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Fluctuations of water quality time series
in rivers follow superstatistics

Benjamin Schäfer,1,2,5,* Catherine M. Heppell,3 Hefin Rhys,4 and Christian Beck1

SUMMARY

Superstatistics is a general method from nonequilibrium statistical physics which
has been applied to a variety of complex systems, ranging from hydrodynamic
turbulence to traffic delays and air pollution dynamics. Here, we investigate wa-
ter quality time series (such as dissolved oxygen concentrations and electrical
conductivity) as measured in rivers and provide evidence that they exhibit super-
statistical behavior. Our main example is time series as recorded in the River
Chess in South East England. Specifically, we use seasonal detrending and empir-
ical mode decomposition to separate trends from fluctuations for the measured
data. With either detrending method, we observe heavy-tailed fluctuation distri-
butions, which are well described by log-normal superstatistics for dissolved ox-
ygen. Contrarily, we find a double peaked non-standard superstatistics for the
electrical conductivity data, which we model using two combined c2-distribu-
tions.

INTRODUCTION

Superstatistical methods, as introduced in (Beck and Cohen, 2003; Beck et al., 2005), provide a general

approach to describe the dynamics of complex nonequilibrium systems with well-separated timescales.

These models generate heavy-tailed non-Gaussian distributions by a simplemechanism, namely the super-

position of simpler distributions whose relevant parameters are random variables, fluctuating on a much

larger timescale. Originating in turbulence modeling (Beck, 2007), superstatistics has been applied to

many physical systems, such as plasma physics (Livadiotis, 2017; Davis et al., 2019), Ising systems (Chera-

ghalizadeh et al., 2021), cosmic ray physics (Yalcin and Beck, 2018; Smolla et al., 2020), self-gravitating

systems (Ourabah, 2020), solar wind (Livadiotis et al., 2018), high energy scattering processes (Beck,

2009; Sevilla et al., 2019; Ayala et al., 2020), ultracold gases (Rouse and Willitsch, 2017), and non-Gaussian

diffusion processes in small complex systems (Chechkin et al., 2017; Itto and Beck, 2021). Furthermore, the

framework has successfully been applied to completely different areas, such as modeling the power grid

frequency (Schäfer et al., 2018), wind statistics (Weber et al., 2019), air pollution (Williams et al., 2020), bac-

terial DNA (Bogachev et al., 2017), financial time series (Gidea and Katz, 2018; Uchiyama and Kadoya, 2019),

rainfall statistics (De Michele and Avanzi, 2018), or train delays (Briggs and Beck, 2007). The overview article

(Metzler, 2020) provides a recent introduction to superstatistics and non-Gaussian diffusion. In all these

cases, an underlying simple distribution, typically Gaussian or exponential, is identified to explain the

observed heavy tails of the marginal distributions when aggregated with the fluctuating parameter. These

tails often decay with a power law. Note that heavy tails are also captured by alpha stable distributions

(Shen et al., 2015) or the so-called k-distributions (Livadiotis, 2017). These k-distributions, used in astro-

physical plasmas, are a typical example of marginal distributions arising in this context, whereas in statis-

tical physics, one uses the so-called q-Gaussians (Tsallis, 2009), with q related to k by k = 1=ðq � 1Þ. Both
approaches are equivalent and form standard examples of distributions generated by the (more general)

superstatistical approach.

A common feature of real-world time series is that they consist of some long-term trend or oscillation com-

bined with short-term fluctuations. Consider a time series connected to the environment, such as ambient

temperature: This will typically display strong seasonal cycles (Kumar et al., 2009). Day-night cycles add

another oscillation, while global warming or other long-term influences, such as deforestation, might

induce a drift toward higher values. We can decompose the full time series in slower seasonal and drift

(trend) terms as well as the short-term fluctuations, using detrending methods. In particular, we consider

seasonal detrending, i.e., moving averages, and decomposition via empirical mode decomposition
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(EMD) (Wu and Huang, 2009), which has recently been shown to disentangle short-term fluctuations from

long-term signals (Kampers et al., 2020). Naively, one would expect the so-extracted short-term fluctua-

tions to follow Gaussian distributions.

In this paper, we analyze environmental time series for the River Chess, which is a river located in South East

England and is being actively monitored by a citizen science project (Heppell and Treves, 2020). Key ques-

tions include how urban areas and a local sewage treatment works affect the water quality. Many different

quantities determine the water quality of a river. Here, we focus on two particular quantities: dissolved ox-

ygen concentration and electrical conductivity of the river. Dissolved oxygen (or just ‘‘oxygen’’ for large

parts of the paper) is highly relevant for aquatic life, such as fish, in rivers. Meanwhile, electrical conductivity

(abbreviated as ‘‘EC’’ or ‘‘conductivity’’) measures the total dissolved solutes in the water. However, it also

measures the impact of humans, e.g., via treated effluent water that is fed into the river. For the current pa-

per, we utilize data available from ChessWatch (Heppell, 2020) and from the four locations Blackwell Hall

(BH) [Red], Little Chess (LC) [Blue], Latimer Park (LP) [Green], and Watercress Beds (WB) [Purple]. About

twelve months of data collected within the time span of June 2019 to May 2020 are evaluated here.

Note that LC and BH are upstream of sewage treatment works, while LP and WB both are downstream

of the sewage treatment works. A detailed discussion on how daily cycles influence EC and how machine

learning can be used to predict and understand EC trajectories can be found in a future paper (Schäfer

et al., 2021). Our main result of the current paper is that the detrended time series behave in a superstat-

istical way.

This paper is structured as follows. First, we introduce the data and discuss the trajectories and empirical

probability density functions (PDFs) of oxygen and EC. Next, we discuss how daily and seasonal cycles are

subtracted from the data to reveal the fluctuations. We then continue to present a short recap of superstat-

istical theory to analyze distributions as generated by a given time series, specifically adapted to our prob-

lem here. Finally, we use superstatistical methods to extract long timescales and microscopic distributions

of the fluctuating superstatistical parameter b as a function of the detrending parameters. Overall, we find

that oxygen fluctuations follow approximately log-normal superstatistics, while EC fluctuations point to a

new form of superstatistics with a double-peaked b-distribution at the LC site.

RESULTS

Trajectories and probability distributions

To obtain an initial impression of the water quality dynamics, we visualize the trajectories of the oxygen

concentration and the electrical conductivity in Figure 1. Disregarding some large peaks at the BH and

LC sites, we observe certain seasonal trends in the oxygen trajectories (Figure 1A), i.e., higher concentra-

tions of oxygen in winter to spring than during the summer. On a shorter timescale, both oxygen and

electrical conductivity show obvious daily cycles at all stations (Figures 1B and 1D). Electrical conductivity

provides a measure of total dissolved solutes in water. Urban streams tend to have higher mean electrical

conductivity and major ion concentrations in comparison to their rural counterparts (Conway, 2007; Rose,

2007; Peters, 2009), which arises from a combination of point and diffuse pollution sources. Dissolved ox-

ygen content is a critical indicator of river health for biota, and low dissolved oxygen content or strong daily

changes in dissolved oxygen will cause harm to many organisms living in chalk streams such as the River

Chess (Arroita et al., 2019; Rajwa-Kuligiewicz et al., 2015).

Intriguingly, the aggregated statistics shows clear deviations from Gaussianity, see the empirical PDFs of

both quantities in Figure 2. In particular, the sites BH and LC (red and blue) display heavy tails. Still, a large

portion of the observed variability arises due to daily and seasonal cycles, which we have to subtract from

the data before we continue our statistical analysis.

Detrending

Instead of modeling the full distribution, with its daily and seasonal dynamics, we will describe the fluctu-

ations of the water quality parameters around their respective trend. Detrending reduces the variability and

allows for weak stationarity in time series, thus allowing forecasting with more precision (Contreras-Reyes

and Idrovo-Aguirre, 2020). To carry out the detrending, we first need to separate the full trajectory F(t) into

trend and fluctuations (assuming an additive model):

FðtÞ = TrendðtÞ+ FluctuationsðtÞ: (Equation 1)
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To achieve this separation, we employ two different methods: seasonal decomposition and EMD.

Seasonal decomposition applies a moving average to the data with a filtering frequency f to obtain the

trend. The deviation between this moving average and the original data is then classified as fluctuations.

Technically, we implement it via the python statsmodels.tsa.seasonal package (statsmodel, 2021) and typi-

cally apply f = 6 hr.

Alternatively, the EMD splits the full trajectory into ordered modes ranging from slowly changing to highly

oscillating modes. Similar to a Fourier analysis, summing all modes, it yields the full original data. As has

been pointed out recently (Kampers et al., 2020), EMD can be used to disentangle deterministic and sto-

chastic influences. Here, we do the following. All modes hi(t) summed up form the full dynamics as follows:

FðtÞ =
XN
i = 1

hiðtÞ; (Equation 2)

where N is the total number of modes. Since the lower numbered modes represent the trend, we keep all

but the last m modes for the trend and declare the remaining modes as the fluctuations, i.e.

TrendðtÞ =
XN�m

i = 1

hiðtÞ; (Equation 3)

FluctuationsðtÞ =
XN

i =N�m+ 1

hiðtÞ: (Equation 4)

Technically, we implement the EMD via the PyEMD package (Laszuk, 2017) and chosem = 2 for most cases.

A

C D

B

Figure 1. Seasonal and daily cycles

Trajectories of the oxygen concentration (A and B) and the electrical conductivity (C and D). We display both the full time

period of available data (A and C) and a one-week extract (B and D), highlighting the daily cycles.
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Both detrending procedures are demonstrated in Figure 3 using oxygen concentrations from the BH mea-

surement site. The orange curves, corresponding to a filtering frequency of f= 6h or droppingm= 2modes,

describes the trend of the data well, while preserving short timescale fluctuations. These parameter set-

tings are a compromise between barely capturing any trend (green curves) and overfitting (essentially re-

producing the blue data). We will later study the effect of the detrending parameters on the superstatistical

results systematically. With the data separated into trend and fluctuations, let us now continue to investi-

gate the fluctuation statistics using a superstatistical approach.

Superstatistical time series analysis

The basic idea of superstatistics (Beck and Cohen, 2003; Beck et al., 2005) is the concept that a longer time

series with a complicated and often heavy-tailed probability distribution is indeed an aggregation of many

shorter time series, each giving rise to a simple, non-heavy-tailed distribution. Superstatistical methods

have been successfully applied to many different types of complex systems (Beck and Cohen, 2003)–(Metzler,

2020). As a first step of superstatistical time series analysis, we will have to extract a long timescale T on which

we locally observe simple distributions. Assume we know that locally, in shorter time slices, the time series is

approximately Gaussian distributed. In this case, the kurtosis of a local snapshot should be kGaussian = 3. In

contrast, the fully aggregated time series will display a much higher kurtosis k. To determine T, we test

different time window sizes Dt and compute the local average kurtosis (Beck et al., 2005) as follows:

kðDtÞ = 1

tmax � Dt

Z tmax�Dt

0

dt0
Cðu� uÞ4Dt0 ;Dt
Cðu� uÞ2D2t0 ;Dt

; (Equation 5)

where tmax is the length of the time series and C.Dt0 ;Dt is the expectation for the time slice of length Dt starting

at t0. The long timescale is then assumed as kðTÞ = kGaussian, i.e., the average kurtosis of windows of length T

has a Gaussian kurtosis kðTÞ = 3. After determining T, we can split the time series in several samples, each of

length T and thereby obtain a collection of approximately local Gaussian distributions, each with a different

inverse variance parameter b. If these b themselves follow a c2-distribution, then it can be written as follows:

f ðbÞ = 1

G
�
n
2

�� n

2b

�n
2
b

n
2�1e

� nb
2b0 ; (Equation 6)

with n being the degrees of freedom for the distribution and b0 the mean of b; we then analytically obtain a

q-Gaussian for the aggregated statistics (Beck, 2001; Beck et al., 2005). Alternatively, the b-distribution

might be well described by some other distribution, such as an inverse c2 or log-normal distribution. In

this case, the marginal distribution obtained by integrating over b is different (though often, in good

approximation, well approximated by a q-Gaussian). A given time series is then said to follow c2, inverse

c2, or log-normal superstatistics, depending on what the actual distribution of b is. As superstatistics

was originally derived for temperature fluctuations, b is often interpreted as an inverse temperature

(Uchiyama and Kadoya, 2019), related to the local kinetic energy in the system. But in general, it is just a

fluctuating inverse variance parameter of a given time series.

A B

Figure 2. Aggregated statistics points to non-Gaussian dynamics

We display the empirical probability density function (PDF) of the electrical conductivity (A) and the oxygen concentration

(B). The lines are Gaussian kernel estimates of the empirical PDF. Note the log-scale on the y axis.
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For generic superstatistics, we expect to observe in good approximation q-Gaussian PDFs, which are given

as follows:

p
�
q;b;m

�
=

ffiffiffiffi
b

p

Cq

�
1+

�
1� q

��� bðx � mÞ2�� 1
1�q; (Equation 7)

where Cq is the normalization constant, m is a shift parameter, q is a shape parameter, also known as the

entropic index, and b is a scale parameter proportional to the expectation CbD as formed with the distribution

given in Equation (6). For q/1, q-Gaussians becomeGaussian distributions with variance 1/2b. For a special-

ized book on the applications of q-statistics in water engineering, see (Singh, 2016). Note that the superstat-

istical distributions described here may arise from a Gaussian process if such a process has a time-dependent

standard deviation, i.e., displays a superposition of simple Gaussian distributions, in the long term.

While the long timescale T describes the timescale on which the underlying stochastic process changes,

the short timescale t gives the time for the system to relax toward its (local) equilibrium. It is defined by

evaluating the decaying autocorrelation of the original time series, approximated by c � eð�t=tÞ. To ensure

that the system can always relax to its new equilibrium, we have to assume t�T for the superstatistical

approach to hold. We validate this in the supplemental information.

Superstatistical analysis for the river chess

With the data detrended and the superstatistical foundations laid out, let us investigate the fluctuations in

the two time series for the River Chess data (oxygen and electrical conductivity). First, we note that the de-

trending of either water quality parameter leaves us with a highly non-Gaussian distribution, which is well

captured by a q-Gaussian distribution, see Figure 4.

To investigate how these non-Gaussian distributions could arise, we continue with the superstatistical an-

satz: Let us assume that the non-Gaussian fluctuations arise from local Gaussian distributions. If this was the

case, we could extract a long timescale T on which the distribution is locally a Gaussian distribution. We

determine this long scale as the time window for which the average kurtosis k of the data is kðTÞ =
kGauss = 3, see Figure 5. For the LCmeasurement site, using seasonal detrending and investigating oxygen

concentrations, we observe a long timescale of TLCz16 hr.

Let us continue this investigation more systematically. Namely, as pointed out above, the detrending

method and detrending parameter (filtering frequency f and number of omitted modes m) will likely influ-

ence the superstatistics and thereby the long timescale. Hence, we visualize this dependency for both

methods and both quantities in Figure 6. Apparently, the long timescale scales approximately linearly

with the detrending parameter in a certain parameter range. Then, when the detrending parameter is

A B

Figure 3. Illustration of the data detrending

We apply seasonal detrending (A) or detrending via EMD (B). The data (blue) are best approximated by a filtering

frequency of f = 6h and droppingm = 2modes, respectively (orange). Choosing a larger f orm oversimplifies the dynamics

(green), while smaller settings would overfit the noise. Here, we plot a one-week extract of the oxygen trajectory for the BH

measurement site. Note that the EMD is still carried out on the full dataset, as the number of modes per individual week

would vary otherwise.
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increased too much (e.g. at f > 4h for seasonal detrending and oxygen or m > 2 for EMD and oxygen), the

long timescale suddenly increases dramatically. This can be explained as follows: The influence of the spe-

cific detrending parameter on the long timescale is moderate as long as the derived fluctuation distribution

is heavy tailed. If too many modes are attributed to the fluctuations (large m) or too high frequencies are

used (high filter frequency f), then the fluctuation distributions might only barely be heavy tailed (high T) or

display a platykurtic behavior, i.e., a kurtosis k < 3. Based on the results seen here, we are confident that a

filtering frequency of f = 6h and attributingm = 2 modes to the fluctuations yields solid results for as many

cases as possible. The special case of the WB site, which would require f % 4h is thereby not included to

avoid overfitting at the other sites. With the method established, let us carry out two consistency checks:

snapshots and b-distribution.

First, we inspect snapshots of the fluctuation trajectory of length T. According to the superstatistical

approach, these local snapshots should follow a Gaussian distribution. Indeed, inspecting the plots in Fig-

ure 7, we observe approximately Gaussian distributions. Note that the long timescale here is of the order of

10-100 hr and the data have 15min resolution, i.e., each local snapshot contains ~ 100-1000 measurements.

Finally, we compute the distribution of the effective damping to noise ratio b. The superstatistical hypoth-

esis implies that the observed heavy tails (fitted q-Gaussian-like distributions in Figure 4) arise either exactly

from c2 or approximately from inverse c2 or log-normal distributions of b. Here, we observe something very

interesting: While the b-distributions of the oxygen fluctuations are well approximated via log-normal or

alternatively c2 distributions (Figure 8), the b-distributions of the electrical conductivity fluctuations do

follow a very different type of distribution (Figure 9). While the b-distribution for oxygen is single-peaked,

the one of the electrical conductivity displays two peaks: One close to zero and one at larger values of b.

These distributions with two peaks are somewhat unusual distributions, typically not encountered in the

standard superstatistics formalism. They provide something new and are specific to the data analyzed

here. Remember that the electric conductivity is heavily influenced by human influences, such as the

A

C D

B

Figure 4. Detrending of the data reveals non-Gaussian fluctuations, approximated by q-Gaussians in both cases

We plot the empirical probability density functions (PDFs) of detrended oxygen concentrations (A and B) and electrical

conductivity (C and D). Regardless whether the detrending is carried out via seasonal detrending (A and C) or EMD (B and

D) leads to these non-Gaussian distributions, which are well approximated by q-Gaussian distributions. The blue lines are

Gaussian kernel estimates of the empirical PDF. The orange fits of q-Gaussians were obtained via maximum likelihood

estimation (MLE), see code for details.
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outflow of the sewage treatment works, which could be the deeper reason for the observed unusual

behavior: The single-peaked b-distributions at the LP and BW sites could arise due to human influence,

while the double-peaked b distributions at the LC site might hint at complex natural processes, e.g., inter-

action of rainfall events or the flora and fauna with the conductivity fluctuations.

Mixture of c2-distributions

Let us search for a suitable description of the double-peaked b-distribution observed for electrical conduc-

tivity. As a simple extension of a single c2-distribution, we propose to use a mixture distribution of two

c2-distributions:

f ðbÞ = Wfc2
�
b;nc1

; b0

�
+ ð1�WÞfc2

�
b;nc2

;b0

�
; (Equation 8)

i.e., the full b-distribution is composed as a sum of two c2-distributions, sharing a b0 parameter (originally

the mean b) and each having its own degree of freedom nc1
and nc2

. Both distributions are weighted by the

weight constant W, which ranges from 0 to 1.

Indeed, this new mixture distribution of two c2-distributions is an excellent fit to the data, see Figure 9 and

Supplements for further examples.

DISCUSSION

In this paper, we have shown that environmental time series relevant for water quality in chalk rivers, such as

the River Chess, behave in a superstatistical way. We observe heavy-tailed distributions for the aggregated

statistics of oxygen and electrical conductivity. The dynamics of the measured time series is consistent with

that of a nonstationary process consisting of patches that locally exhibit Gaussian behavior, with the vari-

ance parameter fluctuating on a longer timescale T, which we extracted from the data. A new result is that

the fluctuations of these water quality parameters do not follow Gaussian distributions as a whole but have

distinct heavy tails that are well approximated by q-Gaussian functions. This result is observed regardless of

which detrending method (seasonal detrending and EMD) is applied. Using the average kurtosis, we deter-

mined the long timescale T and found that the detrending method and specific detrending parameter only

lead to linear scaling of the deduced long timescale, i.e., the superstatistical finding as such is robust with

respect to the specific detrending method. Consistent with the superstatistical assumptions, the local

Figure 5. The long timescale is determined using the average kurtosis

Specifically, we display the average kurtosis k as a function of the time window Dt and determine T from the condition

kðTÞ = 3. Assuming Gaussian distributions locally in a window of length T, they have kurtosis 3, whatever their variance. In

this way, for the LC site displayed here, we obtain T z 16hr.

ll
OPEN ACCESS

iScience 24, 102881, August 20, 2021 7

iScience
Article



snapshots follow approximately Gaussian distributions, and the b-distribution of oxygen fluctuations are

approximated by log-normal distributions, quite a similar statistics as the one known for velocity and accel-

eration fluctuations in hydrodynamic turbulence.

An intriguing new finding is that electrical conductivity fluctuations at the LC site (contrary to oxygen fluc-

tuations) display an unusual statistics, namely a double-peaked b-distribution that is not immediately

captured by existing superstatistical theory. We demonstrated how a c2 mixture distribution can approx-

imate the results, but still, this finding points to the need of additional theoretical models that lead to dou-

ble-peaked b-distributions. As a first step toward this extended theory, we propose a mixture c2. Other

possibilities to extend superstatistics could include bivariate superstatistics (Caamaño-Carrillo et al., 2020).

Our superstatistical analysis requires the initial detrending of the data, illustrating that fluctuations of

environmental time series are generally not homogeneous in time. The data analyzed here are somewhat

comparable to other environmental time series with seasonal influence, e.g., the analysis of ambient tem-

perature (Yalcin and Beck, 2013). Our approach could be applied to other seasonal time series: First,

decompose the full time series into trend and fluctuations and then extract the distributions of the fluctu-

ations as being heavy tailed, followed by further superstatistical analysis to extract the relevant timescales

and distributions of the parameter b.

Interestingly, the impact of the sewage treatment works on the heavy tail statistics is limited: Regardless of

location, we did observe similar highly non-Gaussian distributions of the fluctuations, i.e., both upstream

and downstream of the sewage treatment site (Figure 4). Contrary, the long timescale, especially when using

seasonal detrending on oxygen and EMD on electrical conductivity, displays qualitatively different behavior

for the upstream and downstream locations (Figure 6), illustrating that human influence can be seen via time-

scale parameters extracted from the superstatistical analysis. In particular, the long timescales diverge for

lower filtering parameters at the two downstream locations with lower oxygen and higher electrical

A

C D

B

Figure 6. Long timescales T scale almost linearly with the detrending parameters before the description breaks

down

We plot the obtained long timescale T for the detrended oxygen concentrations (A and B) and electrical conductivity (C

and D), considering both detrending via seasonal detrending (A and C) or EMD (B and D). If the number of omittedmodes

m or the filtering frequency f is set too high, the average kurtosis always remains below kGaussian = 3, and hence, no

timescale T is determined in this case.
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conductivity values. Meanwhile, we observe that the doubled-peaked b-distribution is most pronounced for

the LC and BH sites (upstream). This might indicate that the double peaked b-distribution can emerge due

to natural fluctuations, while fluctuations at the two downstream locations (LP andWB) might be further influ-

enced by the human activity. Still, further research is necessary to fully understand this aspect. Finally, we note

that the observed q-Gaussians imply a larger number of extreme events compared to any Gaussian process

and the presented superstatistical approach provides a means to quantify this.

A future project would be to compare our results obtained for the River Chess with the statistics generated

by other environmental time series, in particular comparing different rivers in a systematic and quantitative

A

C D

B

Figure 7. Local snapshots of length T are approximated by Gaussian distributions

We consider both EMD detrending (A and B) and seasonal detrending (C and D) and display for both cases a window of

length T, selecting cases with lowest variance (A and C) and the highest variance (B and D). All plots are for the LC site

data. The figure illustrates how strongly the local variance fluctuates. The blue lines are Gaussian kernel estimates of the

empirical PDF.

A B

Figure 8. The extracted b-distribution of the oxygen concentration fluctuations is well approximated by a log-

normal fit

Here, we assume local Gaussian distributions (with fluctuating variance in each time slice) and investigated the LC

measurement site, considering both seasonal detrending (A) and EMD (B). The blue lines are Gaussian kernel estimates of

the empirical PDF.
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way or include other parameters (Kumar, 2011). Moreover, from a theoretical point of view, it would be

desirable to expand the superstatistical theory relevant in nonequilibrium statistical physics toward dou-

ble-peaked b-distributions, as these distributions seem to appear naturally in the environmental context.
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A B

Figure 9. The extracted b-distribution of the electrical conductivity fluctuations does follow a mixture of two

c2-distributions

(A) b-distribution with c2, inverse c2, and log-normal fit.

(B) b-distribution with a single and the mixture c2-distribution fitted. Both plots use seasonal detrending at the LC

measurement site. The blue lines are Gaussian kernel estimates of the empirical PDF.
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RESOURCE AVAILABILITY

Lead contact

Benjamin Schäfer (benjamin.schaefer@nmbu.no)

Materials availability

This study did not generate new unique reagents.

Data and code availability

All code to reproduce the results presented here along the necessary data (both in original and in cleaned

and detrened form) are available at: https://osf.io/mxcrv/

METHOD DETAILS

All calculations included in this manuscript were performed using Python and the libraries referenced

above. All information necessary to reproduce these results are included in the main body of the text

and in the OSF repository.

REAGENT or RESOURCE SOURCE IDENTIFIER

Software

Python3 https://www.python.org

Numpy https://numpy.org version 1.20.0

Scipy https://www.scipy.org version 1.6.0

Seaborn https://seaborn.pydata.org/ version 0.11.1

PyEMD https://pypi.org/project/EMD-signal/ version 0.2.15
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