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Abstract: Predicting tooth loss is a persistent clinical challenge in the 21st century. While an emerging
field in dentistry, computational solutions that employ machine learning are promising for enhancing
clinical outcomes, including the chairside prognostication of tooth loss. We aimed to evaluate the
risk of bias in prognostic prediction models of tooth loss that use machine learning. To do this,
literature was searched in two electronic databases (MEDLINE via PubMed; Google Scholar) for
studies that reported the accuracy or area under the curve (AUC) of prediction models. AUC
measures the entire two-dimensional area underneath the entire receiver operating characteristic
(ROC) curves. AUC provides an aggregate measure of performance across all possible classification
thresholds. Although both development and validation were included in this review, studies that did
not assess the accuracy or validation of boosting models (AdaBoosting, Gradient-boosting decision
tree, XGBoost, LightGBM, CatBoost) were excluded. Five studies met criteria for inclusion and
revealed high accuracy; however, models displayed a high risk of bias. Importantly, patient-level
assessments combined with socioeconomic predictors performed better than clinical predictors alone.
While there are current limitations, machine-learning-assisted models for tooth loss may enhance
prognostication accuracy in combination with clinical and patient metadata in the future.

Keywords: machine learning; boosting; deep learning; tooth loss; periodontitis; prognosis

1. Introduction

Predicting whether compromised teeth can be retained over the long term is a crucial
component of treatment planning for oral health care. Tooth loss can generally be prevented
if disease is diagnosed and treated at an early stage for both caries and periodontal disease.
However, while current periodontal disease prognostic systems are reported to have some
success and reproducibility in predicting tooth loss and tooth retention, low sensitivity
defines these models [1]. Thus, it is essential to develop better prognostication tools based
on tooth mortality, particularly in the field of periodontology.

Historically, prognosis has included assessment at the operator level. For example, in
1978 Hirschfeld and Wasserman published a record of periodontal maintenance in 600 patients
with 15,666 teeth for an average of 22 years [2]. They classified a tooth as “Questionable” if it
was found to have furcation defects, non-healing periodontal pockets, extensive alveolar bone
resorption, and significant mobility associated with deep periodontal pockets. The authors
reported that the loss rate of teeth classified as “Questionable” was 31.3%. This study was
likely the first to report the prognosis of periodontally compromised teeth.
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In 1991, McGuire proposed a system for determining the prognosis of teeth using
prognostic factors commonly used in periodontal treatment [3]. The authors classified
teeth into five categories: Good, Fair, Poor, Questionable, and Hopeless. This system was
applied to the data of 2484 teeth from 100 patients who had been under maintenance. The
results showed that the teeth that were judged to have a “Good” prognosis at the initial
visit were still judged to be “Good” at 5 and 8 years, with a probability of more than 80%,
but other judgments showed a low accuracy rate. Ultimately, the authors proposed that “if
the initial prognostic value is not Good, it would be easier and more accurate to determine
the prognostic value by coin toss”.

Although many prognostication systems have been proposed since these publica-
tions [4–6], selecting teeth to be extracted and making prognoses remain challenging in
the 21st century, and these systems are not commonly used in daily practice. This remains
an unmet need for both patients and oral health care workers, especially as we enter the
era of precision oral medicine [7]. In personalized and precision medicine, patients are
stratified based on their disease subtype, risk, prognosis, or treatment response [8]. For
implementation of these strategies in the dental clinic, there is an urgent need to enhance
prognostication models for many oral diseases and conditions—including tooth loss.

Computational methods such as artificial intelligence and machine learning are emerg-
ing in oral health care to solve these diagnostic and prognostic challenges [9]. Machine
learning, which is a subset of artificial intelligence, refers to computationally intensive
methods that use data-driven approaches to develop models that require fewer modeling
decisions by the modeler than traditional modeling techniques [10]. Currently, machine
learning is widely accepted due to its ability to develop prediction models, including offer-
ing more flexible modeling and its ability to analyze ‘big’, non-linear, and high dimensional
data as well as to model complex clinical scenarios [11]. These approaches can be efficiently
tested in healthcare applications, such as disease diagnosis, medical image analysis, big
data collection, research and clinical trials, management of smart health records, and predic-
tion of disease outbreaks [12]. The proposal of new prognostication systems using machine
learning is expected to increase in the near future; therefore, it is necessary to critically
evaluate these emerging methods.

Using a prediction model considered to have a high risk of bias may lead to unneces-
sary or insufficient interventions. Rigorous risk of bias evaluation is therefore essential to
ensure the reliable application of prognostication models. Here, we aimed to evaluate the
risk of bias in prognostic prediction models of tooth loss that use machine learning.

2. Materials and Methods
2.1. Focused Question

This study was conducted using the Preferred Reporting Items for Systematic Review
and Meta-analysis (PRISMA) guidelines. Our focused question was constructed according
to the Participants Intervention Comparison Outcome and Study (PICOS) strategy.

Population: Adult patients.
Intervention/Comparison: Machine learning models applied in prognostic prediction

models for tooth loss. Teeth level or patient level.
Outcome: Analysis of machine learning performance and validation assessed by

accuracy or area under the curve (AUC),
Study design type: Prediction model studies based on a cross-sectional, case-control,

or prospective design.

2.2. Search Strategy

The published literature was searched in two electronic databases (MEDLINE via
PubMed and Google Scholar). Boosting algorithms represent one of the most promising
methodological approaches to data analysis. Currently, gradient boosting algorithms are
primarily used as powerful ensemble machine learning algorithms in healthcare fields,
such as the extreme gradient boosting decision tree (XGB), light gradient boosting machine
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(LightGBM), and categorical boosting (CatBoost). XGBoost was introduced in 2016, Light-
GBM in 2017, and CatBoost in 2019 [13]. Therefore, it is important to search for relevant
recent publications, and the present study was restricted to studies published after 2012.
The keywords used in the MEDLINE search were as follows: (“Humans”[Mesh]) AND
(((“Algorithms”[MeSH Terms] OR “decision support systems, clinical”[MeSH Terms] OR
“models, dental”[MeSH Terms] OR “models, theoretical”[MeSH Terms]) AND (“Tooth
Loss”[MeSH Terms] OR “Tooth Extraction”[MeSH Terms]))). The keywords used in the
Google Scholar search were as follows: (boosting OR boosted OR GBT OR GBM OR “ran-
dom forest”) AND (“Tooth Loss” OR “Tooth Extraction”). The search process planning and
all electronic searches were conducted by one examiner (A.H.), with the cooperation of the
healthcare librarian. In addition, the reference lists of each included study were checked
manually by two examiners (T.W. and S.W.) for possible additions.

2.3. Inclusion and Exclusion Selection Criteria

Only the prediction model studies based on a cross-sectional, case-control, prospective
design (including case series) or retrospective design were included. Studies that developed
prediction models using primary or secondary data (registry and electronic health records)
were also included. Reviews, letters to the editor, and clinical guidelines were excluded
from the review. The participants were adults aged 18 years or older. The predictors
included any dental, medical, or social measures, regardless of how they were determined.
Although both development and validation were included, studies that did not assess
the accuracy or validation of boosting models (AdaBoosting, gradient-boosting decision
tree, XGBoost, LightGBM, CatBoost) were excluded. The outcome was tooth loss or
prognosis of teeth at the teeth or patient levels. Studies that reported the accuracy or AUC
of the prediction model were included. AUC measures the entire two-dimensional area
underneath the entire receiver operating characteristic (ROC) curve. ROC curves is a graph
showing the performance of a classification model at all classification thresholds. AUC
provides an aggregate measure of performance across all possible classification thresholds.
The higher the AUC, the better the model is at distinguishing between patients with
the disease and no disease. The titles and abstracts of all potential publications were
independently screened by two reviewers (T.W. and S.W.) against the inclusion criteria,
and the article’s eligibility was confirmed after discussion. In cases of disagreement, an
independent reviewer (A.H.) was consulted.

2.4. Data Extraction and Risk of Bias Assessment

For studies that fulfilled the inclusion criteria, two authors (T.W. and S.W.) indepen-
dently extracted bibliographic details regarding the patients, predictors, outcomes, and
analysis. Furthermore, the AUC and accuracy of the primary assessment in each study were
also extracted. Because of the heterogeneity of model development and validation studies,
a meta-analysis of their diagnostic performance was not appropriate. Rather, a narrative
synthesis of evidence was preferred. The included studies were critically appraised using
the Prediction model Risk Of Bias ASsessment Tool (PROBAST) [14]. PROBAST assessment
was applied to the most developed model in each study. Two investigators (A.H. and T.W.)
independently assessed the risk of bias in the included studies. PROBAST examines the
extent to which a model’s risk predictions are likely to be accurate when applied to new
individuals and depends on four domains: participants, predictors, outcomes, and analysis.
Each domain included signaling questions (two for participants, three for predictors, six for
outcome, and nine for analysis) to aid in judging the risk of bias. The results are reported
in tables and figures presenting the key methodological features and main findings of all
the included studies and the risk of bias assessment.
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3. Results
3.1. Search Results

The article selection process is presented in Figure 1. The initial electronic search
retrieved 1579 articles. Independent scrutiny of titles and abstracts identified seven po-
tentially relevant studies for full-text review. After full-text evaluation, two articles did
not meet our inclusion criteria and were excluded [15,16]. Both the excluded studies
made predictions without boosting the algorithm. Finally, five studies formed the basis of
this study [17–21].
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3.2. General Study Characteristics and Results

A summary of the general information of each study is presented in Table 1. Four of
the five included studies were development/validation studies [17–20]. Another study
was a development study [21]. The included studies were published between 2019 and
2022. The number of patients included in each study ranged from 94 to 11,977. Of the
four validation studies, two studies used “Hold-out validation” [17,18], and one study
used “10-fold cross validation” [19]. All studies employed oral variables as predictors.
Furthermore, two studies used socioeconomic variables [19,20]. Three out of the five studies
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included predictions made at the tooth level [17,18,21], and the two other studies with
socioeconomic variables made predictions at the patient level [19,20]. All five included
studies employed XGB as the model algorithm, and four employed random forest optimiza-
tion (RFO) [17,19–21]. Three studies employed decision tree classification (DTC), including
recursive partitioning [17], classification and regression trees [18], and decision tree clas-
sifiers [21]. Two studies employed LightGBM [18,20]. All the included studies assessed
model accuracy, and four out of five studies also reported AUC [17–20]. Furthermore, three
studies reported F1 [18–20], and one study reported the no-information rate [17].

The results of the assessment and validation of each model are presented in Table 2.
Each modeling showed high AUC and accuracy, with values larger than 0.8. In three out of
four validation studies, XGB outperformed the other models [18–20]. However, another
study with 11,651 teeth showed no superiority in complex models (RFO, XGB) over simpler
models, such as logistic recession (logR) and DTC [17]. A development study with only 94
patients showed the lowest accuracy values (model A: 0.689 for XGB, 0.8312 for RFO, and
0.8413 for DTC) [21].



J. Pers. Med. 2022, 12, 1682 6 of 11

Table 1. Characteristics of included studies.

Patients Predictors Outcomes Analysis

Authors (Year) Country Data Source
Training Data Set
for Development

(Training Set)

Test Data Set for
Validation
(Test Set)

Predictors/Variables Level Outcomes Algorithms Performance Metrics

Development and Validation studies

Krois et al. (2019)
[17] Germany

Two cohorts of
periodontal patients
in two universities
(Kiel & Greifswald)
in Germany, 627
patients, 11,651 teeth

From data source,
six specific cohorts
were used for
training in
“Hold-out
validation”.

From data source,
six specific cohorts
were assessed for
validation in
“Hold-out
validation”.

4 patient-level outcomes,
6 tooth-level tooth tooth loss during SPT RFO, XGB,

DTC, logR

AUC, sensitivity,
specificity, the
no-information rate

Cui et al. (2021)
[18] China

Cohorts of
prosthodontic
patients in Chinese
University (Peking),
3559 patients,
26,005 teeth

From data source,
randomly selected
from data source
(18182 teeth) in
“Hold-out
validation”.

From data source,
randomly selected
from data source
(7823 teeth) in
“Hold-out
validation”.

34 oral outcomes tooth tooth
extraction/retention

DTC, AdaBoost,
GBDT,
LightGBM, XGB

AUC, sensitivity,
specificity, accuracy,
precision, F1

Cooray et al.
(2021) [19] Japan

Japanese community
cohort, 19,407
patients aged 65
and older

From data
source,10-fold
cross validation
was used for
model
development.

From data source,
10-fold cross
validation was
used for model
validation.

14 oral and socioeconomic
variables patients Tooth loss, Tooth loss

number category RFO, XGB AUC, accuracy,
precision, F1

Elani et al. (2021)
[20] USA

National Health and
Nutrition
Examination Survey
(NHANES) from
2011 to 2014

NHANES 2011
to 2012
(n = 5,864)

NHANES 2013 to
2014 (n = 6,113)

(1) 28 items; socioeconomic
characteristics, routine
dental care, and chronic
medical conditions, (2) the
number of decayed teeth,
periodontal disease, age,
gender, race.

patients
edentulism, having
fewer than 21 teeth,
missing any tooth

logR, RFO,
LightGBM, XGB,
artificial neural
networks.

AUC, accuracy,
sensitivity, specificity,
F1, positive predictive
value, negative
predictive value, the
harmonic mean for
sensitivity and
specificity for each
predictive model.

Development studies

Lee et al. (2022)
[21] USA

Electric data at
Harvard Medical
School pf 94 patients
with 2539 teeth

All of the data
source NA

17 parameters including
medical and dental
conditions

tooth

tooth prognosis
ranking 1 to 5 decided
by 16 dentists
(ModelA), and 13
prosthodontists
(ModelB)

XGB, RFO, DTC accuracy

RFO: random forest; XGB: extreme gradient boosting; DTC: decision tree classification; logR: logistic recession; LightGBM: light gradient boosting machine; AdaBOOST: adaptive
boosting; AUC: area under the curve; F1: F1 score.
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Table 2. Main results and conclusions of included studies.

Results
Conclusion

Authors (Year) Country AUC Accuracesy Summary

Development and Validation studies

Krois et al. (2019) [17] Germany In Scenario1, RFO:0.84, XGB:0.84,
DTC:0.76, logR:0.8

In Scenario1, RFO:0.92, XGB:0.91,
DTC:0.91, logR:0.92

More complex models (RFO, XGB)
had no consistent advantages over
simpler ones (logR, DTC).

None of the developed models would
be useful in a clinical setting, despite
high accuracy. During modeling,
rigorous development and external
validation should be applied and
reported accordingly.

Cui et al. (2021) [18] China
In triple classification, DTC:0.931,
AdaBoost:0.924, GBDT:0.966,
LightGBM:0.975, XGBoost:0.969

In triple classification, DTC:0.915,
AdaBoost:0.895, GBDT:0.916,
LightGBM:0.921, XGBoost:0.924

The XGBoost outperformed the other
4 algorithms.

A clinical decision supportmodel for
tooth extraction therapy achieved
high performance in terms of
decision-making derived from
electronic dental records.

Cooray et al. (2021) [19] Japan
In random oversampling analysis
(with/without tooth loss = 1),
RFO:0.827, XGB:0.905

In random oversampling analysis
(with/without tooth loss = 1),
RFO:0.827, XGB:0.906

XGB outperformed RF model, and
predicted the tooth loss with a
satisfactory level of accuracy.

In addition to oral health related and
demographic factors, socioeconomic
factors are important in predicting
tooth loss.

Elani et al. (2021) [20] USA

For edentulism; logR:0.865,
RFO:0.885, LightGBM:0.884,
XGB:0.887, artificial neural
networks:0.877. For having fewer
than 21 teeth, logR:0.872, RFO:0.876,
LightGBM:0.877, XGB:0.883, artificial
neural networks:0.881. For missing
any teeth, logR:0.819, RFO,:0.827,
LightGBM:0.819, XGB:0.832, artificial
neural networks:0.831.

For edentulism; logR:0.837,
RFO:0.843, LightGBM:0.827,
XGB:0.838, artificial neural
networks:0.822. For having fewer
than 21 teeth, logR:0.819, RFO:0.817,
LightGBM:0.825, XGB:0.815, artificial
neural networks:0.826. For missing
any teeth, logR:0.769, RFO:0.770,
LightGBM:0.739, XGB:0.740, artificial
neural networks:0.772.

XGB had the highest performance in
predicting all outcomes.

Our findings support the application
of machine-learning algorithms to
predict tooth loss using
socioeconomic and medical health
characteristics.

Development studies

Lee et al. (2022) [21] USA NA
For Model-A, XGB:0.689, RFO:0.8312,
DTC:0.8413. For Model-B,
XGB:0.6687, RFO:0.7421, DTC:0.7523.

DTC had the best accuracy among
the three methods. Model-A
indicated a higher accuracy than
Model-B for al models.

AI-based machine-learning algorithm
will be a helpful tool to determine
tooth prognosis in consideration of
the treatment plan.

RFO: random forest; XGB: extreme gradient boosting; DTC: decision tree classification; logR: logistic recession; LightGBM: light gradient boosting machine; AdaBOOST: adaptive
boosting; AUC: area under the curve.
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3.3. Risk of Bias Assessment

A summary of the PROBAST assessments is shown in Figure 2. As all included studies
employed XGB, the PROBAST assessment was conducted for the XGB model in all studies.
All the studies were relevant to the review question and had a high risk of bias. In the
patient domain, a development study with 96 patients was judged as having a high risk of
bias [21]. There were no clear inclusion or exclusion criteria for this study. In the predictor
domain, two studies were judged to be at a high risk of bias. In a validation study with
11,651 teeth, no radiographs were available to avoid repeated radiographic assessment [17].
In the development study, since assessments of predictors and outcomes were conducted
simultaneously, both predictor and outcome domains were ranked as having a high risk of
bias [21]. In the outcome domain, all of the included studies were judged as having a high
risk of bias because the decision of tooth extraction would not be made in the standard way,
and outcomes were determined using information regarding predictors such as mobility or
bone loss. In the analysis domain, all the studies were judged to have a high risk of bias.
All validation studies were ranked as having a high risk of bias in this domain because
the number of participants with the outcome was quite small [17–20]. The analysis of
predictor selection also influenced this domain. Only two studies accounted for optimism
in the models [18,19]. Furthermore, only two validation studies used internal validation
techniques to account for any optimism in model fitting [19,20].
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Figure 2. Risk-of-bias assessment with PROBAST signaling questions in four domains [14]. Low
(green), high (red), unclear risk of bias (yellow), and not applicable (NA). PROBAST items: 1.1. Were
appropriate data sources used? 1.2. Were all inclusions and exclusions of participants appropriate?
2.1. Were predictors defined and assessed in a similar way for all participants? 2.2. Were predictor
assessments made without knowledge of outcome data? 2.3. Are all predictors available at the time
the model is intended to be used? 3.1. Was the outcome determined appropriately? 3.2. Was a
prespecified or standard outcome definition used? 3.3. Were predictors excluded from the outcome
definition? 3.4. Was the outcome defined and determined in a similar way for all participants? 3.5.
Was the outcome determined without knowledge of predictor information? 3.6. Was the time interval
between predictor assessment and outcome determination appropriate? 4.1. Were there a reasonable
number of participants with the outcome? 4.2. Were continuous and categorical predictors handled
appropriately? 4.3. Were all enrolled participants included in the analysis? 4.4. Were participants
with missing data handled appropriately? 4.5. Was the selection of predictors based on univariable
analysis avoided? 4.6. Were complexities in the data accounted for appropriately? 4.7. Were relevant
model performance measures evaluated appropriately? 4.8. Were model overfitting and optimism in
model performance accounted for? 4.9. Do predictors and their assigned weights in the final model
correspond to the results from the reported multivariable analysis?

4. Discussion

In this study, we assessed the risk of bias in teeth prognostic model development and
validation studies that applied machine learning methods. The included studies mostly
showed high AUC and accuracy values using machine learning modeling. However, all
included studies were assigned a score of high risk of bias because of methodological
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limitations during outcome assessment and data analysis. There is a strong need for
modifications and improvements of study methods to enhance the reliability of machine
learning algorithms to predict tooth loss.

The signaling questions judged as having a high risk of bias in PROBAST would be
distinguishable between unavoidable limitations that are inherently included in tooth ex-
traction decision-making and methodological failures which could be improved. PROBAST
was primarily designed for regression-based prediction in medical fields. Thus, signaling
questions are not fully applicable to machine learning-based prediction model studies, es-
pecially in dentistry. In the outcome domain, PROBAST recommends not to use subjective
outcomes. However, for tooth loss, it is challenging to set pre-specified or standardized
objective outcomes because tooth loss has more than one etiology. This is one of the limita-
tions inherent to this study. Furthermore, it is also recommended to exclude predictors from
the outcome definition. In this clinical question, some clinical variables such as bone loss or
mobility may be used in tooth extraction decision-making. Thus, it remains challenging to
judge outcomes without knowledge of the clinical variables. This is also a limitation that is
inherent to this clinical question. Furthermore, in the modern era, the incidence of tooth
extraction is quite low, especially at the tooth level. However, the development study set
prognostic categories as outcomes rather than tooth loss [17]. In this case, the influence
of the number of events could be avoided. Considering these inevitable limitations, one
would rescore one validation study with patient-level outcomes as a low risk of bias [15].

In PROBAST, predictors should be selected based on multivariate modeling. A valida-
tion study with 26,005 teeth employed recursive feature elimination to discard predictors
that were weakly related to tooth extraction [14]. Another validation study with 19,407 pa-
tients used the random forest-based Boruta feature selection algorithm to select only the
most relevant predictors for the model [15]. The other three studies selected predictors in
an experience-based manner. In future research, it will be necessary to select predictors
objectively. As mentioned above, it is inevitable to have an influence of small incidence
rate in tooth loss assessment. Thus, researchers must employ analytic frameworks, such
as oversampling. One validation study performed random oversampling of the minority
class to obtain class balance [15]. Furthermore, in validation studies, it is important to focus
on the effects of overfitting. To reduce this influence, it is common to employ a robust
measure such as “cross-validation”. K-fold cross-validation is commonly used to assess the
validation of machine learning models. This could be achieved by splitting the data into
k groups; each unique group is held out as test data, while the remaining k-1 groups are
used as training data. In only two validation studies, 10-fold cross-validation was used for
model evaluation [15,16]. Currently, the PROBAST guideline tailored for AI (PROBAST-AI)
is updating [22]. In the future, clear navigation of validation methods would be available. It
would be recommended to follow these guidelines and conduct appropriate tuning. In the
present review, a development study without validation analysis was also included [21]. In
this study, the inclusion criteria of study participants were not well defined. Furthermore,
the prognosis was decided with tooth-related factors which were also included as predic-
tors. Considering these points, this study was judged as “critically high risk of bias”. If
we restrict validation studies for inclusion, the overall risk of bias of prognostic prediction
models would be judged as moderate to low.

The included studies were roughly categorized into two groups: (1) studies with
tooth-level outcomes based on oral predictors [13,14,17] and (2) studies with patient-
level outcomes based on oral and socioeconomic predictors [15,16]. In the dental field,
especially periodontology, prognostic systems have been developed based on teeth-related
and periodontal predictors. However, to date, no highly sensitive prognostic system has
been established [1]. Even with the support of machine learning methods, higher AUC
and accuracy were not obtained compared with simpler methods [13]. On the other hand,
in both patient-level studies, relatively high AUC and accuracy were obtained [15,16].
Furthermore, socioeconomic factors, such as income, education, and employment, were
found to be important predictors of tooth loss in these two studies. These findings suggest
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that the machine learning algorithm models using clinical and patient metadata, such
as socioeconomic characteristics, self-reported dental care, and medical conditions will
enhance tooth loss prediction compared to dental indicators alone.

We acknowledge several limitations of the present review. First, all four validation
studies employed tooth extraction for any reason as the outcome. Using an inconsistent
data set would be attributed to a high risk of bias in a systematic review. Studies with tooth
extraction for specific reasons, such as periodontal, endodontic, and prosthetic problems
would be needed as future studies. Second, we searched only two major literature databases,
MEDLINE and Google Scholar, for development and validation studies written in English.
There are some possibilities that we may have missed eligible publications. In future
systematic reviews, broad literature search methods should be employed.

5. Conclusions

This review summarizes existing evidence on the development and validation of
tooth retention/extraction prognosis assisted by machine learning models. Although only
five studies met our inclusion criteria currently, the number of studies will likely increase
in the near future. Although these models showed high AUC and accuracy, they were
broadly assessed to have a high risk of bias. Although there are clinical questions related
to unavoidable limitations, particular attention and methodological guidance are needed
to improve the quality of machine-learning-based clinical prediction models. It is also
suggested that the machine-learning algorithm models for patient-level assessment with
socioeconomic predictors performed better than tooth-level assessment relying on clinical
dental predictors alone. Researchers should modify and improve study methods to enhance
the reliability of machine learning algorithms to predict tooth loss.
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