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Abstract

Population stratification is a well-known confounding factor in both common and rare variant

association analyses. Rare variants tend to be more geographically clustered than common

variants, because of their more recent origin. However, it is not yet clear if population stratifi-

cation at a very fine scale (neighboring administrative regions within a country) would lead

to statistical bias in rare variant analyses. As the inclusion of convenience controls from

external studies is indeed a common procedure, in order to increase the power to detect

genetic associations, this problem is important. We studied through simulation the impact of

a fine scale population structure on different rare variant association strategies, assessing

type I error and power. We showed that principal component analysis (PCA) based methods

of adjustment for population stratification adequately corrected type I error inflation at the

largest geographical scales, but not at finest scales. We also showed in our simulations that

adding controls obviously increased power, but at a considerably lower level when controls

were drawn from another population.

Introduction

Association studies have identified many common variants associated with a wide spectrum of

diseases. With the advances in sequencing technologies, it became possible to perform case-

control studies on rare variants, which may also play an important role in disease susceptibil-

ity. Due to their low frequency in the populations, the statistical analysis presents challenges as

these variants must be tested by groups (commonly defined as genes). Many statistical meth-

ods have been developed or adapted to test the association between a group of rare variants

and a disease status [1]. Each of these methods assumes a different statistical hypothesis and is

able to detect association signals depending on the underlying disease mechanisms which are

unknown. A first category of tests, called burden tests, consists in aggregating rare variant

counts across the gene to sum up the genetic information per individual [2–7]. Another main

category of tests, called variance-component tests (or joint tests) [7–10], assumes a heteroge-

neous group of variants with different effect sizes, and tests the variance of genetic effects.
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Population stratification, i.e. the observation of differences in allele frequencies between

populations, due to different ancestries, has been shown to be a confounding factor that could

lead to many false positive results in rare variant association studies [11–18]. Rare variants are

thought to be more recent than common variants. Therefore they are more likely to be geo-

graphically localized and contribute to a fine scale 2genetic structure. The impact of such a fine

genetic structure on association tests results is still poorly investigated. For instance, two stud-

ies [16,18] showed that, without population structure adjustment, the analysis of rare variants

in simulated European populations could lead to inflation of gene-based test results. However,

it has already been shown that a population structure could be identified at even lower geo-

graphical scales such as the Western French population, using common variants [19]. There-

fore, it is important to know if such geographical structure could lead to false positive results.

Indeed, in order to increase the ability to detect disease genes and reduce costs while sequenc-

ing more cases as a priority, the use of controls from reference databases is very common in

genetic epidemiology studies. However, these controls may be from a different population

ancestry than cases and thus create problems of confusion.

Many rare variant association methods exist and their performance varies depending on

the genetic scenario. These methods are also influenced differently by population stratification.

A higher inflation in variance-component tests (SKAT [9] and C-alpha [8]) than burden tests

has been reported by [18], when comparing simulated European populations. Another study

[15], also showed that the C-alpha test [8] presents a higher inflation than a burden test, with

population stratification. To go further, [18] showed that depending on the joint allelic distri-

bution in two populations, both burden tests or variance-component tests could show higher

inflation.

Standard correction approaches, such as adjusting a model for principal components (PCs)

representing the genetic structure among individuals, are able to reduce the inflation of rare

variant association results but may also fail in specific scenarios [12]. As rare variants may

present a different geographical pattern than common variants, the frequency of variants to

include in the estimation of the components has also been discussed [12,17]. From these stud-

ies, the computation of PCs from common variants is more? efficient, compared to PCs from

rare variants, to adjust for a world-wide population structure.

In this paper, we aim to answer two main questions on various rare variant association test

strategies: (1) the impact of additional controls with different levels of fine-scale population

structure, and (2) the efficiency of PCA correction methods. The impact on association results

was assessed in terms of type I error and power through simulations under different genetic

scenarios. In our simulations we considered two populations. Cases were drawn from one pop-

ulation and controls were drawn from both populations in varying proportions depending on

the simulation scenario. Different geographical levels were set by varying the migration rate

between the two populations. We explored these simulated genetic scenarios, to better relate it

to real stratification patterns. These analyses would help to better select external controls when

performing association analyses on rare variants; or at least warn against potential bias.

Materials and methods

Notations

Rare variant association methods test the association between the disease status of N individu-

als and their genotype information for a group of P rare variants. Let X be the matrix of geno-

types with Xij 2 {0,1,2} the count of minor alleles for the i-th individual and j-th variant. Let Y
be the vector of phenotypes with Yi = 1 if the i-th individual is a case, otherwise Yi = 0. In equa-

tion notations, 0 and 1 superscripts denote respectively unaffected and affected persons.

Fine population structure and rare variant analyses
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Rare variant association tests

We compared different association strategies, commonly used in rare variant association stud-

ies, such as burden tests and variance component tests. We also took into account the widely

used KBAC test [20] which considers multi-locus genotypes. Finally, we applied what we call

“position tests”, DoEstRare [21] and PODKAT [22], which are recent approaches taking into

account rare variant positions. The different association tests compared in this work are pre-

sented in the Table 1. For each category of tests, we either selected the most used or/and the

most recently developed.

Burden tests. A first category, called burden tests, consists in aggregating rare allele

counts across the gene. We used the following burden tests: cohort allelic sum test (CAST)

[2,23], sum test (Sum), weighted sum test (wSum) [3], and the adaptive sum test (aSum) [6].

These methods compute a genetic score per individual and test the association between this

score with the disease status. We used different burden tests, with subtle hypothesis differences

that may impact their statistical behavior with population stratification. In order to better com-

pare them, we formulated burden tests with a logistic regression model:

logitðPðYi ¼ 1ÞÞ ¼ a0 þ bSi

with Si a genetic score for the individual i which is a function of rare allele counts Xij,j 2 {1,. . .,

P}, and β the regression coefficient. The CAST test is said to be a collapsing strategy as the

genetic score indicates if an individual carries at least one rare mutation. This score is:

SCASTi ¼ I
XP

j¼1

Xij � 1

 !

with I(.) the indicator function. For tests other than CAST, the genetic score can be written as

a weighted sum of allele counts:

Si ¼
XP

j¼1

wjXij

with wj the weight for the variant j. In the Sum test, each rare variant presents the same weight

wj = 1,j 2 {1,. . .,P}. In the wSum test, weights wj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�cMAFj
0

� 1� cMAFj
0

� �r ; j 2 1; . . . ; Pf g are a

function of dMAFj
0

¼

PN0

i¼1
Xijþ1

2N0þ2
, the estimated MAF in controls. In the aSum test, wj = 1 if the j-

th variant is considered deleterious, and wj = −1 if the j-th variant is considered protective. A

single-marker is previously applied to know if a rare variant is classified as protective.

Table 1. Rare variant association tests under comparison.

Category Description of the strategy Methods

Burden tests Computation of a genetic score per individual. CAST [2], Sum test, wSum [3],

aSum [6]

KBAC test Comparison of multi-locus genotypes counts between

cases and controls

KBAC [20]

Variance-component

tests

Test of the variance of genetic effects. SKAT [9], SKAT-O [10]

Position tests Incorporation of rare variant positions in the test

statistic.

PODKAT [22], DoEstRare [21]

https://doi.org/10.1371/journal.pone.0207677.t001
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For all these burden tests, we test the null hypothesisH0:β = 0 with a score test [24,25]. The

score statistic U and its variance V are:

U ¼ S0ðY � bμÞ

V ¼
1

N � 1
ðY � bμÞ0 Y � bμð Þ � ðS � �SÞ0 S � �Sð Þ

bμ ¼ logit� 1ða0Þ:1N is the vector of estimates under the null hypothesis (expression may change

with covariates in the model) with 1N = (1,. . .,1)0, and �S ¼ 1

N

PN
i¼1
Si

� �
:1N the vector of average

scores. The test statistic is Q ¼ U2

V .

Variance-component association tests. Variance-component tests consider the variance

of genetic effects. These tests have been developed to better identify association signals in a

context of variants with different effect sizes and directions in the same gene.

We used sequence kernel association tests (SKAT) [9,10], which are based on the following

logistic regression model:

logitðPðYi ¼ 1ÞÞ ¼ a0 þ
XP

j¼1

bjXij

with βj,j 2 {1,. . .,P}, the regression coefficients for the genetic effects. This model is a linear

mixed-effects model with random genetic effects βj which follow an arbitrary distribution

of mean 0 and variance w2
j t. The null hypothesisH0:βj = 0,j 2 {1,. . .,P} is then equivalent toH0:

τ = 0. Each variant is weighted by wj to better discriminate causal from neutral variants.

We also used the optimal version of SKAT, called SKAT-O [10], varying the correlation

between genetic effects. SKAT assumes that there is no correlation between genetic effects,

while SKAT-O aims to identify the optimal correlation between genetic effects. The test statis-

tic for a given correlation parameter ρ test is:

Qr ¼ ðY � bμÞ
0XWRρWX0ðY � bμÞ

with bμ ¼ logit� 1ða0Þ:1N , the vector of estimates under the null hypothesis as previously defined

(expression may change with covariates in the model); W = diag(wj,j 2 {1,. . .,P}), the weight

matrix; and the correlation matrix between genetic effects Rρ = (1 − ρ)IP + ρ1P1P
0 with IP iden-

tity matrix of order p. For the SKAT test, ρ = 0. For the SKAT-O statistic, ρ varies between 0

and 1 with a bin of 0.1. The distribution of each test statistic under the null hypothesis is

approximated and is described by [26].

KBAC test. The kernel-based adaptive cluster (KBAC) test [20] aims to better discrimi-

nate causal multi-site genotypes from noise with the use of adaptive weights. Multi-site geno-

types are the vectors of individual genotypes Xi,i 2 {1,. . .,N}. Let assume L + 1 distinct multi-

genotype sites X0,X1,. . .,Xl,. . .,XL we observe in the dataset X. The KBAC statistic compares

the proportions of these multi-site genotypes in cases and controls, and is equal to

KBAC ¼
XL

l¼0

wl
n1
l

N1
�
n0
l

N0

� � !2

with wl the weight for l-th multi-site genotype; n1
l and n0

l the observed counts of the l-th multi-

site genotype in cases and controls. Weights are computed adaptively with the choice of a ker-

nel function; greater weights are attributed to genotypes that are enriched in cases. In this

paper, we use the hypergeometric kernel, which is the most often used as it is suitable for small

Fine population structure and rare variant analyses
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to moderate sample sizes. The weight wl for the l-th multi-site genotype is then defined as

wl ¼ P N
1

l � n
1

l

� �
¼
Xn
A
l

k¼0

Nl

k

 !
N � Nl
N1 � k

 !

N

N1

 !

Position tests. We also investigated the impact of population structure on two statistical

strategies which extend the rare variant tests to situations where the position of polymor-

phisms has an impact in the disease. These two tests are DoEstRare, developed in our team

and which tests variant density in cases and controls and PODKAT which extends SKAT

through integration of a position distance matrix.

The test PODKAT [22] is an extension of the test SKAT. The test statistic is similar to the

SKAT statistic:

QPODKAT ¼ ðY � bμÞ
0XWAA0W0X0ðY � bμÞ

with a position-dependent matrix A measuring proximities between variants. The proximity

measure between variants j and j0 is:

Aj;j0 ¼ max 1 �
1

w
dj;j0 ; 0

� �

with dj,j0, the physical distance between variants j and j0; and the parameter w is called maximal

radius of tolerance, by default its value is 1,000 bp.

The significance of the PODKAT statistic is based on the approximation of the distribution

under the null hypothesis with the Davies’ method [27]. The integration of position-dependent

matrix is a strategy that has also been used by [28,29].

The DoEstRare test [21] compares both position distributions on the gene and overall allele

frequencies between cases and controls. Let bf 1 and bf 0, be the kernel density estimators of posi-

tion distributions; bp1 and bp0, the weighted average allele frequencies in cases and controls. The

test statistic is:

STAT ¼
Z Lg

1

jbp1 � bf 1ðposÞ � bp0 � bf 0ðposÞjdpos

with Lg the length of the tested region in bp.

Concretely, this statistic corresponds to the area between the density function curves, each

multiplied by allele frequencies in cases and controls.

The position density functions are estimated with a Gaussian kernel [30]. The bp1 and bp0 fre-

quencies are

bp1 ¼
1

P

XP

j¼1

wj
PP

j¼1
wj

m1
j

2N1
bp0 ¼

1

P

XP

j¼1

wj
PP

j¼1
wj

m0
j

2N0

with wj the weight for the j-th variant. DoEstRare use a similar ponderation approach than the

KBAC test. It assumes that the count of rare mutations in casesM1
j follows, under the null

hypothesis, a binomial distribution Bð2N1; dMAFj 0Þ with dMAFj 0 the estimate of the minor allele

frequency in controls. The weight wj is the probability to present less than the observed count
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m1
j .

wj ¼ PðM
1

j � m
1

j Þ ¼
X
m1
j

k¼0

2N1

k

 !

ð dMAFj
0Þ
k
ð1 � dMAFj

0Þ
2N1 � k

Other statistical tests [31–33,28,29] take into account position information in the test statis-

tic but they were not taken into account in our comparison.

Weighting systems. Some of the statistical association tests we presented above use a

weighting system to better discriminate causal from neutral variants. wSum and SKAT tests

use of a function of the MAF estimate in the dataset. Because allele frequencies differ between

populations, the computation of the MAF in the dataset will depend on the geographical origin

of cases and controls. As we wanted to assess the impact of different weighting systems based

on MAF estimation in the context of population stratification, we considered three weighting

systems for both Sum and SKAT tests:

1. an unweighted version with wj = 1, j 2 {1,. . .,P} (labeled Sum, SKAT and SKATO);

2. weights following a beta distribution wj ¼ Betað dMAFj ; a1 ¼ 1; a2 ¼ 25Þ, as proposed by

[9], with dMAFj the MAF estimation in both cases and controls (labeled wSum_betaMAFtot,

wSKAT_betaMAFtot and wSKATO_beta_MATtot);

3. weights wj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�dMAFj �
�

1�dMAFj

�r , as proposed by [3], but with the MAF estimation in both

cases and controls (labeled wSum_MAFtot, wSKAT_MAFtot, wSKATO_MAFtot).

We also considered, for the Sum test, a fourth weighting system wj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N�cMAFj
0

�

�
1� cMAFj

0
�r ,

from [3], with dMAFj
0

the MAF estimation in controls (labeled wSum_MAFctrl). This weight-

ing system cannot be used in the SKAT R Package, as it would introduce a bias without a

proper permutation procedure.

Simulation workflow

We used the program cosi [34], based on a coalescent model, to simulate genetic data. The coa-

lescent model’s demographical parameters are derived from the bestfit model which was

found to best explain present worldwide genetic diversity [34]. We added two European sub-

populations A and B, which split from the original European population 80 generations ago

(Fig 1A). Each sub-population includes 10,000 haplotypes (5,000 individuals). The geographi-

cal proximity between these two populations is linked to the migration rate parameter. This

migration rate parameter varies between 0, 0.001, 0.01, 0.025, 0.05 and 0.1, to investigate the

impact of population structure at different geographical scales.

From the two sub-populations, we sampled 1,000 cases and 1,000 controls according differ-

ent genetic scenarios (Fig 1B). In all scenarios, cases are from the same population A, and con-

trols from populations A and B. The proportion of controls coming from the population B

varies between 25%, 50%, 75% and 100%. We also simulated a scenario without population

stratification with all cases and controls from population A.

These scenarios varying the population structure are simulated under theH0 (no genetic

association) andH1 (genetic association) hypotheses in order to assess respectively type I error

and power.

Fine population structure and rare variant analyses
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Under the null hypothesis, cases and controls are sampled from the two populations A and

B without regarding the genetic information.

Under the alternative hypothesis, the disease status is sampled with the probability P(Yi = 1|

Xi) determined by the following logistic regression model:

logitðPðYi ¼ 1jXiÞÞ ¼ a0 þ β0Xi

with β0 the vector of genetic regression coefficients. We considered in this model, that 50% of

rare variants are deleterious with an odd ratio OR = 1.5. The individual sampling process is

repeated until obtaining 1,000 cases and 1,000 controls with a given percentage of controls

from population B.

Rare variants are defined according to the MAF in the total population A (10,000 haplo-

types) as cases are sampled from this population A.

We performed 10,000 replicates to assess type I errors and 1,000 replicates to assess power.

Exploratory analysis of simulated data

We explored our simulated data to assess how close are the populations A and B, by (1) per-

forming PCA, and (2) computing the fixation index FST [35] that measures the population

differentiation due to genetic structure. We applied these methods to the genetic data

concatenating all common genetic variants from the 10,000 gene replicates. Genetic data

include pruned common variants with aMAF� 5% and r2 < 0.2 in the total population A, for

a sampling of 1,000 individuals in each population A and B.

We performed the PCA with the smartpca program from EIGENSOFT package version

6.1.4 [36,37]. We computed the fixation index FST between populations A and B using the R

function calc_wcFst_spop_pairs from the github repository https://github.com/ekfchan/

evachan.org-Rscripts, which implements the method of [35].

Rare variant association analysis and population stratification correction

Analyses of the association of rare variants are carried out using the statistical tests previously

described, on data simulated according to different scenarios mentioned above. Significance is

Fig 1. Simulation of a population stratification in case-control data. A. Simulated demographical model with the

cosi program. Modifications from the bestfit model designed by [34] are indicated in red. The migration parameter we

varied is in dark blue. B. Geographical origin of cases and controls. In a first scenario cases and controls are from the

same population A. In scenarios with a population stratification, the percentage of controls from population B we

varied is indicated in dark blue.

https://doi.org/10.1371/journal.pone.0207677.g001
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assessed with an adaptive permutation procedure [38] for all statistical tests except SKATs

and PODKAT, which rely on a approximated distribution of the test statistic under the null

hypothesis. The adaptive permutation procedure enables to save computational time in com-

parison with the standard permutation procedure. Parameters are the significance threshold

α = 0.01 and the precision value c = 0.2. Power and type I error have been assessed considering

α = 0.05.

Statistical tests are performed with and without correcting for population structure. The

most common correction method is the integration of covariates, such as PCs computed from

the genetic data, in a logistic regression model [37]. As it is described before in this paper,

most of statistical tests, with the exception of KBAC and DoEstRare, are presented under the

form of a logistic regression model and can be adjusted with this method.

M1 logitðPðYi ¼ 1jXi;ZiÞÞ ¼ a0 þ α0Zi þ β0Xi

with Zi the vector of covariates for the i-th individual. We label this method “PCA model

correction”.

Note: As it is mentioned by authors of KBAC, this test can be adjusted with covariates in a

logistic regression model but is not implemented in the R package.

Another correction method, proposed by [39], using a permutation procedure taking into

account covariates, can be applied to a larger range of association tests. First, the null model is

adjusted for covariates:

M0 logitðPðYi ¼ 1j;ZiÞÞ ¼ a0 þ α0Zi

Then, from this model, odds of disease conditional on covariates θi = exp(P(Yi = 1|,Zi)),i 2
{1,. . .,N} are computed. Finally, individuals are sampled according to a Fisher’s noncentral

hypergeometric distribution with disease odds θi as individual weights, to obtain permutated

data with similar population stratification. We label this method “PCA permutation correc-

tion”. For significance assessment, we adapted the adaptive permutation procedure we used

[38], to take into account PCs, according to the description of [39], on all statistical tests

including SKATs and PODKAT. Because the permutation procedure is running very slowly

for SKATs and PODKAT, we assessed only type I errors with this correction method for a

number of 5,000 replicates instead of 10,000.

These two correction methods rely on covariates, reflecting the geographical origin of indi-

viduals. We considered the two first components of the PCA performed with smartpca pro-

gram from EIGENSOFT package version 6.1.4 [36,37]. PCA was performed on pruned

common variants (MAF� 5% and r2 < 0.2 in the total population A), for each case-control

sampling according to the genetic scenario. We also performed type I error analyses with 5

PCs and 10 PCs on a subset of 5,000 replicates instead of 10,000 to assess the consequences of

the number of PCs setting.

Results and discussion

Simulation of a fine geographical scale population structure

We simulated genetic information for 10,000 artificial genes for two populations A and B vary-

ing the migration rate parameter between 0, 0.001, 0.01, 0.025, 0.05 and 0.1. Numbers of SNV

and allele frequency distributions for 1,000 individuals are almost the same in populations A

and B (Table A and Table B in S1 Table). Depending on the migration rate, the number of

SNV varies between 702,332 and 846,053 (Table A in S1 Table), and the percentage of rare

variants with a MAF< = 1% varies between 53.5% and 61.7% (Table B in S1 Table) in popula-

tion A. In order to assess the geographical differentiation level of populations A and B for each

Fine population structure and rare variant analyses
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migration rate, we computed pairwise FST values and performed PCA on pruned common

variants. In the Fig 2 (see Table C in S1 Table for FST values), we related these values to esti-

mates from [40] and from [41], which are respectively genetic studies on European popula-

tions and the French population. In [40], neighbor European countries present FST values

close to 0.001 (France/Spain: 0.001; Czech Republic/Poland: 0.001; Estonia/Latvia: 0.001). Far

European countries show higher FST values (France/Latvia: 0.008, Latvia/Spain: 0.01). Our

simulations with a migration rate of 0.01 conduct to a FST value close to 0.001 (FST(0.01) =

0.001226), which would correspond to a situation with neighbor countries. Simulations with

migration rates of 0 and 0.001 correspond to situations with more distant countries. Scenarios

that correspond to fine-scale population structure, are scenarios with a migration rate higher

than 0.01. In [41], results are from the French Exome project (FREX)., in which controls are

recruited from 6 French centers (Bordeaux, Brest, Dijon, Lille, Nantes, and Rouen cities) and

had their exome sequenced. The scenario with a migration rate of 0.001 shows a FST value also

close to the estimates for distant French regions. Scenarios with a migration rate of 0.025, 0.05

or 0.1 would correspond to situations with geographically close French regions, which means

a very fine-scale population structure. Of course, this “inference” is based on only the FST indi-

cator, and other parameters should be taken into account such as allele frequency

distributions.

We also perform a PCA analysis on simulated data, to see whether it is possible to distin-

guish the populations A and B from individual genetic profiles. The representations of the two

first components (S1 Fig) show that populations are clearly distinct with a migration

rate�0.01. The overlaps of genetic profiles between populations A and B are respectively very

small, moderate, and nearly total for scenarios with a migration rate equal to 0.025, 0.05 and

0.1. In the PCA analysis of FREX data from Génin et al. (2016), not presented here, French

sub-populations showed moderate to high overlaps. However, we cannot compare their PCA

Fig 2. Comparison of FST values between simulations and real population genetic studies. FST values obtained from simulations are plotted in function of the

migration rate parameter. Pairwise FST values from two real population genetic studies, [40] and [41], are added respectively in red and blue.

https://doi.org/10.1371/journal.pone.0207677.g002
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results with ours as sampling sizes are very different: around 100 individuals per French sub-

population while 1,000 individuals per simulated population.

Inflation of type I errors and efficiency of correction methods

Cases and controls, for the rare variant association analysis, are sampled from the two simu-

lated populations A and B. We conducted simulations underH0 to assess type I errors. For

2,000 individuals from the population A, the average number of analyzed SNV, across the

10,000 replicates, varies between 30.8 (se: 7.3) and 32.5 (se: 7.5) depending on the migration

rate (respectively 0.01 and 0.1). Without population stratification (case and all controls coming

from population A), type I errors at significance level α = 5% are correct with the exception of

CAST which seems conservative (S2 Table and S2 Fig).

We then analyzed simulated datasets with mixed ancestry in controls, first without any cor-

rection method, in order to estimate the increase of type I errors due to population stratifica-

tion. Type I errors show inflation even in the presence of a very fine scale population structure,

i.e. with a migration rate of 0.05 or 0.1 (Fig 3). However, this inflation remains negligible when

25% or less of controls are ascertained from population B, which means that cases and controls

are still quite homogenous in terms of geographical origin.

We note obvious type I error differences between rare variant association tests. CAST and

Sum burden tests are the least sensitive to population stratification in almost all scenarios,

while the wSum_MAFctrl and aSum burden tests, which are just variations of the previous

test, present high values of inflation. Variance-component tests and KBAC present high type I

errors compared to other tests. Finally, tests integrating variant positions present intermediate

values. These results are consistent with observations made by [18] and [15] where variance-

component tests also presented higher inflation than some burden tests. From all these obser-

vations, it is understandable that variance-component tests and the aSum test present higher

type I error values as they are adapted to test a group of rare variants with opposed effects (pro-

tective/risk variants). Indeed, both populations A and B include population-specific rare vari-

ants, in the sense that some rare variants are more frequent in one population. This creates a

situation where rare variants seem to display opposed effects, when cases and controls are sam-

pled from two populations. However, it has been discussed by [18] the possibility of burden

tests being more sensitive than variance-component tests if global count of rare variants differ

between populations, and may be influenced by demographical conditions such as population

growth. We did not consider different growth rates in population A and B, also explaining

why variance-component tests are more sensitive.

Weighting allele contribution according to MAF is common practice in rare variants tests,

based on the assumption that the probability of functional, usually harmful, effect is increased for

very rare alleles. The weighted derived version of Sum test, wSum_MAFctrl, which uses MAF the

estimation in controls, presents a very high inflation of type I errors. When MAF is estimated in

both controls and cases, wSum_MAFtot and wSum_betaMAFtot also present a higher inflation,

but a lot lower in comparison with wSum_MAFctrl. The test wSum_MAFtot seems to present a

slight increase of type I error compared to wSum_betaMAFtot. These two tests differ in the MAF

weighting function, which is standard deviation or beta distribution. By using a beta distribution

of parameters 1 and 25, in wSum_betaMAFtot, weights decrease less rapidly with the MAF

increase and may thus buffer the effect of wrong MAF weighting. This difference induced by

using beta weights is less clear for variance-component tests, wSKAT_MAFtot and wSKATO_be-

taMAFtot, as it is only visible with high proportions of controls from population B and low migra-

tion rates, i.e. with the highest population stratifications (see S2 Table). We conclude that the use

of a weighting system based on the computation of MAFs, from the dataset, may provide high
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numbers of false positives when allele frequencies differ between cases and controls due to stratifi-

cation. We can also extend this interpretation to the KBAC and the DoEstRare tests, as weighting

systems depend on observed allele counts in controls.

In practice, a correction method can and should be applied to avoid statistical biases from

the population stratification. We applied two correction methods, the “PCA model correction”

and the “PCA permutation correction”, integrating the information from the two first PCs on

common variants from the 10,000 replicates, to reduce the inflation of type I errors. In the sce-

narios with 100% of controls from population B, these two correction methods were not

Fig 3. Type I errors at level α = 5% with a population stratification. Bars represent type I errors without correction for population

stratification. The red line corresponds to α = 5% and blue lines correspond to 95% confidence interval. Confidence interval is computed

assuming that the number of false positives follows a binomial distribution with parameters 10,000 and 0.05. Correction methods are

performed with the first two PCs.

https://doi.org/10.1371/journal.pone.0207677.g003
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applied as PCs may totally explain the phenotype, not allowing testing for genetic effects.

These correction methods perform well in scenarios with the most differentiated populations

(migration rate of 0.01); but they do not totally reduce the inflation caused by a very fine scale

population structure (migration rate of 0.05 or 0.1). The “PCA permutation correction” is

advantageous with association tests which are not based on a logistic regression model, but

seems to be less efficient in the scenario with a migration rate of 0.05. It suggests that the “PCA

permutation correction method” gradually lose more in efficiency than the “PCA model cor-

rection method” with finer population stratification.

We integrated the information from the two first PCs, as it was sufficient to correct with the

largest population structures. As in practice the choice of the number of PCs to integrate in the

models may be arbitrary and adapted depending on the scenario, we here performed analyses

by integrating 2, 5 or 10 PCs (S2 Table and S3 Fig). By increasing the number of PCs in the

models, the type I error inflation does not decrease in the context of very fine scale population

structures (migration rate of 0.05 or 0.1), hence our choice to keep only two PCs. We even

note an increase of type I errors in some scenarios for burden tests, whose significance is

assessed by an adaptive permutation procedure. It is maybe due to an over-adjustment of the

logistic regression model with a high number of PCs [42].

Our analyses were conducted considering a small sample size of 1,000 cases and 1,000 con-

trols. By increasing the sample size, type I errors may increase greatly (see S4 Fig). A fine popu-

lation structure in the data would have even more impact in large sample sequencing studies.

Type I errors might also differ considering other demographical models resulting in very

different site frequency spectrum [43–45]. In our simulations, we used a derived model from

[34], in which the population expansion events are instantaneous. However, this model is very

simplistic and does not reflect demographical growth observations.

In this study, type I errors have been assessed considering α = 0.05. We realize that the

actual significance threshold being used in genetic studies is much lower after correcting mul-

tiple testing (α = 2.5e-6 when considering 20,000 genes in an exome-sequencing study). Test

statistics may behave differently at very low significance levels but because a large subset of our

tests is using time-consuming permutations, whose number could not be increased within the

scope of the present study.

Balance between type I error and power under population stratification

The purpose of using external controls, i.e. from population B in our scenarios, is to increase the

power to detect deleterious genes in association studies when it is impossible to sequence larger

sample size of controls. We observed previously that stratification correction methods enable to

reduce statistical biases with the largest population structures but fail with the finest ones. For this

reason, we aim to assess the impact of the “PCA model correction” on the power of rare variant

association tests. We simulated a simple scenario underH1, with half of rare variants being delete-

rious with an OR of 1.5. In the Fig 4, with the most structured simulated populations, i.e. with

high percentages of controls from population B and low migration rates, we can observe an obvi-

ous loss of power for every statistical test, compared to the analysis without population stratifica-

tion (see S3 Table for power values). In these scenarios, deleterious variants are likely to be under

population structure, i.e. presenting different allele frequencies in populations A and B. The

adjustment for PCs also removes, from rare variant association tests, a portion of the disease

genetic component. For the finest population structures, we note a small increase of power with

the use of controls from population B, due to statistical biases not fully (or at all) corrected.

We also estimated powers after removing from the analysis controls from the population B.

For example, in the scenario with 75% controls from population B, only 25% controls are
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remaining in the analysis. Obviously, the power is decreased in these analyses as the number of

controls is much less. More interestingly, with large scale population structures, we observe

that the power is not much higher when adding controls from population B. As we discussed

previously, the PCs capture the disease genetic component which is confounded with the

genetic population structure. The power is, as expected, greatly increased when adding con-

trols from a very close population. However, this advantage is balanced by the increase of type

I error which is not fully corrected by adjusting the model.

Fig 4. Powers at α = 5% after PCA model correction. PCA model correction was performed on all scenarios except when 100% of

controls are from population B (geographical covariates may totally predict the phenotype).

https://doi.org/10.1371/journal.pone.0207677.g004
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Conclusions

Our simulation study showed that, as expected, we observed a very high inflation of type I errors

in the presence of strong stratification. This inflation could, in principle, be controlled by through

standard correction methods. In this work, our objective was to assess the impact at a finer geo-

graphical scale, as rare variants tend to be more localized than common variants. In this context,

the inflation was still present but notably smaller. Intriguingly, the standard methods were less

efficient at correcting this bias, as they did not effectively capture geographical origin from genetic

data. This work underlies the importance of selecting controls with similar genetic background

even at very fine geographical scales in sequencing studies. Exploratory analyses of the population

structure should not be neglected and adjusting for potential bias must be done carefully.
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S1 Fig. PCA plots in function of the migration rate. PCA was performed on the pruned data-

set (MAF�5% and r2�0.2 in the total population A) with 1,000 individuals from each popula-

tion A and B.
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S2 Fig. Type I errors at α = 5% without population stratification. The red line corresponds

to α = 5% and blue lines correspond to 95% confidence interval. Confidence interval is com-

puted assuming that the number of false positives follows a binomial distribution with parame-

ters 10,000 and 0.05.

(PNG)

S3 Fig. Type I errors at α = 5% varying the number of PC to integrate in the PCA model

correction method. The red line corresponds to α = 5% and blue lines correspond to 95% con-

fidence interval. Confidence interval is computed assuming that the number of false positives

follows a binomial distribution with parameters 10,000 and 0.05.

(PNG)

S4 Fig. Type I errors at α = 5% varying the number of cases and controls. The red line corre-
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