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Abstract. Warburg found that tumor cells exhibit high-level 
glycolysis, even under aerobic condition, which is known as 
the ‘Warburg effect’. As systemic changes in the entire meta-
bolic network are gradually revealed, it is recognized that 
metabolic reprogramming has gone far beyond the imagina-
tion of Warburg. Metabolic reprogramming involves an active 
change in cancer cells to adapt to their biological characteris-
tics. Thyroid cancer is a common endocrine malignant tumor 
whose metabolic characteristics have been studied in recent 
years. Some drugs targeting tumor metabolism are under 
clinical trial. This article reviews the metabolic changes and 
mechanisms in thyroid cancer, aiming to find metabolic‑related 
molecules that could be potential markers to predict prognosis 
and metabolic pathways, or could serve as therapeutic targets. 
Our review indicates that knowledge in metabolic alteration 
has potential contributions in the diagnosis, treatment and 
prognostic evaluation of thyroid cancer, but further studies are 
needed for verification as well.
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1. Introduction

Thyroid cancer is a common malignant tumor with a sharp 
increase in incidence worldwide (1). Thyroid cancer mainly 
includes four types: Papillary thyroid carcinoma (PTC), 
follicular thyroid carcinoma (FTC), medullary thyroid carci-
noma (MTC), and anaplastic thyroid carcinoma (ATC) (2). 
PTC accounts for the largest component among them (>90%). 
The prognosis of thyroid cancer is closely related to its histo-
logical type. For example, the 10-year overall survival rate of 
PTC is estimated to be 98%, while the median survival of ATC 
is only 3-5 months (3). For thyroid cancer, surgical resectionis 
the most important treatment method. Different adjuvant treat-
ments are effective for certain pathological subgroups, such as 
radioiodine for differentiated thyroid carcinoma (DTC) and 
chemotherapy for ATC.

Although most thyroid cancers have a good prognosis, 
approximately 10% of patients with well-differentiated 
thyroid cancer have a loss of response to radioactive iodine 
therapy, and poorly differentiated or undifferentiated tumors 
are more likely to cause disease recurrence and death (4,5). 
Therefore, it is necessary to investigate new methods of 
thyroid cancer treatment. Moreover, we observed that some 
well‑differentiated thyroid cancer cases are significantly more 
aggressive than others, so it is difficult to predict the patient's 
course. This heterogeneity of thyroid cancer behavior and the 
inferior quality of life of patients indicate the importance of 
identifying prognostic markers.

Over a century ago, Warburg (6) found that tumor cells 
need more glucose than normal cells and tumor cells prefer 
glycolysis for glucose metabolism even under oxygen‑sufficient 
conditions, rather than undergo mitochondrial oxidative phos-
phorylation to produce ATP. This is known as the ‘Warburg 
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effect’. However, the special metabolic mode of tumor cells 
is not a passive change, but a positive change of expression 
of heredity to alter the metabolic mode for oncogenesis and 
neoplasm invasiveness. Tumor metabolism can serve as a 
potential target for the treatment of thyroid cancer. Moreover, 
tumor metabolism-related molecules may be a marker for the 
prognosis of thyroid cancer. Previous findings have shown that 
the development of thyroid cancer is associated with increased 
glucose uptake (7). Monocarboxylate transporter (MCT) on the 
tumor cell membrane and the translocation enzyme TOMM20 
on the mitochondrial membrane were reportedly associated 
with the prognosis of thyroid cancer (8,9). The findings suggest 
that key molecules in tumor metabolism may be the factors 
involved in predicting the prognosis of thyroid cancer.

2. Cell metabolism in thyroid cancer

Multicompartment metabolism of thyroid cancer. 
Multicompartment mode revealed the translation of meta-
bolic intermediates between different regions of cancer cells. 
Pavlides et al first proposed the ‘Reverse Warburg effect’, 
whereby cancer-associated fibroblasts (CAF) are induced 
by cancer cells to shift into aerobic glycolysis and produce 
L-lactic acid and ketone bodies, which is translated to cancer 
cells as fuels of oxidative phosphorylation (10). Metabolic 
coupling between glycolytic fibroblasts and cancer cells 
promotes tumor growth by increasing cancer cell proliferation 
and inducing resistance to apoptosis (11).

Transporters that translate intermediates between different 
compartments are important in the multicompartment mode. 
A noteworthy transporter is MCT, a class of membrane-bound 
proteins involved in the influx and outflow of small metabolites, 
such as lactic acid, and pyruvate and ketone bodies (12). MCT4 
is responsible for CAF outputting Lactate. Lactate is then taken 
up by cancer cells via MCT1 (a two-way transporter) on cancer 
cells and transported to mitochondria through the mitochon-
drial outer membrane TOMM20 to produce ATP by oxidative 
phosphorylation (OXPHOS) (9). Therefore, TOMM20 and 
MCT1 can be used as biomarkers of OXPHOS and MCT4 can 
be used as a biomarker of glycolysis.

A high expression of MCT4 in head and neck canceris asso-
ciated with tumor recurrence and more advanced staging (13). 
Curry et al (14) found that PTC tumor cells exhibit a uniform 
high expression of TOMM20, but have a low expression in 
normal thyroid and nodular goiter tissue adjacent to the tumor. 
There was a statistical difference in the expression of MCT4 
in CAF between advanced PTC and non-advanced PTC. In 
another study on ATC, tumor tissues highly expressed both 
TOMM20 and MCT1 compared with non-tumor tissues, which 
was different from PTC (high expression of TOMM20 but low 
expression of MCT1) (9). The high expression of MCT1 means 
that it allows more pyruvate and lactic acid to enter tumor cells 
for high-intensity OXPHOS, leading to significant growth 
advantages in tumor cells (15). The difference in the expres-
sion of MCT1 between ATC and PTC probably explainsthe 
difference in prognosis.

Glucose metabolism. It is well known that unlike normal 
cells, tumor cells undergo aerobic glycolysis as the main form 
of glucose metabolism (16). Aerobic glucose metabolism is 

an inefficient metabolic pathway for the production of ATP. 
Researchers believe that the proportion of tumor cells in 
the aerobic glycolysis metabolic pathway is mainly due to 
its contribution to the proliferation and invasion of cancer 
cells, and enhancement of cancer cells to fight oxidative 
damage (16-18).

Nahm et al found that the expression levels of glyco-
lytic-related proteins is differentin different thyroid cancer 
subtypes and is associated with prognosis (19). PTC patients 
with a high expression of glucose transporter 1 (GLUT1) had 
a shorter overall survival (OS), and hexokinase II-positive 
medullary carcinoma patients had a shorter OS and 
disease-free survival (DFS). MCT4-positive PTC patients 
had shorter OS than MCT4-negative ones. When GLUT1 and 
MCT4 were highly expressed, DFS and OS was significantly 
reduced in patients with poorly differentiated thyroid cancer. 
Several glycolytic-related molecules haveexhibited an impor-
tant role in the metabolism of thyroid cancer, such as GLUT1, 
HK, PKM2 and lactate dehydrogenase (LDH).

GLUT1. GLUT1, a unidirectional transporter, is responsible 
for the transportation of glucose across the plasma membrane 
of mammalian cells. Extensive research has found that it is 
expressed in a variety of tumor cells and is associated with 
prognosis. Haber et al analyzed the expression of GLUT1 
protein in 38 cases of benign thyroid disease and thyroid 
cancer (20). The results showed that GLUT1 expression was 
frequently upregulated in thyroid cancer, but weakly expressed 
in benign nodules and normal thyroid tissues. Nahm et al 
analyzed 556 cases of thyroid cancer, showing that GLUT1 
expression was higher in ATC than PTC and higher in PTC 
than normal cells (19). They also found that the expression of 
GLUT1 in FTC was significantly higher than that of follicular 
adenoma (FA). Kim et al found that the expression of GLUT1 
gene in ATC was significantly higher than that of differenti-
ated cancer (21). In addition, the expression of GLUT1 in 
PTC was higher than FTC. The above results indicate that the 
expression level of GLUT1 may be positively correlated with 
the invasiveness of thyroid tumors. This is consistent with the 
results observed in other tumors (22). The phenomenon that 
ATC has a higher expression of GLUT1 than other types of 
thyroid cancer is probably due to the fact that ATC has the 
highest metabolic activity in thyroid cancer (23). Therefore, 
more GLUT1 is needed to take glucose for metabolism. High 
proliferative activity of the tumor causes hypoxia. Under 
hypoxic conditions, the expression of hypoxia-inducible 
factor-1 (HIF-1) is increased and GLUT1 is the target mole-
cule of HIF-1 (24). Previous studies have demonstrated high 
HIF-1 nuclear staining in ATC (25), which supports this view. 
Moreover, ATC is a highly metastatic cancer. Its presence 
of high expression of GLUT1 is consistent with the known 
phenomenon that ‘GLUT1 expression of some types of tumors 
is associated with distant metastasis’ (26,27). In addition, 60% 
of ATC showed p53 mutations and p53 was involved in glyco-
lytic regulation. GLUT1 is inhibited by wild-type p53, but due 
to p53 mutation, this regulation is disrupted (28).

HK. Hexokinase (HK) is the first rate‑limiting enzyme in the 
glycolytic pathway. There are 4 subtypes of HK in mammals 
and HK2 has the greatest correlation with malignant 
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tumors (29). Nahm et al studied a total of 342 PTC samples 
and it was found that 50% of the PTC samples containing the 
BRAFV600E mutation had higher levels of HK2 (19). According 
to Hooft et al, HK expression in metastatic and primary DTC 
were similar (30). The expression of HK2 in MTC was lower 
than that of other thyroid cancer subtypes (19).

PKM2. Pyruvatekinase (PK) is one of the main rate-limiting 
enzymes in glycolysis (31). There are three different subtypes 
(R, L, M) in human body. PKM is widely distributed in tissues 
and has two isoforms, M1 and M2. Replacement of PKM2 in 
tumor cells with PKM1 results in a reversal of the Warburg 
effect, reduced lactic acid production and increased oxygen 
consumption (32). Coelho et al showed that in two types of 
human thyroid cancer cell lines, b-CPAP and TPC1, there was 
higher expression of PKM2 mRNA compared to non-tumor 
cells (33). There is no difference in PKM1 mRNA levels. 
However, the total PK activity of b-CPAP was higher than 
non-tumor cells and TPC1 cell line, indicating that the PK 
enzymatic reaction is dependent on BRAF mutations (33). It 
is believed that PKM isoform expression and changes of PK 
activity are associated with increased tumor growth rates. 
Feng et al showed that the expression of PKM2 in human PTC 
is associated with tumor progression and lymph node metas-
tasis (34). bikas et al also found overexpression of PKM2 in 
thyroid cancer cells (FTC-133 and b-CPAP) characterized by 
glycolytic dependence (35).

LDH. LDH converts pyruvate produced by glycolysis into 
lactic acid, which can be transported to the outside of the 
cell to avoid the accumulation of large amounts of lactic acid 
inside the cells and form an acidic microenvironment that is 

beneficial to cancer cells. Another important function of LDH 
is to oxidize the NADH coenzyme produced by glycolysis to 
NAD+ to maintain the aerobic glycolysis. Of five isozymes, 
LDH-A is the one closely related to tumor invasion (36). 
Coelho et al compared two PTC cell lines, b-CPAP and 
TPC1, and found no difference in LDH-A mRNA expression 
compared to non-tumor cells (33). However, the two tumor cell 
lines have a higher LDH activity and lactic acid production 
rate. Kachel et al showed a different result, that LDH-A is 
overexpressed in FTC and PTC compared to non-tumor tissue, 
and its level in ATC is even higher (37).

Amino acid metabolism of thyroid cancer
Serine/glycine metabolism. Sun et al reported that the expres-
sion of serine/glycine metabolism-related proteins in different 
thyroid cancer types is different through analyzing tissues of 
different thyroid cancer subtypes (38). The expression is higher 
in poorly differentiated thyroid carcinoma (PDTC) and PTC, 
and lower in MTC and FTC. In PTC, it is higher in tissues with 
BRAFV600E than those without bRAF mutation. Expression 
of serine/glycine metabolism-related proteins, including 
phosphoglycerate dehydrogenase (PHGDH), phosphoserine 
aminotransferase (PSAT), phosphoserine phosphatase (PSPH), 
serine hydromethyltransferase (SHMT), and glycine decarbox-
ylase (GLDC), is different in different thyroid cancer subtype 
as mentioned below. Expression of PHGDH, PSAT1, PSPH and 
tumor SHMT1 is higher in PDTC and PTC, but lower in MTC. 
Matrix SHMT1 expression was highest in ATC and lowest 
in FTC. The expression of PSPH, tumor SHMT1 and matrix 
SHMT1 was higher in PTC than FTC. BRAFV600E mutant cells 
have higher PHGDH, PSAT1, PSPH, tumor SHMT1, and inter-
stitial SHMT1 and GLDC expression than non-mutant cells.

Table I. Comparison of expression of metabolism-related molecules between different subtypes of thyroid carcinoma.

Metabolism-related molecules Comparison between different ssubtypes Refs.

GLUT1 ATC > PTC > FTC > FA (19,21)
HK2 PTC with BRAFV600E > PTC without BRAFV600E (19)
 Other subtypes > MTC
PKM
  PKM2 mRNA bCPAP and TPC1 > NC (33)
  PK activity: bCPAP > TPC1
LDH-A ATC > PTC and FTC > NC (37)
Serine/glycine PDTC and PTC > MTC (38)
Metabolism-related proteins  PTC > FTC
 PTC with BRAFV600E > PTC without BRAFV600E

Glutamine metabolism-related proteins  (39)
  Tumor and Stroma ATC > other subtypes
  GLS1 and GDH
    Tumor ASCT2 MTC > FTC
    Tumor GLS1 and GDH ATC > PTC > FTC > FA
 PTC with BRAFV600E > PTC without BRAFV600E

TOMM20 ATC > NC (9,14)
 PTC > NC
MCT1 ATC > NC (9)
 PTC < NC
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Glutaminemetabolism. The three proteins that play an 
important role in glutamine metabolic pathway are amino acid 
transporter-2 (ASCT2), a transporter of glutamine into cancer 
cells; glutaminase 1 (GLS1), which converts glutamine into a 
glutamic acid; glutamate dehydrogenase (GDH), an enzyme 
that converts glutamic acid to alpha-ketoglutarate, the latter 
for the tricarboxylic acid cycle. Kim et al performed tissue 
microarray on 557 patients with different pathological types 
of thyroid cancer (39). The order of tumor GLS1 and GDH 
expression from high to low was ATC, PTC, FTC and FA. 
Tumor ASCT2 expression was higher in MTC but lower in 
FTC. Tumor GLS1 and tumor GDH expression was higher 
in the PTC with BRAFV600E mutation than PTC without the 
BRAFV600E mutation. Therefore, the more follicular differen-
tiation, the more prone to low expression of GLS1 and GDH.

In other tumors, glutamine metabolism-related proteins 
(GLS1, GDH and ASCT2) have also been reported to be asso-
ciated with tumor invasion (40). The possible mechanism is as 
follows. First, as mentioned earlier, ATC has higher metabolic 
activity than other subtypes of thyroid cancer. Glutamine 
metabolism plays an important role in tumor metastasis (41). 
Second, ATC has been shown to have higher HER-2 expres-
sion (42) and activation of the Wnt β-catenin pathway (43). 
HER-2 and β-catenin pathways are reported to be associated 
with increased glutamine metabolism (44,45).

BRAF mutation and metabolism of thyroid cancer. Since the 
first discovery of BRAF mutations in human cancer in 2002, 
its importance has become increasingly apparent in PTC (46). 
However, its mechanism is still under investigation. It has 
been observed that BRAFV600E mutations can lead to changes 
in tumor metabolism, which may be part of the reason for the 
worse prognosis of BRAF mutations.

In PTC, 18F-FDG uptake has been shown to vary with path-
ological differentiation, although the molecular mechanisms 
responsible for this are unclear (47). It has also been suggested 
that the BRAFV600E mutation is associated with 18F-FDG uptake 
rate and GLUT1 expression rate in PTC (48). Yoon et al found 
that BRAF mutations in PTC were significantly associated with 
18F-FDG PET/CT values (49). In addition,the expression of 
GLUT1 and GLUT3 in BRAF‑positive PTCs was significantly 
increased. Chang et al also found that BRAF mutation is an 
independent factor in the uptake of PTC 18F-FDG, especially 
for tumors >1 cm (50). Yoon et al showed that, the BRAFV600E 
mutation was independently associated with high 18F-FDG 
uptake by preoperative PET/CT in PTC patients, but this 
relationship was not apparent in PTMC (51). Nagarajah et al 
compared the effects of bRAF mutations on 18F-FDG uptake 
in DTC and PDTC (52). In DTC, BRAFV600E-positive patients 
had significantly higher 18F-FDG uptake than wild-type 
BRAF patients. In PDTC, only a few tumors were positive for 
BRAFV600E, and their 18F‑FDG uptake was not significantly 
different from that of wild-type BRAF tumors. Nahm et al 
observed that the expression of HK2 and MCT-4 in BRAF 
mutation-positive PTC was higher than that in BRAF-negative 
patients (19). According to research by Sun et al, BRAF 
mutations, not only affect glucose metabolism in thyroid 
cancer cells, but also affect amino acid metabolism (38). The 
BRAFV600E mutant PTC expressed more serine/glycine metab-
olism-related proteins than wild-type BRAF. In summary, 

PTC with BRAFV600E mutations have a higher expression of 
metabolism-related proteins and increased 18F-FDG uptake 
compared to non-mutants. This may explain the reason for 
PTC with positive BRAF mutations having a worse prognosis.

3. Tumor metabolism as the target of evaluation and treat-
ment of thyroid cancer

Biomarkers for prognosis. In summary,we may draw the 
conclusion that metabolism-related molecules maybe used as 
biomarkers for the prognosis of thyroid cancer. None of the 
tumors with low fibroblast‑expressing MCT4 staining showed 
advanced disease or invasive features. Glycolysis-related 
proteins such as GLUT1 and LDHA, and glutamine metab-
olism-related proteins such as GLS1, GDH and ASCT2, are 
associated with invasiveness and prognosis of thyroid cancer. 
HK2 is associated with the prognosis of MTC.

Glutamine metabolism as a therapeutic target. New targets 
are needed for the therapy of the radioactive iodine-refractory 
DTC, ATC and MTC. Current targeted therapies for thyroid 
cancer are tyrosine kinase inhibitors (TKIs) and monoclonal 
antibodies (mAbs) that inhibit the tyrosine kinase activity 
essential for the pathogenesis of thyroid cancer (53). However, 
clinical trial results of TKIs and mAbs are unsatisfactory, with 
only partial response rates ranging from 2 to 45% (53,54). A 
possible strategy is to reduce glutamine metabolic enzyme 
activity or reduce glutamine uptake. GLS1 inhibitors, including 
bPTES, Cb-968 and Cb-839, are in preclinical and clinical 
trials for the treatment of various tumors. benSer has been 
reported to inhibit the proliferation of melanoma cells as an 
inhibitor of ASCT2 (55). Of note, inhibitors of the glutamine 
metabolic pathway need further research as a treatment for 
thyroid cancer.

Glucose metabolism as a therapeutic target. Studies targeting 
tumor glucose metabolism have continued for years, and 
in the field of thyroid cancer, glycolysis inhibitors such as 
2-deoxyglucose have been shown to preferentially target ATC 
in animal models (56). Radioactive iodine-refractory thyroid 
tumors may be suitable for metabolic-related targeted thera-
pies because they show positive in 18FDG-PET scans (57). 
Moreover, MCT1 inhibitors are also being tested for the 
treatment of malignant tumors and may be valuable for the 
treatment of ATC (58).

OXPHOS inhibitors may be effective anti-cancer drugs 
in thyroid cancer. Previously, there were no strong OXPHOS 
inhibitors approved by the FDA. In PTC patients, there are 
data indicating that the weak OXPHOS inhibitor metform in 
is active in PTC. Metformin has a higher response rate, as was 
evidenced in a retrospective cohort of subjects with DTC (59). 
Metformin induces apoptosis in cancer cells and reduces 
tumor growth in a PTC xenograft model (60). In DTC patients, 
a single institutional observation study showed that individuals 
treated with metformin had smaller tumor size, indicating 
their potential to inhibit tumor growth. However, the benefi-
cial effects of metformin on thyroid cancer may not be due to 
mitochondrial effects, but through its insulin sensitization. In 
addition, metformin may reduce the level of TSH, which in 
turn inhibits the growth of thyroid cancer cells.
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4. Conclusion

Although there has been some progress in the study of thyroid 
tumor metabolism in recent years, there are still many gaps to 
fill. The current research indicates that oncogenes and tumor 
suppressor genes directly affect cell energy metabolism, 
leading to phenotype changes conducive to tumor progression. 
The differential expression of metabolic-related molecules in 
thyroid cancer with different prognosis and the association 
between the degree of expression and prognosis suggest that 
the prognosis of thyroid cancer maybe predicted viameta-
bolic-related molecules. Treatments and drugs targeting tumor 
metabolism are also under development, and some of them 
have achieved phased progress, which is likely to open new 
pathways for thyroid cancer treatment. Consequently, more 
investigations will be conducted in this field.
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