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Abstract: The sustainable development of water resources is always emphasized in China, and a
set of perfect standards for the division of inland water environment quality have been established
to monitor water quality. However, most of the 24 indicators that determine the water quality
level in the standards are non-optically active parameters. The weak optical characteristics make
it difficult to find significant correlations between the single parameters and the remote sensing
imagery. In addition, traditional on-site testing methods have been unable to meet the increasingly
extensive water-quality monitoring requirements. Based on the above questions, it’s meaningful that
the supervised classification process of a detail-preserving smoothing classifier based on conditional
random field (CRF) and Landsat-8 data was proposed in the two study areas around Wuhan and
Huangshi in Hubei Province. The random forest classifier was selected to model the association
potential of the CRF. The results (the first study area: OA = 89.50%, Kappa = 0.841; the second study
area: OA = 90.35%, Kappa = 0.868) showed that the water-quality monitoring based on CRF model is
feasible, and this approach can provide a reference for water-quality mapping of inland lakes. In the
future, it may only require a small amount of on-site sampling to achieve the identification of the
water quality levels of inland lakes across a large area of China.

Keywords: inland water; water quality levels; conditional random field; contextual information;
Landsat 8 operational land imager (OLI)

1. Introduction

Water is at the heart of sustainable development, and water resources play a vital role in
meeting human productivity needs, economic development, environmental protection, and ecosystem
services [1]. Globally, due to the geographical complexity of water supply and use, it is now difficult
to assess whether sufficient freshwater resources are available for future needs [2]. However, what
is certain is that a large proportion of the world’s population are currently suffering from “water
stress” [3]. This stress is not only due to the shrinkage of freshwater resources, but it is also closely
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related to the large-scale pollution of surface water. Water pollution affects agricultural activities,
human health, and the entire ecosystem [4].

Therefore, according to the environmental functions of surface waters and the goals of water
resources protection, in China, the environmental protection departments have proposed a set of the
standards of water quality rating. According to the Environmental Quality Standards for Surface
Water (EQSSW, http://sthjt.hubei.gov.cn, 22 February 2020) [5], water quality in China can be divided
into five levels, according to the water function, i.e., {I, II, III, IV, V} [6], which are determined by
many parameters, including dissolved oxygen (DO), the potassium permanganate index, chemical
oxygen demand (COD), ammonia nitrogen (NH3-N), total phosphorus (TP), and total nitrogen (TN),
etc. The water quality level depends on the worst evaluation result of single parameters. When the
water quality is lower than Class V, it is classified as Class VI. The Action Plan for the Prevention and
Control of Water Pollution in China (State Council) pointed out that, by 2020, the overall proportion of
the water bodies of seven basins (Yangtze River basin, Yellow River basin, Pearl River basin, Songhua
River basin, Huaihe River basin, Haihe River basin, and Liao River basin) not meeting the Class
III standard will be 70% or above. However, the Action Plan also requires that the proportion of
the urban centralized drinking water sources reaching or exceeding Class III will be at least 95%
(http://www.gov.cn/xinwen/2015-04/16/content_2847709.htm, 22 February 2020).

The sampling location and frequency of surface water quality monitoring in China are carried
out in accordance with the requirements of the national technical specifications for surface water
environmental monitoring. Monitoring sites on state-controlled water systems (rivers, lakes, and
reservoirs) are sampled every two months, six times throughout the year, and the sampling points are
densely distributed (HJ/T 91-2002, Technical Specifications Requirements for Monitoring of Surface
Water and Waste Water, http://sthjt.hubei.gov.cn, 22 February 2020) [7,8]. The monitoring program
includes 24 routine indicators. As a result, the surface water quality surveying consumes a lot of
manpower and material resources every year, and the cycle is long. With the continuous advancement
of remote sensing technology, more and more traditional investigation tasks can now be quickly solved
by analyzing spaceborne images. For example, Landsat 8 OLI imagery was applied for land surface
water mapping [9]. Landsat 8 and Landsat 7 were applied for regional measurements of chromophoric
dissolved organic matter (CDOM) and water clarity in lakes [10]. Urbanski et al. [11] used Landsat
8 imagery to assess water quality based on regional scale. Furthermore, most of the images of the
current multispectral series of Landsat satellites are available free of charge.

At present, surface water monitoring by means of remote sensing is mostly combined with ground
sampling, and is extended to surface water monitoring by the quantitative retrieval of point source
water quality parameters [12]. The spatial distribution of the water quality parameters is analyzed
to investigate the pollution status of the water area [13–16]. However, most of the above retrieval
targets are optically active substances such as chlorophyll-a [17], total suspended matter (TSM) [18],
CDOM [19], etc. In the same environment, there will be more than one water quality variable that
affects the remote sensing reflectivity. The optical properties of non-optically active parameters such
as TP, TN, DO, etc., which determine water quality, are weak, and there is no significant correlation
between remote sensing images and these parameters [13,20]. Furthermore, more than one parameter
determines the level of inland water quality [21,22]. However, compared with the inversion of
single water quality parameter, the classification of water quality levels based on remote sensing
technology weakens the cumulative error of the individual water quality factors and strengthens the
direct connection between water quality and remote sensing images. For the application research of
traditional water quality monitoring, the classification process based on water quality levels is more
suitable for the current scenario. As water quality level monitoring is a routine issue for environmental
protection agencies, this process may be simplified in the future.

Artificial intelligence technology has developed rapidly, and supervised learning technology
combining machine learning has become more and more mature. Because of generalization ability and
good classification accuracy on most datasets, many scholars have combined random forest (RF) and
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remote sensing images for classification of water bodies [23]. These classifiers are based on pixel wise
segmentation of images [24], and their classification results will be accompanied by salt and pepper
noise [25]. However, the water area is often a connected whole, and the water quality attributes of
the adjacent pixels are similar. Therefore, in the water quality classification of inland lakes, we can
not only use spectral information of images, but also abundant spatial information. The conditional
random field (CRF) method is a discriminant probability method that can effectively combine spatial
information. The model is optimized on the basis of the Markov random field (MRF), and can consider
contextual information in both label data and observation data [26]. For example, the authors of [27,28]
used CRF model to integrate contextual information into remote sensing classification to improve
classification accuracy and overcome salt-and-pepper classification noise. Since the many CRF-based
models resulted in different degrees of smoothing [29], it is important to keep the details with the
spatial contextual information.

In summary, although the amount of water on earth is huge (about 71% of the Earth’s surface is
covered with water), the freshwater resources that can be directly used by humans are extremely rare
(only 2.5% is fresh water, and 98.8% of this is in glaciers and groundwater) [30]. Therefore, surface
freshwater resources, as one of the fundamental issues related to national economic development and
ecological environmental protection, are receiving more and more attention from all countries [31].
Correspondingly, water pollution is one of the main causes of water shortages. Therefore, governments
have become very concerned about the control and monitoring of water pollution. The classification
of lake water quality based on satellite remote sensing will enable water pollution control to achieve
rapid positioning and precise treatment. In this paper, a classification method for water quality levels
based on CRF and RF model is proposed. By the use of Landsat 8 OLI imagery, the lakes of two study
areas in Hubei Province, China, were classified, and the experimental results of the based-pixel RF,
decision tree (DT), and deep neural network (DNN) models were compared.

2. Materials and Methods

2.1. Study Areas

In this study, the water system of Wuhan and its surrounding areas was selected as the first study
area (Wuhan dataset). The second study area was around Huangshi and along the Yangtze River
system (Huangshi dataset). Located in central China, Wuhan is situated at the intersection of the
Yangtze River and its tributaries, and is China’s largest economic, cultural, and educational center.
The city covers an area of 8549 square kilometers, 25% of which is covered by lakes, shallow waters,
canals, and rivers. The surface water resources in the area are therefore very rich [32,33]. In this study,
an area containing 76 lakes was selected as the research area in Wuhan, as shown in Figure 1a.

The lakes selected for the second experimental area are located on both sides of the Yangtze
River, near the city of Huangshi, and total 49 in number (Figure 1b). According to the statistics of
the Changjiang River Scientific Research Institute of the Changjiang Water Resources Commission,
the discharge of wastewater in the Yangtze River Basin increased from 19.7 billion tons in 1998 to
35.3 billion tons in 2016. Each year, about 33 billion tons of agricultural wastewater containing high
levels of nutrients flows into the Yangtze River system, and the water pollution problem is serious [34].
Xu Kuangdi, said that, in the construction of ecological civilization, the urban agglomeration in
the middle reaches of the Yangtze River should take water resources protection as the core, and an
ecological corridor with clear water, green land, and blue sky should be built in the cities [35].
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2.2. Satellite Data and Vector Data

NASA successfully launched the Landsat 8 satellite on 11 February 2013, with the OLI sensor
onboard, which collects data from nine spectral bands. Apart from the 8th panchromatic band (15 m),
the remaining bands have a spatial resolution of 30 m. The first seven commonly used bands were
selected for the experimentation, i.e., coastal, blue, green, red, NIR, SWIR1, and SWIR2 [36,37]. The
Landsat 8 OLI images were obtained from the Geospatial Data Cloud site (http://www.gscloud.cn/search,
22 February 2020).

The data identifier of the image selected for the first study area of Wuhan is
LC81230392018098LGN00. The image was acquired on April 8, 2018, when the amount of cloud was
8.94% and the lakes were not covered by cloud. The data identifier of the image selected for the
second study area of Huangshi is LC81220392017120LGN00. This image was acquired on 30 April
2017, with 0.06% cloud cover. The lake vector maps within the two research areas were also obtained
from the Geospatial Data Cloud site, for the water extraction of the Landsat 8 images.

2.3. Surface Water Environment Quality Levels

The water quality data of the first study area (Wuhan) from May 2018 were obtained from the Wuhan
Ecology and Environment Bureau (http://hbj.wuhan.gov.cn/hbHjjc/index.jhtml, 3 January 2020). The
water quality data of the second study area (Huangshi) were released by the provincial environmental
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monitoring center station of the Department of Ecology and Environment of Hubei province in 2017
(http://sthjt.hubei.gov.cn, 22 February 2020). The water quality data is the result of in-site sampling in a
certain period. In order to ensure the validity of the experimental data, the acquisition time of the
selected Landsat 8 OLI images should be similar to the collection time of the water quality data. Several
representative lakes in the first and second study areas were selected in Tables 1 and 2 respectively.
The parameters of over-standard in the assessment of the water quality were pointed out in the table,
including TP, COD, biochemical oxygen demand (BOD), Permanganate index (CODMn) and NH3-N.
Surface water is divided into five level (Table 3) according to the function. The standard values for the
respective functional class are executed. The Class I water belongs to the source water, which belongs
to the national natural protection zones. The water quality in the two table represents the current
level of water quality assessed for the lakes. The value represents the superstandard multiple, and the
datum line correspond to the function level of the lakes.

Table 1. Water quality data of the major lakes in Wuhan.

Lakes Water Quality
Assessment (Superstandard Multiple)

TP COD BOD CODMn NH3−N

Lu Lake III 0.72 0.15 — — —
Houguan

Lake IV — 0.30 0.15 — —

Tangxun
Lake V 2.42 0.16 0.02 — 0.84

South Lake VI 0.87 — — — 0.41

Table 2. Water quality data of the major lakes in Huangshi.

Lakes Water Quality
Assessment (Superstandard Multiple)

TP COD BOD CODMn NH3−N

Wushan
Lake IV 0.6 — 0.1 — —

Baoan Lake V 1.2 — — — —
Qinggang

Lake VI 6.5 0.6 1.0 0.4 —

Table 3. Main parameter standard of water quality classification.

Parameters
Water Quality Class (mg/L)

I II III IV V

TP (Lake) ≤ 0.01 0.025 0.05 0.1 0.2
COD ≤ 15 15 20 30 40
BOD ≤ 3 3 4 6 10

CODMn ≤ 2 4 6 10 15
NH3−N ≤ 0.15 0.5 1.0 1.5 2.0

The pie charts in Figure 2 show the percentage of lakes in each water quality level, for both study
areas. In Wuhan and its surrounding areas, we recorded the water quality levels of 64 lakes, as shown
in Figure 2a. In this area, there are no Class I lakes (the highest water quality). The Class II lakes
number only one, namely, Niushan Lake. The Class III lakes account for 17%, and the Class IV, Class V,
and Class VI lakes account for 34%, 28%, and 19% respectively. Therefore, only 19% of the lakes meet
or exceed the Class III water quality level, which is the standard for centralized drinking water. In the
second study area of Huangshi, along the lower reaches of the Yangtze River, 49 lakes were selected on
both sides of the Yangtze River for the statistical analysis, as shown in Figure 2b. In this area, there are
no Class I or Class II waters. Class III lakes account for about 16%, Class IV and Class V lakes both
account for about 22%, and the Class VI lakes account for about 39%. Therefore, only 16% of the lakes
are equal to or better than the Class III water quality level.

http://sthjt.hubei.gov.cn
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2.4. Methods

2.4.1. The Improved Conditional Random Field (CRF) Model and Other Models

The CRF is a kind of probability model, which has been widely used in image segmentation,
stereoscopic vision and activity analysis because of its ability to combine spatial information [29]. In
this paper, a method of water-quality classification based on the detail-preserving smoothing CRF was
proposed, which used the probability of each class obtained by the RF classifier to define as the unary
potential of the CRF, and defined the linear combination of the spatial smoothing term and the local
class label cost term as the pairwise potential, so as to achieve the classification effect of combining
spatial contextual information and retaining detailed information at the same time.

The CRF model have been developed with a unified probability framework to simulate local
neighborhood interactions between random variables, where the posterior probability is expressed as
a Gibbs distribution directly [38]:

P(x|y) =
1

Z(y)
exp

−∑
c∈C

ψc(xc, y)

 (1)

where y is the observation data of the input image, that is, the pixel-by-pixel spectral vector; x represents
the class labels; Z(y) is the partition function; ψc(xc, y) is the potential function, which models the
spatial interaction of random variables locally based on the neighborhood system and clique c in the
image; and C represents a fully connected subgraph. In this paper, 8-neighborhood model was applied
in pairwise CRF framework.

Assuming an observation filed y =
{
y1, y2, · · · , yN

}
, which N is the total number of pixels, and

a labeling field x = {x1, x2, · · · , xN}. According to the posterior distribution of the label x, given the
observation y, the corresponding Gibbs energy is shown in Equation (2):

E(x|y) = − log P(x|y) − log Z(y) =
∑
c∈C

ψc(xc, y) (2)

In order to find the label image x which maximizes the posterior probability P(x|y), based on the
Bayesian maximum posterior rule (MAP), the MAP label XMAP of the random field is given:

XMAP = argmaxP(x|y)
x

= argminE(x|y)
x

(3)
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When the posterior probability P(x|y) is maximum, the energy function E(x|y) is minimum.
In Equation (3), E(x|y) =

∑
i
φ1(xi, y) + λ ·

∑
i< j
φ2(xi, x j, y), φ1 is the unary potential function, which

represents the segmentation result under the premise of independent consideration of each pixel; φ2

is the pairwise potential function, which represents the influence of the relationship between pixels
on segmentation. The nonnegative λ is the tuning parameter that represents the proportion of the
pairwise potential. The larger λ, the more obvious the smoothing effect.

The unary potential function models the relationship between class label and pixel spectral data.
The probability estimation of each pixel is calculated by discriminant classifier, and the feature vectors
are given. It plays a leading role in the process of classification, and is generally the posterior probability
of a supervised classifier. The unary potential function is defined as:

φi(xi, y) = − ln
{
P[xi = lk| fi(y)]

}
(4)

where fi(y) represents the feature vector at the position i, which comes from the spectral dimension
mapping of a pixel in an image. P[xi = lk| fi(y)] is the probability of class label lk taken by the pixel i
based on the feature vector. Because the RF algorithm is stable, and the classification effect is good
without parameter adjustment, the RF classifier was selected as the unary potential.

Based on the probability distribution results of the unary potential, the pairwise potential function
models the label class relationship of the pixels in the neighborhood. The similarity between pairs of
pixels is measured by the local features of the image, which affects the label class between pixels in
the neighborhood, and reflects the interaction of points. In order to minimize the Gibbs energy of the
corresponding model, if the feature difference between pixels is large, the pairwise potential function
value should be small, that is, the labeling results should be accepted; If the feature difference between
pixels is small, the pairwise potential function value should be large, and the labeling results should be
modify by the model. The expression of the pairwise potential function is:

ψi j
(
xi, x j, y

)
=

 0 i f xi = x j

gi j(y) + θ ∗ΘL
(
xi, x j|y

)
otherwise

(5)

where gi j(y) represents a smooth term related to data y, gi j(y) = dist(i, j)−1 exp
(
−β‖yi − y j‖

2
)
. dist(i, j)

is the Euclidean distance, and y is the spectral vector. ΘL
(
xi, x j|y

)
represents the cost between labels xi

and x j in the neighborhood. The parameter θ is applied to control the degree of the label cost term in
pairwise potential function. The range of parameter θ is usually [0–4]. The local class label cost term
ΘL

(
xi, x j|y

)
is defined as:

ΘL
(
xi, x j|y

)
=

min
{
P[xi| fi(y)], P

[
x j| f j(y)

]}
max

{
P[xi| fi(y)], P

[
x j| f j(y)

]} (6)

where P[xi| fi(y)] is the label probability given by the RF classifier; fi(y) represents the spectral feature
vector at the position i; and xi is the class label. ΘL

(
xi, x j|y

)
will affect the label estimation of the

current pixel according to the probability distribution of adjacent pixels, so the model can smooth the
classification results when considering the spatial contextual information.

As mentioned earlier, the local class label cost term is expressed as a probability estimate of the
spatial distribution of category labels. Thus, the final classification accuracy depends on the accuracy
of the probability estimate, which is obtained from majority voting of the original RF classification map.
In order to effectively remove the salt-and-pepper classification noise, the label property of adjacent
cells should be taken into account. Therefore, the maximum of all the class labels for each pixel will be
the probability estimate of the segmentation result.

In summary, aiming at the classification of water quality in China’s water quality assessment
system, a supervised classification method CRF combined spectral information with spatial contextual
information was proposed in this paper. It takes the probability distribution of the RF classifier as the
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unary potential, and defines the linear combination of spatial smooth term and local label cost term as
pairwise potential. The model can predict the label class of current pixel with reference to the water
quality level of adjacent pixel. In addition, three pixel-based classifiers were added to the experiment.

Three other models were discussed in this paper, namely the based-pixel RF, DT and DNN. For
the image classification problem, the RF is not the best-performing algorithm. However, due to its
simplicity, ease of implementation, strong generalization ability, and good performance on many
datasets, it has been widely used in academic research and industrial applications [39,40]. The RF is an
algorithm that integrates multiple trees through the idea of ensemble learning. Its basic unit is the
decision tree, so N trees have N classification results. RF integrates N voting results, and the class with
the most votes is the final output. Recently, although the DT model is no longer a mainstream classifier
for use alone, it is widely used as a base learner in more complex algorithms, because of its fast speed,
high accuracy, and ease of understanding [41,42]. DT classification represents the process of classifying
instances based on features. Based on the if-then rule, its classification speed is fast and it is a commonly
used classifier. Since the number of samples is not uniform, the DT model automatically adjusts the
weight based on the number of samples. LeCun et al. [43] published an article on deep learning in
Nature in 2015, expressing the importance of the model to human society. The DNN is a pixel-based
supervised learning model and the basis of other deep learning models. The ability of the neural
networks to express models is dependent on the optimization algorithms. The optimizer selection
will be described further later. The training process of a DNN consists of two parts: the forward
propagation of the signal and the reverse propagation of the error. The back-propagation algorithm
can optimize the weight and bias of the neural network according to the defined loss function, so that
the loss value of the model reaches a smaller value. In this study, the algorithms were implemented in
Python and TensorFlow.

2.4.2. Evaluation Indicators

The overall accuracy (OA) and Kappa coefficients (Kappa) were applied to evaluate the results
of the model predictions in the experiments, and were calculated based on a confusion matrix. The
OA represents the percentage of all the samples with correct predictions divided by all the samples
which take part in the classification. That is, the number of oblique diagonal samples of the confusion
matrix divided by the total number of samples. Because there was no significant priority between the
different water quality levels in these experiments, and the classification result of a certain level has no
decisive influence on the evaluation of the model, the OA can express the classification accuracy most
intuitively, so it was applied in these experiments. Kappa is used for consistency testing and is often
used for multi-classification problems [44,45]. The formula for Kappa is:

k =
poa − pe

1− pe
(7)

pe =
a1 · b1 + a2 · b2 + · · ·+ ac · bc

n · n
(8)

where poa represents the overall classification accuracy OA, ai is the number of ground-truth samples of
the i-th class, bi is the number of samples predicted by the i-th class, and n represents the total number
of samples. Kappa takes a range of [0, 1] in practical applications. The higher the coefficient value, the
higher the accuracy of the model prediction results.

The ultimate purpose of this study is to use only a few samples to predict the water quality levels
of the lakes. Therefore, it is necessary to count the number of each class label within the vector range
of each lake. The classification result of water quality is determined by the maximum percentage of the
labels. When the lake is classified as a unit, the results are still evaluated by OA.
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3. Experiments and Analysis

3.1. Data Description

According to the vector maps, most of the lakes were divided into water quality levels, except
for some lakes where the range of the water quality levels was uncertain. The experimental datasets
were subjected to water vector masking and water extraction. The statistical results are shown in
Table 4. The colors in Table 4 correspond to the water quality level distributions in Figure 3, and the
last column is the total number of samples in the datasets of the two study areas. It can be observed
that the number of each label class is unevenly distributed. In the second study area, the Class VI
lakes are mainly concentrated in densely populated cities on both sides of the Yangtze River. These
lakes are small and their circulation is poor, so they are easily polluted. In the second study area, the
numbers of samples for each level were relatively uniform (between 18% and 34%). In the experiment,
the datasets were produced as the form [features, samples], where the features refer to the seven bands
of the images, and the sample represents a single pixel. Because the number of image bands is small,
we used all bands for model training without too much information redundancy. In addition, because
RF, DT, and DNN, including CRF’s unary potential, are all based on pixels, the data sets produced are
also based on pixels. The training set: test set = 1:9, where the training set was applied to learn the
parameters of the model, and the test set was used to test the classification effect of the model.

Table 4. Water quality levels and numbers of samples in the Wuhan and Huangshi datasets.

Study Area
Class Sample

No. Color Water Quality Level Numbers

Wuhan

1
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range, a masking process was performed using the water body vector (blue) before water extraction. 

Then the ground-truth maps were used as a mask file to extract the range of the study area on the 
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through MATLAB. 
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Class II 52,781
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pixels, respectively. Figures 3a,c show the false-color images and the water vector data (blue) from 

the Geospatial Data Cloud. Figures 3b,d are the distribution maps of the lakes after water extraction, 

that is, corresponding ground-truth maps. In order to ensure the effectiveness of the extracted lake 

range, a masking process was performed using the water body vector (blue) before water extraction. 

Then the ground-truth maps were used as a mask file to extract the range of the study area on the 

Landsat images. Finally, we applied the masked images to generate the above mentioned datasets 
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(a) (b) 

Class III 142,509
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lakes are mainly concentrated in densely populated cities on both sides of the Yangtze River. These 

lakes are small and their circulation is poor, so they are easily polluted. In the second study area, the 

numbers of samples for each level were relatively uniform (between 18% and 34%). In the experiment, 

the datasets were produced as the form [features, samples], where the features refer to the seven 

bands of the images, and the sample represents a single pixel. Because the number of image bands is 

small, we used all bands for model training without too much information redundancy. In addition, 
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The image sizes for the first and second study areas were 2873 × 3037 pixels and 4121 × 4784 

pixels, respectively. Figures 3a,c show the false-color images and the water vector data (blue) from 

the Geospatial Data Cloud. Figures 3b,d are the distribution maps of the lakes after water extraction, 

that is, corresponding ground-truth maps. In order to ensure the effectiveness of the extracted lake 

range, a masking process was performed using the water body vector (blue) before water extraction. 

Then the ground-truth maps were used as a mask file to extract the range of the study area on the 

Landsat images. Finally, we applied the masked images to generate the above mentioned datasets 

through MATLAB. 

(a) (b) 

Class IV 370,184

4
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that the number of each label class is unevenly distributed. In the second study area, the Class VI 

lakes are mainly concentrated in densely populated cities on both sides of the Yangtze River. These 

lakes are small and their circulation is poor, so they are easily polluted. In the second study area, the 
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the datasets were produced as the form [features, samples], where the features refer to the seven 
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Table 4. Water quality levels and numbers of samples in the Wuhan and Huangshi datasets. 
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the Geospatial Data Cloud. Figures 3b,d are the distribution maps of the lakes after water extraction, 

that is, corresponding ground-truth maps. In order to ensure the effectiveness of the extracted lake 

range, a masking process was performed using the water body vector (blue) before water extraction. 

Then the ground-truth maps were used as a mask file to extract the range of the study area on the 

Landsat images. Finally, we applied the masked images to generate the above mentioned datasets 

through MATLAB. 

(a) (b) 

Class V 146,031

5
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pixels, respectively. Figures 3a,c show the false-color images and the water vector data (blue) from 

the Geospatial Data Cloud. Figures 3b,d are the distribution maps of the lakes after water extraction, 

that is, corresponding ground-truth maps. In order to ensure the effectiveness of the extracted lake 

range, a masking process was performed using the water body vector (blue) before water extraction. 

Then the ground-truth maps were used as a mask file to extract the range of the study area on the 

Landsat images. Finally, we applied the masked images to generate the above mentioned datasets 

through MATLAB. 

(a) (b) 

Class VI 25,115

Total 736,619

Huangshi

1
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pixels, respectively. Figures 3a,c show the false-color images and the water vector data (blue) from 

the Geospatial Data Cloud. Figures 3b,d are the distribution maps of the lakes after water extraction, 

that is, corresponding ground-truth maps. In order to ensure the effectiveness of the extracted lake 

range, a masking process was performed using the water body vector (blue) before water extraction. 

Then the ground-truth maps were used as a mask file to extract the range of the study area on the 

Landsat images. Finally, we applied the masked images to generate the above mentioned datasets 

through MATLAB. 

(a) (b) 

Class III 73,386
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that the number of each label class is unevenly distributed. In the second study area, the Class VI 

lakes are mainly concentrated in densely populated cities on both sides of the Yangtze River. These 

lakes are small and their circulation is poor, so they are easily polluted. In the second study area, the 

numbers of samples for each level were relatively uniform (between 18% and 34%). In the experiment, 

the datasets were produced as the form [features, samples], where the features refer to the seven 

bands of the images, and the sample represents a single pixel. Because the number of image bands is 
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model. 
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1 Class II 52,781 
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The image sizes for the first and second study areas were 2873 × 3037 pixels and 4121 × 4784 

pixels, respectively. Figures 3a,c show the false-color images and the water vector data (blue) from 

the Geospatial Data Cloud. Figures 3b,d are the distribution maps of the lakes after water extraction, 

that is, corresponding ground-truth maps. In order to ensure the effectiveness of the extracted lake 

range, a masking process was performed using the water body vector (blue) before water extraction. 

Then the ground-truth maps were used as a mask file to extract the range of the study area on the 

Landsat images. Finally, we applied the masked images to generate the above mentioned datasets 

through MATLAB. 

(a) (b) 

Class IV 137,606
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that the number of each label class is unevenly distributed. In the second study area, the Class VI 

lakes are mainly concentrated in densely populated cities on both sides of the Yangtze River. These 

lakes are small and their circulation is poor, so they are easily polluted. In the second study area, the 

numbers of samples for each level were relatively uniform (between 18% and 34%). In the experiment, 

the datasets were produced as the form [features, samples], where the features refer to the seven 

bands of the images, and the sample represents a single pixel. Because the number of image bands is 

small, we used all bands for model training without too much information redundancy. In addition, 

because RF, DT, and DNN, including CRF’s unary potential, are all based on pixels, the data sets 

produced are also based on pixels. The training set: test set = 1:9, where the training set was applied 

to learn the parameters of the model, and the test set was used to test the classification effect of the 

model. 

Table 4. Water quality levels and numbers of samples in the Wuhan and Huangshi datasets. 

Study Area 
Class Sample 

No. Color Water Quality Level Numbers 

Wuhan 

1 Class II 52,781 

2 Class III 142,509 

3 Class IV 370,184 

4 Class V 146,031 

5 Class VI 25,115 

Total 736,619 

Huangshi 

1 Class III 73,386 

2 Class IV 137,606 
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Total 402,143 

The image sizes for the first and second study areas were 2873 × 3037 pixels and 4121 × 4784 

pixels, respectively. Figures 3a,c show the false-color images and the water vector data (blue) from 

the Geospatial Data Cloud. Figures 3b,d are the distribution maps of the lakes after water extraction, 

that is, corresponding ground-truth maps. In order to ensure the effectiveness of the extracted lake 

range, a masking process was performed using the water body vector (blue) before water extraction. 

Then the ground-truth maps were used as a mask file to extract the range of the study area on the 

Landsat images. Finally, we applied the masked images to generate the above mentioned datasets 

through MATLAB. 

(a) (b) 

Class V 85,689
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that the number of each label class is unevenly distributed. In the second study area, the Class VI 

lakes are mainly concentrated in densely populated cities on both sides of the Yangtze River. These 

lakes are small and their circulation is poor, so they are easily polluted. In the second study area, the 

numbers of samples for each level were relatively uniform (between 18% and 34%). In the experiment, 

the datasets were produced as the form [features, samples], where the features refer to the seven 

bands of the images, and the sample represents a single pixel. Because the number of image bands is 

small, we used all bands for model training without too much information redundancy. In addition, 

because RF, DT, and DNN, including CRF’s unary potential, are all based on pixels, the data sets 

produced are also based on pixels. The training set: test set = 1:9, where the training set was applied 

to learn the parameters of the model, and the test set was used to test the classification effect of the 

model. 

Table 4. Water quality levels and numbers of samples in the Wuhan and Huangshi datasets. 

Study Area 
Class Sample 

No. Color Water Quality Level Numbers 

Wuhan 

1 Class II 52,781 

2 Class III 142,509 

3 Class IV 370,184 

4 Class V 146,031 

5 Class VI 25,115 

Total 736,619 

Huangshi 

1 Class III 73,386 

2 Class IV 137,606 

3 Class V 85,689 

4 Class VI 105,462 

Total 402,143 

The image sizes for the first and second study areas were 2873 × 3037 pixels and 4121 × 4784 

pixels, respectively. Figures 3a,c show the false-color images and the water vector data (blue) from 

the Geospatial Data Cloud. Figures 3b,d are the distribution maps of the lakes after water extraction, 

that is, corresponding ground-truth maps. In order to ensure the effectiveness of the extracted lake 

range, a masking process was performed using the water body vector (blue) before water extraction. 

Then the ground-truth maps were used as a mask file to extract the range of the study area on the 

Landsat images. Finally, we applied the masked images to generate the above mentioned datasets 

through MATLAB. 

(a) (b) 

Class VI 105,462

Total 402,143

The image sizes for the first and second study areas were 2873 × 3037 pixels and 4121 × 4784
pixels, respectively. Figure 3a,c show the false-color images and the water vector data (blue) from
the Geospatial Data Cloud. Figure 3b,d are the distribution maps of the lakes after water extraction,
that is, corresponding ground-truth maps. In order to ensure the effectiveness of the extracted lake
range, a masking process was performed using the water body vector (blue) before water extraction.
Then the ground-truth maps were used as a mask file to extract the range of the study area on the
Landsat images. Finally, we applied the masked images to generate the above mentioned datasets
through MATLAB.
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features for the DT and RF. For the optimizer of the DNN (Table 5), we considered stochastic gradient 

descent (SGD), momentum, and the adaptive optimizer of root mean square prop (RMSProp), but 

their effects were slightly worse than that of the adaptive moment (Adam) optimizer. The models 

trained by the Adam optimizer were stable and highly accurate. The neural network structure was 

manually adjusted, and the four layers of hidden layers were determined. The number of neurons in 

each layer was 28. The predictive accuracy of the model trained by this structure was found to be the 

highest. The learning rate was set to 0.01. Slightly larger values caused the loss value to fluctuate 

significantly. The number of iterations was 2000. 

Table 5. The characteristic of the optimizers of DNN. 
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RMSProp Solve the problem of sharp drop in learning rate and reduce manual adjustment of learning rate 

Adam Calculate the adaptive learning rate of each parameter with good adaptability 

The adjustable parameters in the CRF model include the weight of the pairwise potential . 

Through the experiments, the effect of the parameter on the experimental results is very obvious, 

which was determined to be 0.8 in the two study areas. In addition, the scope of the pairwise potential 

is 8 adjacent pixels. Since a segmentation method similar to object-oriented processing is used, which 

was mentioned above section, the salt and pepper phenomenon has been alleviated a lot. In Figure 4, 

(c1–c5) is the probability estimation of the pixel-oriented RF obtained from the unary potential, and 

(d1–d5) are the output maps of the segmented result of the pairwise potential. It is observed that the 

classification accuracy for the water-quality levels of a single lake is greatly improved. 

Figure 3. The datasets of the two study areas. (a) False-color composite and water vector data for the
Wuhan study area. (b) ground-truth map in the Wuhan study area. (c) False-color composite and water
vector data for the Huangshi study area. (d) ground-truth map in the Huangshi study area.

3.2. Experiment 1: The Wuhan Dataset

The first experiment was conducted for the Wuhan study area and its surrounding water systems.
To evaluate CRF performance, we compared its classification performance with that of common
machine-learning models DT, DNN and RF. In total, 100 trees were set in the experiment for RF.
The minimum number of samples required to split an internal node was 10. Since only the seven bands
of the Landsat 8 OLI image were used, we did not need to set the maximum number of features for the
DT and RF. For the optimizer of the DNN (Table 5), we considered stochastic gradient descent (SGD),
momentum, and the adaptive optimizer of root mean square prop (RMSProp), but their effects were
slightly worse than that of the adaptive moment (Adam) optimizer. The models trained by the Adam
optimizer were stable and highly accurate. The neural network structure was manually adjusted,
and the four layers of hidden layers were determined. The number of neurons in each layer was
28. The predictive accuracy of the model trained by this structure was found to be the highest. The
learning rate was set to 0.01. Slightly larger values caused the loss value to fluctuate significantly. The
number of iterations was 2000.
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Table 5. The characteristic of the optimizers of DNN.

Optimizers Characteristic

SGD Parameter update speed is fast, but the vibration range is large
Momentum Restrain vibrate, but poor adaptability
RMSProp Solve the problem of sharp drop in learning rate and reduce manual adjustment of learning rate

Adam Calculate the adaptive learning rate of each parameter with good adaptability

The adjustable parameters in the CRF model include the weight of the pairwise potential λ.
Through the experiments, the effect of the parameter λ on the experimental results is very obvious,
which was determined to be 0.8 in the two study areas. In addition, the scope of the pairwise potential
is 8 adjacent pixels. Since a segmentation method similar to object-oriented processing is used, which
was mentioned above section, the salt and pepper phenomenon has been alleviated a lot. In Figure 4,
(c1–c5) is the probability estimation of the pixel-oriented RF obtained from the unary potential, and
(d1–d5) are the output maps of the segmented result of the pairwise potential. It is observed that the
classification accuracy for the water-quality levels of a single lake is greatly improved.
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Figure 4. The classification result of the water quality levels of the lakes for the Wuhan dataset: (a1–

a5) DT; (b1–b5) DNN; (c1–c5) RF; (d1–d5) RF-CRF; (1) Class II Niushan Lake; (2) Class III East Lake; 

(3) Class IV Wu Lake; (4) Class V Tangxun Lake; (5) Class VI South Lake and Yezhi Lake. 

Table 6 lists the classification accuracies (OAs) of the different classifiers for each water quality 

level. For the Class VI water, the classification result of the RF-CRF classifier is much better than other 

classifiers. And whether it is OA (89.5%) or kappa (0.841), the accuracy of this classifier is also the 

highest. A representative lake was selected for each type of label in Figure 4, including Niushan Lake 
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Figure 4. The classification result of the water quality levels of the lakes for the Wuhan dataset: (a1–a5)
DT; (b1–b5) DNN; (c1–c5) RF; (d1–d5) RF-CRF; (1) Class II Niushan Lake; (2) Class III East Lake; (3)
Class IV Wu Lake; (4) Class V Tangxun Lake; (5) Class VI South Lake and Yezhi Lake.
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Table 6 lists the classification accuracies (OAs) of the different classifiers for each water quality
level. For the Class VI water, the classification result of the RF-CRF classifier is much better than other
classifiers. And whether it is OA (89.5%) or kappa (0.841), the accuracy of this classifier is also the
highest. A representative lake was selected for each type of label in Figure 4, including Niushan Lake
(Class II), East Lake (Class III), Wu Lake (Class IV), Tangxun Lake (Class V), South Lake and Yezhi Lake
(Class VI). Since the DT, DNN, and RF models are classified on the pixels, a lot of salt-and-pepper noise
can be seen from the figure. Especially for South Lake, although the RF classification result is slightly
worse than the CRF, the misclassification scene still stands out. However, because the CRF model has
used spatial contextual information, and the label information of adjacent pixel can also affect the
classification results of the current pixel, it can be seen that the smoothing effect of the classification
maps of the lake is very obvious. This will be of great help to further judge the water quality level of
the lakes based on the number of class labels.

Table 6. Comparison of the different classification accuracy results (%) for the Wuhan dataset.

Level DT DNN RF RF-CRF

Class II 80.30 81.89 77.74 75.93
Class III 70.46 75.38 74.02 73.31
Class IV 85.33 88.27 93.22 95.21
Class V 77.36 78.50 83.55 94.70
Class VI 59.81 55.75 67.76 95.34

OA (%) 79.64 82.27 85.61 89.50
Kappa 0.693 0.731 0.778 0.841

The spatial distribution of the water quality level based on the RF-CRF in the first study area
is shown in Figure 5. According to the Table 6, the OA of the Class VI water is 95.34%. From the
red area in the Figure 3, the Class VI lakes are mainly distributed on both sides of the Yangtze River
and in the densely populated urban areas. The several Class VI lakes can be predicted accurately,
and the water quality in the whole range of lakes is clearly presented. However, the classification of
small lakes will still cause serious misjudgments. Due to the influence of adjacent pixels, there are
more misclassifications in the classification of lake edge regions. This has a very large impact on the
prediction results of the finely divided patches.

According to the classification result maps of the water quality levels, within the vector range of
each lake, the number and percentage of the pixels of each water quality level were counted. The class
with the largest proportion was then considered as the water quality level of the lake, as shown
in Table 7. As shown in the table, excluding individual lakes whose original water vectors do not
match the image, there are 64 lakes in the first study area for experiments. The bold figures are the
number of lakes correctly predicted. There is only one lake in the Class II lakes, which was correctly
predicted. There are 11 lakes with a water quality of Class III, which were predicted 81.8% correctly.
In total, 21 Class IV lakes were accurately identified. In addition, one lake was classified as Class V.
There are 20 lakes in Class V, except for two lakes that was not extracted, and the remaining 18 are
correctly identified. And Class VI lakes were fully predictive and accurate. In summary, within the
study area, the number of correctly predicted lakes in the lakes used for the experiment reached 61,
and the accuracy rate was 95.31%. Most of the lakes that were judged to be the wrong class were
relatively small.

Table 7. The statistics of the prediction results for the water quality levels in each lake for the
Wuhan dataset.

No. Water Quality Levels Lakes (Number) OA
Prediction

1 2 3 4 5

1 Class II 1 100% 1 0 0 0 0
2 Class III 11 81.8% 0 9 0 1 1
3 Class IV 22 95.5% 0 0 21 1 0
4 Class V 18 100% 0 0 0 18 0
5 Class VI 12 100% 0 0 0 0 12
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3.3. Experiment 2: The Huangshi Dataset

The second experiment was conducted for the city of Huangshi and the surrounding water
systems in the lower reaches of the Yangtze River. The classification accuracies for the four levels are
listed in Table 8. For RF, the number of trees (100) and the minimum number of samples required
to split an internal node (10) were adjusted using the same adjustment strategy as that used in the
first study area. The strategy of superparametric adjustment of the DNN model was the same as
for the first study area. The structure of the neural network was manually adjusted. The number of
hidden layers is 4, and the number of neurons in each layer is 28. The Adam optimizer was selected,
with a learning rate of 0.01, an iteration number of 2000, and 10% of the neurons were randomly
deleted. The RF-CRF achieved the best classification performance (90.35% of OA, 0.868 of Kappa),
higher than the DT-based, DNN-based and the RF-based methods. Its Kappa is 0.047 higher than that
of RF. The highest prediction accuracy for the samples of the four levels is 99.06%, and there is no
obvious class with a high misclassification ratio.

Table 8. Comparison of the different classification accuracy results (%) for the Huangshi dataset.

Levels DT DNN RF RF-CRF

Class III 78.30 78.66 82.38 79.13
Class IV 82.03 84.96 88.22 90.00
Class V 80.62 75.97 84.37 89.79
Class VI 83.50 87.90 90.19 99.06

OA (%) 81.44 82.66 86.85 90.35
Kappa 0.747 0.763 0.821 0.868
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Based on the trained four models, the water quality for the second study area was predicted.
A representative classification result is selected from the lakes of each water quality level for display
in Figure 6. From the perspective of the mapping effect, the CRF still performs best, followed by the
RF. The mapping results are consistent with the calculated accuracy of the classifier. Haikou Lake is
located in Huangshi City, which is directly connected to the Yangtze River. The field test results of the
water quality showed that the phosphorus exceeded the standard, and the performance was Class VI.
Figure 6(c4) is the RF classification result of Haikou Lake. Although the RF classification accuracy is
not much different from the RF-CRF, there is still a certain phenomenon of salt and pepper. It is known
during the manual interpretation that the class labels of all the pixels in the same lake are the same,
but the pixel-based classification method ignores this important information. And the RF-CRF used
the correlation information of adjacent pixels in the water images, so that all the pixels of Haikou Lake
were completely predicted accurately. In addition, the performance at Baoan Lake and Daye Lake was
also excellent.
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Baoan Lake; (4) Class VI Haikou Lake.

The spatial distribution of the water quality level based on the RF-CRF in the second study area is
shown in Figure 7. The Class VI lakes (red) are concentrated on both sides of the Yangtze River, and
most of them are located in Huangshi City. Combined with Table 8, the accuracy of its prediction is
close to 100%, which is much higher than DT (80.62%), DNN (75.97%), and RF (84.37%) models. Going
to the upper reaches of the Yangtze River in the Ezhou, the water quality has improved significantly,
and most of them are Class IV water. However, the situation at the edge of the lake can still be seriously
mispredicted. Especially small lakes, it is difficult to determine the water quality of the lake as a whole.
In future research, it will be necessary to adopt a satellite with a high resolution.
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According to the classification result maps of the water quality levels for the Huangshi dataset,
the class with the largest proportion is regarded as the water quality level of the lake, as shown in
Table 9. The number of Class III and Class VI lakes is 8 and 19 respectively, and the accuracy all reaches
100%. The classification accuracy of Class IV and Class V lakes is 63.6%. It is found through statistical
observation that most of the misclassified lakes are extremely small lakes, and the noise phenomenon
is obvious. Because the CRF model classifies based on contextual information, the finer patches will
reduce the classification effect. In addition, since the unary potential of CRF is pixel-based RF model,
the bottom reflection of the lake will directly affect the probability distribution of class labels, and then
affect the final classification results of the CRF model. Therefore, application of the RF-CRF to remotely
sense water-quality levels needs to be further strengthened, and it is necessary to improve the spatial
resolution of images in future experiments.

Table 9. The statistics of the prediction results for the water quality levels in each lake for the
Huangshi dataset.

No. Water Quality Levels Lakes (Number) OA
Prediction

1 2 3 4

1 Class III 8 100% 8 0 0 0
2 Class IV 11 63.6% 0 7 0 4
3 Class V 11 63.6% 0 0 7 4
4 Class VI 19 100% 0 0 0 19

4. Conclusions

In this paper, in view of the China’s water quality assessment system, we discussed the possibility
of using Landsat 8 imagery and machine learning methods to assess the water quality of inland lakes
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on a large scale. Due to the spatial continuity of the lake, the CRF classifier based on the probability
map is suitable for the current scene. The RF was applied as the unary potential of the CRF model.
To evaluate CRF performance, three other commonly used pixel-based classifiers were selected for
comparison. The classification accuracy of the RF-CRF model was found to be the highest, with the
Kappa in the two study areas being 0.841 and 0.868, respectively. We also investigated the prediction
effect of the RF-CRF model on the whole images.

The ultimate goal of this paper was to explore the possibility of using satellite imagery and
machine learning algorithms to rapidly evaluate lake water quality levels. By training a small number
of samples, we can predict the water quality of a large range of lakes and basically determine the water
quality level of each lake. This approach not only has great benefits with regard to time cost, but is also
represents a breakthrough in the application of remote sensing technology in water quality monitoring.
And this methodology could be used by authorities on the water quality monitoring program in China.
Through continuous exploration of the possibility of the CRF applied for water quality classification,
further improving the accuracy of classification, training a more stable model with strong mobility, the
monitoring team will be able to regularly assess the water quality of inland water using the satellite
imagery rapidly.

In the future, satellites with a high spatial resolution and short revisit period could be utilized in
water quality monitoring, and it will be possible to explore emergency response strategies via water
quality remote sensing. Although the CRF considered in this paper were based on the characteristics
of the spectral dimension and spatial dimension for classification. But some more valuable spatial
features (textures, edges, etc.) are not used. Therefore, in future experiments, extraction of spatial
features will be considered, and spatial-spectral fusion technology will be applied to further improve
classification accuracy.
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Śliwińska, S.; Wojtasiewicz, B.; Zajączkowski, M. Application of Landsat 8 imagery to regional-scale
assessment of lake water quality. Int. J. Appl. Earth Obs. Geoinf. 2016, 51, 28–36. [CrossRef]

12. Ritchie, J.C.; Zimba, P.V.; Everitt, J.H. Remote Sensing Techniques to Assess Water Quality. Photogramm. Eng.
Remote Sens. 2003, 69, 695–704. [CrossRef]

13. Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters
Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [CrossRef] [PubMed]

14. Wei, L.; Huang, C.; Zhong, Y.; Wang, Z.; Hu, X.; Lin, L. Inland Waters Suspended Solids Concentration
Retrieval Based on PSO-LSSVM for UAV-Borne Hyperspectral Remote Sensing Imagery. Remote Sens. 2019,
11, 1455. [CrossRef]

15. Hafeez, S.; Wong, M.S.; Ho, H.C.; Nazeer, M.; Nichol, J.; Abbas, S.; Tang, D.; Lee, K.H.; Pun, L. Comparison
of Machine Learning Algorithms for Retrieval of Water Quality Indicators in Case-II Waters: A Case Study
of Hong Kong. Remote Sens. 2019, 11, 617. [CrossRef]

16. Markogianni, V.; Kalivas, D.; Petropoulos, G.; Dimitriou, E. An Appraisal of the Potential of Landsat 8 in
Estimating Chlorophyll-a, Ammonium Concentrations and Other Water Quality Indicators. Remote Sens.
2018, 10, 1018. [CrossRef]

17. Clay, S.; Peña, A.; DeTracey, B.; Devred, E. Evaluation of Satellite-Based Algorithms to Retrieve Chlorophyll-a
Concentration in the Canadian Atlantic and Pacific Oceans. Remote Sens. 2019, 11, 2609. [CrossRef]

18. Molkov, A.A.; Fedorov, S.V.; Pelevin, V.V.; Korchemkina, E.N. Regional Models for High-Resolution Retrieval
of Chlorophyll a and TSM Concentrations in the Gorky Reservoir by Sentinel-2 Imagery. Remote Sens. 2019,
11, 1215. [CrossRef]

19. Lei, X.; Pan, J.; Devlin, A. Characteristics of Absorption Spectra of Chromophoric Dissolved Organic Matter
in the Pearl River Estuary in Spring. Remote Sens. 2019, 11, 1533. [CrossRef]

20. Pu, F.; Ding, C.; Chao, Z.; Yu, Y.; Xu, X. Water-Quality Classification of Inland Lakes Using Landsat8 Images
by Convolutional Neural Networks. Remote Sens. 2019, 11, 1674. [CrossRef]

21. Yan, C.-A.; Zhang, W.; Zhang, Z.; Liu, Y.; Deng, C.; Nie, N. Assessment of Water Quality and Identification
of Polluted Risky Regions Based on Field Observations & GIS in the Honghe River Watershed, China.
PLoS ONE 2015, 10, e0119130.

22. Liu, X.; Li, G.; Liu, Z.; Guo, W.; Gao, N. Water Pollution Characteristics and Assessment of Lower Reaches in
Haihe River Basin. Procedia Environ. Sci. 2010, 2, 199–206. [CrossRef]

23. Ko, B.; Kim, H.; Nam, J. Classification of Potential Water Bodies Using Landsat 8 OLI and a Combination of
Two Boosted Random Forest Classifiers. Sensors 2015, 15, 13763–13777. [CrossRef] [PubMed]

24. Schroff, F.; Criminisi, A.; Zisserman, A. Object Class Segmentation using Random Forests. In Proceedings
of the British Machine Vision Conference 2008, Leeds, UK, 1–4 September 2008; British Machine Vision
Association: Leeds, UK, 2008; pp. 1–10.

25. Ouyang, Z.-T.; Zhang, M.-Q.; Xie, X.; Shen, Q.; Guo, H.-Q.; Zhao, B. A comparison of pixel-based and
object-oriented approaches to VHR imagery for mapping saltmarsh plants. Ecol. Inform. 2011, 6, 136–146.
[CrossRef]

26. Zhao, W.; Du, S.; Wang, Q.; Emery, W.J. Contextually guided very-high-resolution imagery classification
with semantic segments. ISPRS J. Photogramm. Remote Sens. 2017, 132, 48–60. [CrossRef]

27. Guangyun Zhang; Xiuping Jia Simplified Conditional Random Fields With Class Boundary Constraint for
Spectral-Spatial Based Remote Sensing Image Classification. IEEE Geosci. Remote Sens. Lett. 2012, 9, 856–860.
[CrossRef]

http://dx.doi.org/10.1016/j.jenvman.2009.11.001
http://www.ncbi.nlm.nih.gov/pubmed/20056527
http://dx.doi.org/10.1016/j.ecoenv.2009.11.007
http://www.ncbi.nlm.nih.gov/pubmed/20047760
http://dx.doi.org/10.1080/2150704X.2014.960606
http://dx.doi.org/10.1016/j.rse.2016.01.007
http://dx.doi.org/10.1016/j.jag.2016.04.004
http://dx.doi.org/10.14358/PERS.69.6.695
http://dx.doi.org/10.3390/s16081298
http://www.ncbi.nlm.nih.gov/pubmed/27537896
http://dx.doi.org/10.3390/rs11121455
http://dx.doi.org/10.3390/rs11060617
http://dx.doi.org/10.3390/rs10071018
http://dx.doi.org/10.3390/rs11222609
http://dx.doi.org/10.3390/rs11101215
http://dx.doi.org/10.3390/rs11131533
http://dx.doi.org/10.3390/rs11141674
http://dx.doi.org/10.1016/j.proenv.2010.10.024
http://dx.doi.org/10.3390/s150613763
http://www.ncbi.nlm.nih.gov/pubmed/26110405
http://dx.doi.org/10.1016/j.ecoinf.2011.01.002
http://dx.doi.org/10.1016/j.isprsjprs.2017.08.011
http://dx.doi.org/10.1109/LGRS.2012.2186279


Sensors 2020, 20, 1345 18 of 18

28. Zhao, J.; Zhong, Y.; Shu, H.; Zhang, L. High-Resolution Image Classification Integrating
Spectral-Spatial-Location Cues by Conditional Random Fields. IEEE Trans. Image Process. 2016, 25,
4033–4045. [CrossRef]

29. Ping, Z.; Wang, R. Learning Conditional Random Fields for Classification of Hyperspectral Images. IEEE Trans.
Image Process. 2010, 19, 1890–1907. [CrossRef]

30. Swain, A. Handbook of Water Resources in India: Development, Management, and Strategies. Eur. Rev.
Agric. Econ. 2008, 35, 589–591. [CrossRef]

31. Pimentel, D.; Berger, B.; Filiberto, D.; Newton, M.; Wolfe, B.; Karabinakis, E.; Clark, S.; Poon, E.; Abbett, E.;
Nandagopal, S. Water Resources: Agricultural and Environmental Issues. Bioscience 2004, 54, 909–918.
[CrossRef]

32. Du, N.; Ottens, H.; Sliuzas, R. Spatial impact of urban expansion on surface water bodies—A case study of
Wuhan, China. Landsc. Urban. Plan. 2010, 94, 175–185. [CrossRef]

33. Wang, W.; Ndungu, A.W.; Li, Z.; Wang, J. Microplastics pollution in inland freshwaters of China: A case
study in urban surface waters of Wuhan, China. Sci. Total Environ. 2017, 575, 1369–1374. [CrossRef]

34. Chen, J.; Liu, Z.M. Analysis of Water Resources Utilization in the Changjiang River Basin in Recent Two
Decades. J. Yangtze River Sci. Res. Inst. 2018, 35, 1–4.

35. Fang, C.; Mao, Q.; Ni, P.F. Discussion on the scientific selection and development of China’s urban
agglomerations. Acta Geogr. Sin. 2015, 70, 515–527.

36. Alavipanah Automated Built-Up Extraction Index: A New Technique for Mapping Surface Built-Up Areas
Using LANDSAT 8 OLI Imagery. Remote Sens. 2019, 11, 1966. [CrossRef]

37. Zhang, L.; Shao, Z.; Liu, J.; Cheng, Q. Deep Learning Based Retrieval of Forest Aboveground Biomass from
Combined LiDAR and Landsat 8 Data. Remote Sens. 2019, 11, 1459. [CrossRef]

38. Lafferty, J.; McCallum, A.; Pereira, F.C.N. Conditional Random Fields: Probabilistic Models for Segmenting
and Labeling Sequence Data. Proc. ICML 2001, 3, 282–289.

39. Muñoz, D.F.; Cissell, J.R.; Moftakhari, H. Adjusting Emergent Herbaceous Wetland Elevation with
Object-Based Image Analysis, Random Forest and the 2016 NLCD. Remote Sens. 2019, 11, 2346. [CrossRef]

40. Shirvani, Z.; Abdi, O.; Buchroithner, M. A Synergetic Analysis of Sentinel-1 and -2 for Mapping Historical
Landslides Using Object-Oriented Random Forest in the Hyrcanian Forests. Remote Sens. 2019, 11, 2300.
[CrossRef]

41. Jiao, L.; Sun, W.; Yang, G.; Ren, G.; Liu, Y. A Hierarchical Classification Framework of Satellite
Multispectral/Hyperspectral Images for Mapping Coastal Wetlands. Remote Sens. 2019, 11, 2238. [CrossRef]

42. Xiong, Y.; Zhang, Q.; Chen, X. Large Scale Agricultural Plastic Mulch Detecting and Monitoring with
Multi-Source Remote Sensing Data: A Case Study in Xinjiang, China. Remote Sens. 2019, 11, 2088. [CrossRef]

43. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
44. Zhu, K.; Chen, Y.; Ghamisi, P.; Jia, X.; Benediktsson, J.A. Deep Convolutional Capsule Network for

Hyperspectral Image Spectral and Spectral-Spatial Classification. Remote Sens. 2019, 11, 223. [CrossRef]
45. Fu, G.; Liu, C.; Zhou, R.; Sun, T.; Zhang, Q. Classification for High Resolution Remote Sensing Imagery

Using a Fully Convolutional Network. Remote Sens. 2017, 9, 498. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIP.2016.2577886
http://dx.doi.org/10.1109/TIP.2010.2045034
http://dx.doi.org/10.1093/erae/jbn039
http://dx.doi.org/10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2
http://dx.doi.org/10.1016/j.landurbplan.2009.10.002
http://dx.doi.org/10.1016/j.scitotenv.2016.09.213
http://dx.doi.org/10.3390/rs11171966
http://dx.doi.org/10.3390/rs11121459
http://dx.doi.org/10.3390/rs11202346
http://dx.doi.org/10.3390/rs11192300
http://dx.doi.org/10.3390/rs11192238
http://dx.doi.org/10.3390/rs11182088
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.3390/rs11030223
http://dx.doi.org/10.3390/rs9050498
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Areas 
	Satellite Data and Vector Data 
	Surface Water Environment Quality Levels 
	Methods 
	The Improved Conditional Random Field (CRF) Model and Other Models 
	Evaluation Indicators 


	Experiments and Analysis 
	Data Description 
	Experiment 1: The Wuhan Dataset 
	Experiment 2: The Huangshi Dataset 

	Conclusions 
	References

