression value of the gene on those two arrays

would change by an average 25% if either array had not been

included in the study.

Incidentally,

d(x,y)~1{JED(x,y) ð14Þ

defines a distance function for the gene’s expression summaries

between arrays x and y. The jackknife approach can be

considered the simplest of resampling techniques [24], and while

it can exclude more than one at a time, the most common

application of the jackknife principle is ‘‘leave-one-out’’ [25]. In

the multi-array gene expression situation, this allows for pairwise

(between array) distance comparisons by dropping (one at a time)

members of pairs of arrays (x and y). Other resampling

approaches such as the general jackknife (leaving out more than

one) or the bootstrap (drawing at random with replacement) do

not lend themselves so easily to this pairwise interpretation.

The R code to obtain this JED measure is provided (with an

example) in Text S1.

Covariance and JED
The JED measure assesses numerical dependence in gene

expression summaries. While similar in spirit, this numerical

dependence is not the same as what we refer to as statistical

dependence, which could be represented by a true correlation or

covariance matrix for each gene. If m̂m
*

is the vector of expression

summaries (for all arrays) for a given gene under a particular

preprocessing method, then the covariance matrix would be

V~Cov(m̂m
*

): ð15Þ

Constructing such a per-gene covariance matrix for a given

preprocessing method would require a well-defined distribution for

the method’s gene expression summaries (m̂m
*

). In practice, such

well-defined distributions are rare (and unheard of) for prepro-

cessing methods, and it is usually not possible to estimate this

matrix V . For some preprocessing methods, however, the diagonal

elements of V (the variances of the expression summaries) can be

estimated, either in closed form based on the distribution of m̂m
*

(as

for Li-Wong and for PUMA), or as an approximation using the

bootstrap (as for RMA [26]).

To investigate the general relationship between a gene’s

Jackknife Expression Difference JED(x,y) and the covariance

Vxy for a pair of arrays x and y, we define a preprocessing method

we will refer to as MINDEP (for minimum dependency). We

emphasize that we do not recommend using this preprocessing

method in general; we only use it here because its resulting

covariance matrix V can be obtained using standard statistical

theory. In this MINDEP approach, no background correction and

no normalization is done, and a two-factor linear ANOVA-type

model is assumed for each gene at the summarization step:

Yxj~AxzPjzExj ð16Þ

Here, Yxj is the log-scale perfect match intensity for probe j on

array x, Ax is the mean array effect, and Pj is the mean probe

effect. Let ĥh be the vector of resulting ordinary least squares

parameter estimates of the Ax’s and Pj ’s, with covariance matrix

ŜS~Cov(ĥh). This covariance matrix can be obtained because of

the well-known properties of least squares estimates [23]. The

LSMEAN (or marginal mean or population mean) for the gene on

array x is defined as

LSMEANx~ÂAxz
1

J

X
j

P̂Pj , ð17Þ

where J is the number of probes for the gene. Then the MINDEP

expression summary for the gene on array x is defined as

m̂mx~LSMEANx{w:min ÂA

~aT
x ĥh: ð18Þ

Here, w is a weight parameter ranging from 0 to 1, and ax is a

vector of appropriate coefficients (specific to array x).

For the sake of completeness, we briefly show the construction

of ax from Equation 18. Let X be the number of arrays and J be

the number of probes for a given gene. Corresponding to array x,

ax is a length XzJ vector with th element ax, . For 1ƒxvX ,

ax, ~0 for vX and =x, ax,x~1, and ax,X ~{1. For x~X ,

ax, ~0 for ƒX . For 1ƒxƒX and 1ƒjƒJ , ax,Xzj~1=J . For

example, if there were X~3 arrays and J~5 probes, then the

three vectors a1, a2, a3 would be the rows of the matrix

1 0 {1 0:2 0:2 0:2 0:2 0:2

0 1 {1 0:2 0:2 0:2 0:2 0:2

0 0 0 0:2 0:2 0:2 0:2 0:2

0
B@

1
CA: ð19Þ

The subtraction of the minimum array mean in Equation 18 is

intended to serve as a pseudo-background-correction, and larger w
introduces greater dependence between the resulting expression

summaries, with known covariance between arrays x and y:

Cov(m̂mx,m̂my)~aT
x ŜSay: ð20Þ

Thus for each gene, we can obtain a vector of MINDEP

expression estimates m and its corresponding covariance matrix V .

The weight parameter w can be varied to show the simultaneous

effect of greater dependence on covariance and JED.

We note that the weight parameter w in Equation 18 could be

set to give negative covariance values between arrays x and y.

However, by definition (and via the built-in symmetry), JED is

non-negative. This helps preserve its interpretation.

Results

For illustration purposes, we applied this JED measure for six

common preprocessing methods to four datasets. The publicly-

available Affymetrix HGU95A spike-in data [27] consist of 59

arrays and 12,626 probesets on each array. For our demonstra-

tion, only 8 arrays were used, corresponding to groups M-T of

wafer 1532 of the spike-in data. We also applied JED to the

publicly-available Platinum Spike [28] data set (18,952 probesets

on each of 18 arrays) and the publicly-available Golden Spike [29]

data set (14,010 probesets on each of 6 arrays) as well as a

Numerical Dependence in Gene Expression Summaries
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previously published Asbestos [30] data set (54,675 probesets on

each of 6 arrays). Because the results from these four different data

sets were so similar, we do not fully report the results from each.

Unless otherwise specified, the results given here are for the

HGU95A spike-in data.

Visual Summaries of JED
Figure 2 summarizes the results for all probesets and all array

pairs for the four data sets. For all preprocessing methods

considered, JED(x,y)~1 if and only if x~y, so for purposes of

visualization, points corresponding to the same array pair (x~y,

where JED~1) are omitted. The PLIER and PUMA methods

produced the most extreme JED measures, while only the MAS5

method demonstrated true numerical independence (JED(x,y)~0
for all x=y). The popular RMA method introduces some

numerical dependence, but the dependence is certainly not as

substantial as that observed in other methods.

We considered whether the JED measure preserves some

biological or chemical aspect of the genes. If it did, we would

expect to see similarities in JED measures from different

preprocessing methods, especially similar preprocessing methods.

Figure 3 compares the JED measures for RMA and GCRMA,

which share the same quantile approach at the normalization step

and the same median polish approach [31] at the summarization

step of preprocessing. (Figures 3 and 4 make use of hexagonal

binning [32] in the scatter plots, with darker colors indicating

Figure 2. JED: Jackknife Expression Differences for the (A) HGU95A, (B) Golden Spike, (C) Platinum Spike, and (D) Asbestos data. The
JED measures for all genes and all pairs of arrays in the four data sets are visualized for each of six common preprocessing methods. JED~0
corresponds to numerical independence. For purposes of visualization, JED(x,x)~1 values are suppressed.
doi:10.1371/journal.pone.0039570.g002

Numerical Dependence in Gene Expression Summaries
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greater density of points.) Based on Figure 3, there is no evidence

that the JED measures from these two preprocessing methods are

related, even though they share two preprocessing steps. Similar

non-relation results (not shown) are observed for the other pairs of

preprocessing methods that do not share preprocessing steps. This

suggests that the JED measure reports numerical artifacts of the

preprocessing method, and is not biological or chemical in origin.

We also considered if the magnitude of the JED measure might

be related to the corresponding magnitude of expression. Figure 4A

compares the JED measure for RMA with the pairwise mean

RMA expression summary. That is, for each gene, and for each

pair of arrays x and y, JED(x,y) is plotted against (m̂mxzm̂my)=2. For

purposes of visualization, points corresponding to the same array

pair (x~y, where JED~1) are omitted. The largest JED values

correspond to lower-expressed genes, but relatively large JED

values can be observed for higher-expressed genes. Similar results

are observed for other preprocessing methods, including PLIER as

in Figure 4B. We note with some concern that some large PLIER

expression values (around 10) have moderately large JED values

(around 0.35), such that some of the most highly expressed genes

(after PLIER preprocessing) are subject to about 35% average

change in expression based on the inclusion or exclusion of some

arrays. While the results of Figure 4 are for this sample HGU95A

data set, the trends seen here raise concern about the levels of

numerical dependence introduced by some preprocessing meth-

ods, even for more highly-expressed genes.

Numerical Artifact Due to Sign Changes
Figure 4B shows some banding near PLIER JED values of 0.5

and 1, which are an artifact of sign changes induced by the

jackknife. For example, for a given gene and arrays x and y, it

could be that m̂mxw0 but m̂mx(y)v0, so that the jackknife (exclusion

of array y) induces a sign change for the gene’s expression

summary on array x. Similarly, exclusion of array x could induce

a sign change for the gene’s expression summary on array y. In

both cases, the sign change could go from positive to negative or

from negative to positive. For each gene and each pair of arrays

(x, y), the number of sign changes induced by the jackknife will

be 0, 1, or 2. Figure 5 summarizes the PLIER JED values by

number of observed sign changes, with clear banding at 0.5 for

genes (and array pairs) with one sign change, and at 1 for those

with two sign changes. From the Methods section above, recall

that we treat a negative expression summary as having very little

evidence of expression, and reset such negative expression

summaries on an array to the smallest positive expression

summary observed for all genes on the array. Let Exw0 be the

smallest positive expression summary observed for all genes on

array x, and Ex(y)w0 be the smallest positive expression summary

observed for all genes on array x when array y is excluded from

the preprocessing. Then if a gene exhibits a sign change on array

x upon exclusion of array y (for example, m̂mxw0, but m̂mx(y)v0 is

reset to Ex(y)w0), the first portion of the JED calculation in

Equation 13 is

Figure 3. Comparison of JED from RMA and GCRMA. The JED
measures for all genes and all pairs of arrays in the example (HGU95A)
data set are compared for two preprocessing methods. Darker colors
indicate greater density of points. For purposes of visualization,
JED(x,x)~1 values are suppressed.
doi:10.1371/journal.pone.0039570.g003

Figure 4. JED and Expression Magnitude for RMA and PLIER. The JED measures for all genes and all pairs of arrays in the example (HGU95A)
data set are plotted against the genes’ expression summaries, averaged over the corresponding pairs of arrays. For purposes of visualization,
JED(x,x)~1 values are suppressed.
doi:10.1371/journal.pone.0039570.g004
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This explains the pattern near JED~0:5 observed for genes (and

array pairs) with one sign change in Figure 5. If the gene (and

array pair) has two sign changes induced by the jackknife, then

both portions of the JED calculation in Equation 13 will be

approximately
1

2
(as in Equation 21), explaining the pattern near

JED~1 for genes (and array pairs) with two sign changes in

Figure 5. It is important to point out that even if one focuses only

on genes with positive expression summaries (zero sign changes in

Figure 5), very high JED values can be seen for PLIER. Similar

results (not shown here) can be seen for PUMA, the other

preprocessing method considered here with possibly negative

expression summaries.

JED and Correlation
Using the previously defined MINDEP preprocessing method,

we considered the general relationship between JED and

correlation (rescaled covariance) between expression summaries.

The trellis plot in Figure 6 summarizes the result. (Like Figures 3

and 4, Figure 6 also makes use of hexagonal binning [32] in the

scatter plots, with darker colors indicating greater density of

points.) At any given weight parameter value (w in Equation 18),

there is no direct relationship between JED and correlation, so

JED cannot be used as a direct proxy for correlation. However,

looking across a range of weight parameter values, a general

relationship can be observed, allowing general statements about

the dependence level induced by a given preprocessing method.

In this context, we think of MINDEP for different weight values

w as being different preprocessing methods. Using weight w~0
in MINDEP, there is no dependence introduced, and both JED

and correlation (between expression estimates for a gene on array

pairs) are 0. As the weight parameter increases towards 1, the

correlations overall increase, with the main distribution of

correlation values centering around 0.7 for the higher weights.

At the same time, as the weight parameter increases towards 1,

the JED values’ range increases, with larger JED values

becoming more common. In other words, the proliferation of

larger JED values is indicative of higher underlying correlations

being possible. Such a general relationship can only be shown

explicitly for a preprocessing method like MINDEP, where

correlation (scaled covariance) can be calculated.

Discussion

Throughout this paper, we have used the term ‘‘numerical

dependence’’ as a convenient descriptive term to distinguish from

‘‘statistical dependence.’’ In reality the JED measure is also related

to the notion of robustness (of the gene expression estimate on one

array to the inclusion/exclusion of another array for/from

consideration). In general, it is not always clear how to statistically

define robustness [24], and in the specific case of the JED measure,

there is no direct translation to correlation. We investigated several

approaches to incorporate our JED measure into an estimate of

the covariance matrix V (Equation 15) for this purpose, but finally

concluded that while numerical dependence can be assessed via

the JED measure, it can not be used to define statistical

dependence in a general way. For that reason, we do not present

any method to account for numerical dependence in a test for

differential expression. We do note, however, that some available

tests for differential expression use probe-level rather than fully

preprocessed data, so the dependence issue is less of a concern for

those methods, which are particularly well-suited to small-sample

studies [33].

In presenting the JED here, we are very careful to state that we

only propose to use the JED measure as a diagnostic comparison

of preprocessing methods, and not for inference; in fact we

emphasize that it can not be contorted to fit the purpose of

inference. The results of Figure 6 indicate that while JED values

cannot be used as a direct proxy for correlation values for any

given array pair for any given gene, the JED can be used as a

diagnostic to assess the relative amounts of dependence induced by

various preprocessing methods.

The JED measure does not estimate a particular parameter – it

only provides a summary of the amount of numerical information

shared between arrays in calculating gene expression estimates.

Because it does not pertain to a defined parameter (but rather to

the notion of robustness), the JED measure does not lend itself to

hypothesis testing or thresholds of statistical significance. For this

reason, we do not propose cut-offs for ‘‘acceptable’’ JED values.

Such thresholds (perhaps for ‘‘failure’’ of a preprocessing method)

would of necessity be subjective because the relationship between

JED and statistical correlation will depend on the preprocessing

method (and not, in general, be known for the most common

preprocessing methods). Instead, we propose and present here an

objective evaluation of several preprocessing methods by demon-

strating their JED performance on multiple real data sets (in the

Results section). A wider range (and larger extremes) in JED values

is indicative of greater induced numerical dependence. A gene’s

JED value for a pair of arrays is interpreted as the average percent

change in the gene’s expression value based on the inclusion or

exclusion of each array, and as such, is an interesting diagnostic in

its own right (even without incorporation to a test of differential

expression). For example, there are some moderately large JED

values (around 0.35) in Figure 4B for genes with expression values

around 10; the interpretation of these values is that those genes

Figure 5. JED and Jackknife Sign Changes for PLIER. The JED
measures for all genes and all pairs of arrays in the example (HGU95A)
data set are summarized according to the number of sign changes (0, 1,
or 2) observed in the expression summaries of the jackknife estimates.
For purposes of visualization, JED(x,x)~1 values are suppressed.
doi:10.1371/journal.pone.0039570.g005
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(after PLIER preprocessing) are subject to about 35% average

change in expression based on the inclusion or exclusion of some

arrays. Ideally, there would be no numerical dependence induced

by preprocessing (JED~0). However, it is not only the existence of

extreme values that concern us, but the abundance of large JED

values (or the skewing of the JED distribution towards 1) in some

preprocessing methods (Figures 2 and 6) that we note with alarm.

The JED measure presented here can be used to comparatively

assess the numerical independence of gene expression summaries

from any given preprocessing method. In fact, this is the primary

strength of the JED measure. Better-known measures of depen-

dence or correlation require knowledge of distributions or well-

known statistical properties of estimates, which is not the case for

most common preprocessing methods. For example, consider m̂mx

and m̂my as estimated expression values for a given gene on arrays x

and y, respectively. Just to calculate the simple covariance

Cov(m̂mx,m̂my)~E(m̂mxm̂my){E(m̂mx)E(m̂my) requires knowledge of either

the [non-empirical] probability distribution for m̂mx, m̂my, and m̂mxm̂my,

or else the statistical properties of the vector (m̂mx,m̂my). These are

known for the contrived MINDEP method presented here.

However, for most commonly-used preprocessing methods, the

probability distribution of estimated expression values is not

known (or even assumed!), and their statistical properties are not

well-known. The JED measure provides a way to quickly

summarize some notion of dependence between arrays for any

preprocessing method, with no need to know its distributional

properties.

We emphasize that the JED measure is not a diagnostic of

arrays or samples or genes, but of preprocessing methods. We do

not propose (and in fact actively discourage) the use of JED for

other purposes such as, for example, to identify significantly

correlated arrays. While it could be shown for some preprocessing

methods that lower JED values roughly correspond to higher

correlations between arrays, we discourage this approach (and do

not show the results of a simulation we considered to address this

very point) for two reasons. First, if an analysis objective is to

identify significantly correlated arrays, it is conceptually and

computationally far more simple to look at scatterplots of log-scale

PM (between pairs of arrays) or something similar than to use the

JED. Second, the JED measure has no basis for inference; it is

simply a descriptive statistic that, viewed across many genes in

several microarray studies (as we have done here), provides insight

to the relative levels of numerical dependence induced by various

preprocessing methods. This is its sole intended purpose. The

JED’s performance (in assessing relative amounts of numerical

dependence from various preprocessing methods) can only be

assessed by repeated application to several data sets, as we have

done here. Any JED-based inference would, of necessity, require

knowledge of the statistical properties of the JED measure. As

discussed in the ‘‘JED and Correlation’’ section above as well as

the preceding paragraph, such knowledge is unavailable for the

commonly-used preprocessing methods, but fortunately such

knowledge is also unnecessary for using the JED in its intended

purpose.

Even though a preprocessing method may demonstrate stricter

independence in the JED sense (such as MAS5 in Figure 2), it is

not necessarily the ‘‘best’’ preprocessing method. Other measures

such as bias and performance on spike-in datasets [34,35] are

important to consider in the selection of a preprocessing method.

We do not recommend any particular method here, but note in

Figure 6. MINDEP JED vs. Correlation by Weight. In this trellis plot, the JED measures for all genes and all pairs of arrays in the example
(HGU95A) data set are compared to the corresponding correlations based on the MINDEP preprocessing method, using weight parameter w values 0,
0.5, 0.7, 0.9, 0.95, and 1. The value of the weight parameter w is represented by the position of the colored bar in the ‘‘Weight’’ title (from 0 for far left
position to 1 for far right position). Darker colors indicate greater density of points. For purposes of visualization, JED(x,x)~1 values are suppressed.
doi:10.1371/journal.pone.0039570.g006
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passing that the popular RMA method demonstrates only modest

numerical dependence in comparison to some other methods

currently used in the literature (Figure 2).

Newer technologies such as RNA-Seq are of course becoming

more common for gene expression experiments, and statistical

methods are being developed for their appropriate analysis

[36,37]. However, microarrays remain a vital research tool in

many fields where an organism’s transcriptome is fully defined,

and funds are limited. Furthermore, the vast archives of publicly-

available microarray data (most notably, NCBI’s GEO [38]) serve

as a rich resource for targeted hypothesis generation and

validation in modern studies, and their use is active and ongoing

[39]. The appropriate analysis of microarray data (including

appropriate application of independence assumptions) will contin-

ue to lead to new biological insights.

Motivated by a desire to avoid lost statistical power (as

demonstrated by Figure 1 and the Introduction section above) in

tests for differential expression, we encourage the use of

preprocessing methods with lower numerical dependence. The

JED measure here can assess some notion of dependence for any

preprocessing method, even when the distributional properties of

the method’s expression values are unknown. By doing so, we wish

to draw attention to the underlying assumption of (between-array)

independence in gene expression summaries for tests of differential

expression. This issue of (between-array) independence has

received little if any attention in the literature, and researchers

working with gene expression data should not take these properties

for granted, or they risk unnecessarily losing statistical power.

Supporting Information

Text S1 A .txt file providing the R code to obtain this
JED measure (with an example).

(TXT)
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