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Abstract: Exposure to mental stress for long period leads to serious accidents and health problems.
To avoid negative consequences on health and safety, it is very important to detect mental stress at
its early stages, i.e., when it is still limited to acute or episodic stress. In this study, we developed
an experimental protocol to induce two different levels of stress by utilizing a mental arithmetic
task with time pressure and negative feedback as the stressors. We assessed the levels of stress on
22 healthy subjects using frontal electroencephalogram (EEG) signals, salivary alpha-amylase level
(AAL), and multiple machine learning (ML) classifiers. The EEG signals were analyzed using a fusion
of functional connectivity networks estimated by the Phase Locking Value (PLV) and temporal and
spectral domain features. A total of 210 different features were extracted from all domains. Only the
optimum multi-domain features were used for classification. We then quantified stress levels using
statistical analysis and seven ML classifiers. Our result showed that the AAL level was significantly
increased (p < 0.01) under stress condition in all subjects. Likewise, the functional connectivity
network demonstrated a significant decrease under stress, p < 0.05. Moreover, we achieved the
highest stress classification accuracy of 93.2% using the Support Vector Machine (SVM) classifier.
Other classifiers produced relatively similar results.

Keywords: mental stress; electroencephalography; feature extraction; functional connectivity net-
work; time-frequency features; machine learning

1. Introduction

Mental stress has become a catchphrase nowadays, affecting almost everyone, due to
the increasing demands in the workplace, life burdens, changing lifestyles, and technologi-
cal interventions. The long-term effects of stress not only impact health issues, such as heart
disease, obesity, diabetes, stroke, and depression [1–3], but have economic consequences
too. The economic losses can reach up to billions of dollars [4]. Thus, researchers are
trying to detect mental stress at its early stage to prevent it from becoming chronic. The
evaluation of human psychological stress usually performed using subjective or objective
measurement methods. The subjective stress assessment methods used psychological as-
sessment approaches, such as a clinical interview and psychological-based questionnaires,
such as the Trier Social Stress Test (TSST) [5,6], Perceived Stress Scale (PSS) [7–9], State-Trait
Anxiety Inventory (STAI), and Hospital Anxiety and Depression Scale (HADS) [10].

The drawback of subjective methods is that it is subjective to the user’s reported
answers, and it only describe the current state of the subject’s stress level. Recent studies
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have focused on an objective method of physiological assessment, which gives the indi-
viduals the freedom to assess their mental stress states without the expert’s intervention
and drives more reliable evaluation [11–13]. The physiological assessment depends on
the body’s reactions towards stress, such as facial expressions [5], blink rate [14], pupil
dilation [15], eye gaze, and voice intonation [16]. Several studies have reported that for
anyone diagnosed with stress, their body had shown different symptoms by changing the
normal activities of these bio-markers: catecholamine, cortisol level, and alpha-amylase
enzyme [11,12]. Additionally, during stress, the frontal area of the brain showed high
activity of glucose metabolism and blood flow [9,17]. Therefore, several studies utilized
different modalities such as functional brain imaging (i.e., functional magnetic resonance
imaging (fMRI) and electroencephalography (EEG)) technologies to identify the brain
regions and fluctuation of brain activities affected by stress [12,17,18]. The prefrontal cortex
(PFC) was the common area that appeared to be sensitive to stress exposure. Moreover,
there is an evidence of changes in the autonomic nervous system’s (ANS) activities under
stress [19]. Consequently, physiological features of stress from the ANS can be seen as
subtle changes in heart rate (HR), heart rate variability (HRV) [6], respiration [20], skin
conductance [21], and blood pressure [22]. Currently, the focus is on brain activities as,
according to the latest work in neuroscience, it is the main target organ of mental stress
due to its responsibility to distinguish between different situations’ contexts (i.e., stressful
and threatening or not) [23]. The brain activities are usually analyzed by several tools, such
as EEG [24], fMRI [25], positron emission tomography (PET) [26] and other neuroimaging
modalities. EEG is a measurement tool that depicts the electrical activities on the brain’s
surface. Compared to other modalities, EEG provides high temporal resolution to detect
the time variance of changes in the brain’s state [27], is easy to setup, and is commercially
available at a lower cost.

To measure stress in real life, researchers used a different approach to stimulate stress
in laboratory settings. Several validated stress inducement methods were established
such as mental arithmetical tasks [13], negative feedback and time pressure [28], public
speaking [29], and noise manifested by music [30]. For the sake of validity and increasing
the accuracy of detection, researchers, in many cases, employed a combination of one
or more modalities with EEG, such as skin conductance [31], functional near-infrared
spectroscopy (fNIRS) [13], and electrocardiography (ECG) [11]. Even though applying
additional modulation with EEG improved the accuracy, it is not suitable for home-based
applications due to the knowledge base required, lengthy setup time, and the expensive
and inconvenient usage for wearable devices. Therefore, current studies suggest that the
enhancement of EEG signals could be accomplished by obtaining the optimal features from
specific regions of the brain related to the task.

For the aim of finding the relative EEG markers that explain mental stress and increase
its detection rate, several studies employed different types of features from the time domain,
frequency domain, and time-frequency domain [8,32–36], and several machine learning
algorithms have been used to predict the mental stress state, such as SVM [37], K-Nearest
Neighbors(KNN) [29,38], LR [1], Feed-Forward Neural Network (FF-NN) [30], Naive
Bayes(NB) [9,38], and Random Forest(RF) [39]. In the literature, non-invasive EEG-based
stress studies suggested that bio-markers (i.e., alpha, beta, and gamma) in specific brain
areas could reveal the mental stress state [18,40,41]. However, no consensus has been
reached about the particular established EEG patterns/features that differentiate stress
levels, see review [36]. In studies [8,29,42], different frequency band features have been
demonstrated to classify stress tasks. The low beta was considered as one approach to
recognize mental stress [9]. Similarly, alpha rhythm power at the right PFC was shown to
be more discriminative to stress and rest states [28,36]. Another study in [11] showed that
the PFC relative gamma power (RG) was more discriminative between stress levels than
alpha asymmetry.

Current researchers acknowledge that multi-domain features and multi-channel analy-
ses are required to create an effective information feature space in which a good interpreter
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can eventually produce effective alarms for the current mental state. As a result, studies
presented by Attallah [34] and Hasan [43] revealed that hybrid feature sets from various
domains (time domain, frequency domain, and time-frequency domain) may enhance the
overall classification of EEG emotion analysis. To the best of our knowledge, no study on
fusing such domains with functional connectivity network features has been done. In con-
trast to the majority of cortical activation features, which focus on a single channel feature,
functional connectivity features look for relationships and interactions across different re-
gions of the brain (inter-channel relations). This knowledge aids in a better understanding
of how the brain functions and could offer more accurate representations of mental stress
states. To address the aforementioned limitation, this study aims to investigate the fusion of
functional connectivity network features with cortical activation features from the time and
frequency domains to detect mental stress in order to aid in the development of wearable
devices. In contrast to prior research, our objective is to combine single-channel features
with inter-join channel features (connectivity). Thus, we employ a well-established clinical
assessment method using salivary alpha amylase (cortisol measure) to enhance the labeling
of the task given. We then propose an objective method based on the machine learning
framework to classify stress levels with a minimum number of EEG channels. We present
a novel methodology to identify mental stress by investigating the statistical difference
between stress and rest conditions. The proposed method is analyzed and evaluated using
seven classifiers [36], namely: KNN, RF, Logistic Regression (LR), SVM, classification and
regression Decision Tree (CART), Linear Discrimination Analysis (LDA), and NB. The
accuracy, precision, recall, and F-score matrices were used to evaluate the performance of
the classifiers.

The following section summarizes our contributions in this work.

1. Developing an experimental protocol to induce two levels of mental stress (stress/rest
or control) in a short time, which is important for real-life application.

2. A multi-domain feature set is proposed by fusing features from the time domain,
frequency domain, and functional connectivity networks.

3. A feature selection method was implemented to select the most discriminative fea-
ture sets.

4. The performance of the proposed method is tested and evaluated using seven machine
learning classifiers.

The rest of the paper is organized as follows: Section 2 describes the dataset, protocol
setup, and data annotation. Section 3 explains the detailed methodology. In Section 4,
the classification evaluation method is presented. In Section 5, results and analysis are
discussed in detail. In Section 6, a discussion of the results is provided, and the study’s
conclusions are presented in Section 7.

2. Dataset and Materials
2.1. Participants

In this dataset, the total number of participants was 22 subjects (aged 26 ± 4 with head
size of 56 ± 2 cm). All subjects were male right-handed healthy adults having the same
culture and background (undergraduate students). The participants were asked about
their medical condition to fit the experiment eligibility. Smokers and drug users were
excluded due to their effect on the sympathetic nervous system. Moreover, participants
must have no history of any physical or mental health problems. Several rules had been
imposed on them before starting the experiment. For example, no eating or drinking
two hours before the experiment and no physical activity occurred [13]. The experiment
time was chosen between 4.00 and 5.30 p.m. to reduce the circadian rhythm’s effects on
cortisol collection. The experiment protocol was approved by the institute review board of
University Teknologi Petronas.
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2.2. Stress EEG Measurement and Protocol

The experiment task protocol was based on the Montreal Imaging Stress Task (MIST),
which was described in detail in [44]. The task was created using MATLAB and presented
using a Graphical User Interface (GUI). It involved a mental arithmetic task (MA) using
simple calculation of two-digit integers (ranging from 0 to 100) with operands restricted to
+,−, and (/ or *) (example 99/3 − 76 + 51). The answer for each question was displayed
in the GUI using a numerical order ranging from ‘0’ to ‘9’, and participants were trained
to select the correct answer with a mouse click. The experiment task was performed in
three subsequent phases: preparation, rest condition, and stress condition. Each phase is
described in detail below. In the preparation phase, participants were given five minutes to
practice the MA task, and the average time taken to answer the questions was recorded for
each participant, which would later be utilized as a time constraint to induce stress.

In the stress phase, a cap of EEG electrodes was placed on the frontal region of each
participant’s scalp, and simultaneous measurement was performed while the participant
solved the arithmetic within a time limit (derived based on a 10% reduction from the
average time recorded during the preparation phase). Additionally, the average peer
performance was displayed on the screen as a real-time performance indicator of subject’s
performance compared to other participants. Notification of a negative message for each
response that exceeds the time limit or gets the answer wrong, i.e., a message of “Incorrect”,
or “Time’s up” being flashed on the screen. The negative feedback was intended to add
more stress to the participants.

In the rest phase, the participant was instructed to keep calm and relax while looking
at the fixation cross presented at a computer monitor. The presentation of the stress and
rest states was in a block design. There was a total of five blocks in each of the stress and
rest conditions, as shown in Figure 1. For every block, an arithmetic task popped up for
30 s to induce stress, followed by 20 s of rest. During the 30 s of the stress task, multiple
mathematical questions were displayed on the computer monitor based on participants’
response time in answering each question. For the 20 s of a rest condition, the participant
looked at the fixation cross in the computer screen as a visual cue for the trial onset.

Figure 1. Experiment block design. A total of five active blocks for each task with salivary alpha
amylase (SAA) cortisol was collected before and after the stress task and presented by the letter S
with a red background. For each block, arithmetic tasks are given for the 30 s followed by 20 s of rest.
The red dashed line marks the start of the task, and the green dashed line marks the end of the task
(the marking is done at every block).
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The EEG signals were recorded using the Discovery 24E system (BrainMaster Tech-
nologies Inc, Bedford, OH, USA). The system was equipped with 7-electrodes (Fp1, Fp2,
F7, F3, F4, Fz, F) placed on the prefrontal cortex, as shown in Figure 2. The EEG electrodes
were referenced to the earlobe electrodes (A1 and A2). The placement of the EEG electrodes
was based on the 10–20 system and was sampled at 256 Hz.

Figure 2. EEG Channels’ Position on Scalp.

2.3. Dataset Labelling

The EEG signal has been labeled for each subject based on the cortisol of the salivary
amylase level (AAL). During the experiment, two samples of AAL were obtained, as
shown in Figure 1. The first AAL sample was collected before starting the experiment
task (stress/rest condition) as a baseline. The first AAL result was supposed to show
the initial state of the subject as not stressed; otherwise, the subject would be removed
from the study. The second AAL sample was collected at the end of the experiment. The
data annotation/labeling of the EEG signal was based on the cortisol level; medically,
cortisol levels greater than 60 micrograms per decilitre (mcg/dL) indicate that the subject is
stressed, while those between 30 and 60 (mcg/dL) are labeled as working brain condition,
and those less than 30 (mcg/dL) are labeled as the rest state [44,45].

3. EEG Base Mental Stress Analysis Method

This section describes the proposed methodology process for implementing the stress
detection method, namely signal preprocessing, feature extraction and selection, and
classification, as shown in Figure 3.

3.1. Signal Preprocessing

The raw EEG signals were preprocessed using Python and an external MNE pack-
age [46]. The raw EEG signals were band-pass filtered using a finite impulse response (FIR)
filter with 1 Hz to 35 Hz bandwidth. Since we only measured the frontal cortex, the EEG
data were re-referenced to the average reference as suggested by [47]. Consequently, the
noise caused by 50/60 Hz of line power was omitted. Furthermore, Fast-ICA has been
used to eliminate the associated noise caused by eye blinking called electrooculogram
(EOG) artifacts under 4 Hz, muscle artifacts (EMG) with frequency beyond 30 Hz, and
heart rate [48]. Fast-ICA has the significant ability of denoising ocular artifacts (OAs) that
exist in low frequencies less than 16 Hz, therefore delineating the overlapping frequency
bands [49]. The EEG signals were segmented into 1000 ms EEG epochs relative to the target
task. The selection of 1000 ms or 256 EEG data points was due to its stationarity at an epoch
size of >256 for experiments involved in event-related potential. This number of data points
is appropriate to show the stationarity of EEG signals and have been reported in previous
EEG studies with a comparable data point [50–52]. The baseline was extracted and omitted
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using the full length of each epoch. Then, all EEG epochs were visually double-checked
to eliminate data segments contaminated with noise. Lastly, we identify from the clean
EEG signals two mental states (stress and rest). The first 20 s of rest from the first block
were considered for the rest state, and another 20 s from the last stress block (block 5)
were considered for the stress condition. The two states were labeled based on the results
obtained from the cortisol data collection of AAL.

Figure 3. Proposed ML methodology flow chart for mental stress state recognition.

3.2. Feature Extraction

Feature extraction is a crucial step in analyzing and classifying EEG signals [43]. Be-
cause the EEG signal is a non-stationary and time-varying signal, choosing an appropriate
technique to extract useful features that reflect brain activity is critical for reducing di-
mensional space, improving processing performance, and increasing the detection rate.
EEG features can be broadly categorized into single-channel features and multi-channel
features. The majority of the existing features are computed on a single channel that
involves temporal and or spatial information from a specific brain region, e.g., statistical
features, frequency-domain features, e.g., PSD. A few multi-channel features are computed
to reflect the relationships between different brain regions, e.g., brain connectivity features.
The EEG signal comes from a complex of interconnected brain neurons. Hence, the fusion
of the brain connectivity with cortical activation features may provide us with a more exact
model of the brain and how its various areas interact with each other. In this paper, both
cortical activation features (single-channel features) and functional connectivity network
features (multi-channel features) have been employed.

In particular, twelve (single-channel) features were extracted from both the time
domain and frequency domain of the cleaned EEG signals for each of the seven channels
(Fp1, Fp2, F7, F3, F4, Fz, and F8) located at the prefrontal and frontal region of the brain.
Those EEG features were six features per EEG channel from the time domain: kurtosis,
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peak-to-peak amplitude, skewness, and Hjorth parameters of activity, complexity, and
mobility. Likewise, six features per EEG channels were extracted from the frequency
domain of relative powers for frequency bands: delta δ, theta θ, alpha α, sigma σ, low
beta β, and high beta β. Additionally, a total of 126 features (multi-channel features) were
extracted from the connectivity network of all channels. The EEG signal’s length used
for feature extraction methods was 40 s (20 s stress, 20 s rest), segmented by the epoch of
1 s, which results in a total of 40 segments, and each segment consists of 210 features per
subject for both stress and rest tasks. Table 1 shows the summary of dataset content.

Table 1. A summary of Dataset Structure Content.

Name Array Shape Array Content

Data 40 × 7 × 256 Trails × channels × samples (256 Hz × 1 s)

Label 40 × 2 Trail × label (stress, rest)

Each of the domain’s features was explained in detail in the following subsections.

3.2.1. Time-Domain Features (TDFs)

The TDFs were calculated from the cleaned EEG signals at each epoch. The TDFs are
also called statistical features widely used in the classification of EEG signals to measure the
irregularity of signal amplitude in the time domain. Therefore, several studies employed
TDFs in emotion [29] and stress classification [37,39]. In this paper, six statistical features
were extracted from the time domain, namely: kurtosis, peak amplitude, skewness, and
Hjorth parameters of activity, complexity, and mobility. Each of these features was extracted
from each channel per subject. The full details of these parameters are given below.

Kurtosis: is the measure of the relative flatness of an EEG signal distribution per
segment (epoch), and it is calculated using the equation.

Kurtosis =

1
T ∑T

t=1(x(t)− µ)4

σ4 (1)

where T is the number of epochs , x(t) is time-series sample points, and µ, σ are the mean
and standard deviation of the signal.

Skewness: measures the distribution difference between the mean and the median for
each variable of epochs.

Skewness =

1
T ∑T

t=1(x(t)− µ)3

σ3 (2)

Peak-to-peak amplitude (ptp_amp): the change between the peak of the highest
amplitude value and the lowest amplitude value among the various time windows.

Hjorth parameters: three features of Hjorth Parameters (TDHPs), namely activity,
mobility, and complexity of the signal, are extracted, which are useful for the quantitative
evaluation of an EEG signal and can be expressed as:

• Hjorth Activity: The activity measure represents the signal power and measures the
variance of a time function using the equation.

Activity = var(x(t)) (3)

where x(i) represents the signal on time.
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• Hjorth Mobility: mobility represents the mean frequency or the proportion of the
standard deviation of the signal and is denoted by:

Mobility =

√√√√√ var(
dy(t)

dt
)

Activity(y(t))
(4)

where mobility represents the square root of the variance of the first derivative of the
signal x(t) divided by the activity.

• Hjorth complexity: the complexity parameter gives an estimate of the bandwidth of
the signal, which indicates the similarity of the shape of the signal to a pure sine wave.

Complexity =

√√√√√Mobility(
dy(t)

dt
)

Mobility(y(t))
(5)

All these extracted features were then fed as an input to the classifiers.

3.2.2. Frequency-Domain Features (FDFs)

In the frequency domain, the multitaper method is used to estimate the power spectral
density (PSD) because it provides a more robust spectral estimation than the classical
methods and Welch’s periodograms [53]. Compared to Welch’s approach, the multitaper
method does not need to identify a window duration because it computes the periodogram
on the whole signal and provides a high-frequency resolution and low variance [53].

Multitaper spectrum estimation (MSE): a Nonparametric method used to estimate PSD
from a combination of multiple orthogonal tapers (or “windows”). MSE aims to recover the
information lost when using a single taper and offers significant performance gains over a
nonparametric single taper. The estimator is the average of the K direct spectral estimators,
each acting on the whole data record (rather than on a signal segment, as happens in the
Welch method) and applying different tapers. Each (partial) estimator is computed by:

Ŝk =

∣∣∣∣∣ N

∑
i=1

hi,kXi+l−1e−2jΠ f t∆t

∣∣∣∣∣
2

(6)

Let x(t), for t = 0, 1,..., N 1, be a zero-mean time series with unit sampling and spectral
density S(f), ∆t is the sampling interval, hi,k is the kth data taper, and the bandwidth for ∆t
is 1 s.

The final estimator is computed as:

Ŝk =
1
k

k−1

∑
k=0

Ŝk( f ) (7)

where K is equal to 2NW − 1, and 2 W is the normalized bandwidth of the tapers.
The relative power (RP) of six frequency bands: delta (1–4 Hz), theta (4–8 Hz), alpha

(8–12 Hz), sigma (12–15 Hz), low beta (15–20 Hz), and high beta (20–30 Hz) were computed
from the MSE of PSD. The RP is expressed by divided the specific power band over the
total power of all bands and calculated as below:

RP =
power(selected_band)
power(total_bands)

∗ 100 (8)

The RP features were then used as an input to the classifiers.



Sensors 2021, 21, 6300 9 of 23

3.2.3. Functional Connectivity Network

The functional connectivity network is generated by measuring the connection be-
tween electrode pairs in each frequency band using Phase Locking Value (PLV). The PLV
technique, similar to the conventional coherence method, computes the correlation between
two pairs of EEG channels in distinct frequency bands. The PLV is an effective measure
of brain functional signals due to its ability to quantify locking between the phases of the
signals from two distinct electrodes and does not depend on the assumption of stationary
signals [54]. Therefore, PLV was proved to be a valid method to investigate task-induced
changes in the long-range synchronization of neural activity from EEG data [55]. To cal-
culate the phase-locking value, we extract the instantaneous phase φa

i (t) of the analytical
signal xa

i (t)of the time series xi(t).
Then, for each pair (i, j) of EEG channels, we compute the modulus of the time-

averaged phase difference projection onto the unit circle and computed it in Equation (9):

VLPij =

∣∣∣∣∣ 1
T ∑

t
ei(φa

i (t)−φa
j (t))

∣∣∣∣∣ (9)

where N is the total number of trials in time series, and φi and φj are the instantaneous
phase values at trial index n. The PLV values range between [0, 1], with 0 indicating no
phase synchronization and 1 indicating that there is a fixed relative relationship between the
two signals in all trials. Because PLV employs undirected measurement for all electrodes, it
is known as symmetric measure (PLV(k1, k2) = PLV(k2, k1)).Thus, the direct connection is
ignored, and the total number of connections between the EEG channels is measured using:

N =
k(k − 1)

2
(10)

where k is the total number of channels. In this paper, the total extracted connectivity
features are 126 features (21 features × 6 bands) since we are using only 7 EEG chan-
nels. However, we only utilized the PLV with a phase-difference distribution that was
significantly different from zero using t-test feature selection at p < 0.05.

3.3. Hybrid Features of Time, Frequency Domain and Connectivity Features

Fusion information from cortical activation (Time and Frequency Domain) and connec-
tivity features might complement each other, giving us a more accurate representation of
the brain and how its various regions interact. In this paper, the total features extracted from
multi-domain features were 210 features (42 features from time, 42 features from frequency
domain, and 126 features from PLV connectivity features), resulting in high-dimensional
feature space. Therefore, the significant-features-based channels from the time domain,
frequency domain, and connectivity features were identified using a statistical t-test with a
95% confident interval and p = 0.05 level of significance. Thus, the most significant features
from each domain were fused to form a new subset of the significant features from the time
domain, frequency domain, and connectivity network. The total significant-features-based
channels were 42 (15 from the time domain, 20 from the frequency domain, and 64 from
connectivity features ) and used as a new fusion feature set to subsequent classifiers.

4. Classification

To classify and evaluate stress levels, three scenarios have been conducted. First, indi-
vidual feature of the selected channels within each domain was considered as a bio-marker
and evaluated separately (i.e., Hjorth complexity, Hjorth mobility, relative alpha, . . . , etc.,
see Tables 3–5). In the second scenario , we utilized the features from the selected channels
in each domain as a feature vector and classified them separately (i.e., see Figures 8–10).
Meanwhile, we fused the features of the selected channels from the three domains: time
domain, frequency domain, and connectivity network features into a single feature vector
and used them as an input to the ML classifiers (see Figure 11). Several machine learn-
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ing algorithms have been used for EEG signal analysis to train and predict the features
extracted from target EEG tasks. In this paper, seven classifiers, namely LR, RF,LDA, KNN,
SVM, DT, and NB, were employed to evaluate the model performance of mental stress
recognition based on the scenarios mentioned and provide the researchers with useful
information about the effective classifier to be considered in future work. Table 2 shows
the classifier’s tuning parameters utilized. More details about the utilized classifiers can be
found in our previous study [56]. The extracted features are split into 80% for training and
20% for testing. In each classifier, an independent subject test with 5-fold cross-validation
was performed.

Table 2. Default Parameters for Classification Techniques.

No. Classifier Default Value

1 SVM
C = 1.0,

Kernal = Radial Basis Function (RBF),
1.0 × 10−3

2 KNN K = 5,
distance function = euclidean distance

3 NB variance_smoothing = 1 × 10−9

4 RF n_estimators = 100 trees,
criterion = ‘gini’

5 DT criterion = ‘gini’

6 LR
penalty = ‘l2’, *,

tolerance = 0.0001,
C = 1.0

7 LDA solver = ‘Singular value decomposition (svd)’,
tolerance = 0.0001

The proposed model’s performance has been evaluated using seven classifiers with
5-fold cross-validation and a four-measure matrix. These include accuracy, precision,
sensitivity, and F-measure. The equations below show the mathematical formulation for
each prediction. The results obtained from the confusion matrix has:

• True Positives (Tp): The number of labels correctly identified as stress conditions.
• True Negatives (Tn): The number of labels correctly identified as a rest condition.
• False Positives (Fp): The number of labels incorrectly identified as stress.
• False Negatives (Fn): The number of labels incorrectly identified as rest.

Accuracy =
Tp + Tn

Tp + Tn + Fp + Fn
(11)

Precision =
Tp

Tp + Fp
(12)

Sensitivity =
Tp

Tp + Fn
(13)

Speci f icity =
Tn

Tn + Fp
(14)

F-measure = 2
Precision ∗ Sensitivity
Precision + Sensitivity

(15)

Accuracy denotes the measurement of how many correct predictions were made in the
whole dataset in two-class problems, i.e., stress and rest conditions. Precision indicates the
correct measure of a positive prediction. Meanwhile, sensitivity refers to the completeness
measure of a classifier, measuring the number of true stress conditions that get predicted
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over whole stress labels in the dataset. Specificity measures the proportion of rest conditions
that are correctly identified. The F-measure was used to evaluate the detection result using
both sensitivity and precision.

5. Result and Analysis
5.1. Statistical Analysis

The stress inducement using an arithmetic task under time pressure and negative
feedback for 22 subjects was evaluated using a salivary alpha-amylase level and EEG. The
stress inducement reported higher levels of salivary alpha-amylase in stress (M = 93.64,
SD = 13.99) (KIU/L) compared rest condition (M = 24.45, SD = 4.44) (KIU/L), as shown in
Figure 4. The increase in the alpha-amylase level from rest condition to stress condition
was significant with a mean p < 0.0001. This also correlates with our previous results [13],
which revealed a significant difference in alpha-amylase level between the two conditions
across all subjects. Therefore, time pressure and negative feedback prove to be reliable for
stress induction in the lab.

Figure 4. The mean and standard deviation of the salivary amylase cortisol measured by (mcg/dL)
for rest and stress conditions.

In EEG signal analysis, an independent-sample t-test was conducted to compare stress
and rest for each feature-based electrode. The star symbols are used in topographic maps
to show the significant electrodes per feature. For time-domain features, Figure 5a shows
the mean and standard deviation of the Hjorth complexity, Hjorth mobility, Hjorth activity,
kurtosis, peak-to-peak amplitude (ptp_amp), and skewness of EEG signals at 1–30 Hz
for stress and rest conditions, which were taken by averaging all subjects’ data for each
condition.

The placement of EEG electrodes is coordinated based on the international 10–20 sys-
tem, as shown in Figure 2. The means of Hjorth complexity, Hjorth activity, and ptp_amp
were decreasing from rest condition to stress condition when subjects were exposed to
mathematical stressor tasks and increased from rest to stress conditions in Hjorth activ-
ity and skewness. This variation in different parameters indicates a further decrease in
complexity and ptp_amp from rest to stress conditions but a high increase in the mobility
component in the signal. The significant electrodes for time-domain features are shown in
Figure 5b, where the color scale represents statistical differences based on t-test values.

The total number of features for each channel is six, giving a total of (7 channels ×
6 features) 42 features in the time domain. However, only 15 significant features in the
time domain that discriminate the rest and stress conditions were selected and used in this
study. The topographic T-map for both complexity and mobility features shows the same
significant channels of ’Fp1’, ’F3’, and ‘F4’; significant Hjorth activity channels were ’F7’
and ’F3’. Finally, ptp_amp has four significant channels: ‘F7’, ’F3’, ’Fz’, and ’F8’. Note that
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skewness and kurtosis were also selected as a useful feature even though there was only
one channel, ’Fp4’ and ’Fp1’, respectively, for each one, showing a statistically significant
difference between the two conditions. This means that the skewness and kurtosis features
can offer additional discriminative information between the two conditions. Figure 6 shows
the frequency changes on the brain with respect to the stressor test using scale colors of
the power distribution of PSD. A statistical analysis of the averaged normalized relative
power of the frequency bands (delta, theta, alpha, sigma, low_beta, high_beta) was carried
out to demonstrate the difference between rest and stress states. The topographic T-map
shows the significant electrodes corresponding to each band with ‘*’ star symbols and the
color scale of the T-map. Out of 42 features (7 channels * 6 relative power bands) in the
frequency domains, only 20 features were selected as significant features based on t-test
values for the experiment task of rest and stress conditions.

Figure 5. (a) The mean and standard deviation using scatter for time-domain features of the Hjorth complexity, Hjorth
mobility, Hjorth activity, kurtosis, peak-to-peak amplitude (ptp_amp), and skewness of EEG signals at 1–30 Hz for stress and
rest conditions. The difference between stress and rest is shown using T-maps in (b). The star (*) symbols denote statistically
significant electrodes using topographic maps (two-sample t-test; p < 0.01, Bonferroni correction).

Figure 6. The mean topographic maps for relative bands power of delta, theta, alpha, sigma, low beta, and high beta
at 1–30 Hz for rest and stress conditions. The difference between stress and rest relative powers are shown using T-
maps. The star (*) symbols denote to the significant electrodes related to specific feature (two-sample t-test; p < 0.01,
Bonferroni correction).
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High beta β(20–30 Hz) showed a significant decrease from the rest condition to
the stress condition across all participants with (p < 0.001). Consequently, a noticeable
significant decrease in the alpha α relative power (8–12 Hz) was found in the right cortex
of the frontal area for the mathematical stressor tests from the rest condition to the stress
condition. Likewise, theta θ (4–8 Hz) relative power indicated a slightly significant increase
in stress conditions compared to rest conditions. The overall statistical analysis of the
average relative power was shown to be discriminative among stress and rest conditions
in all significant electrodes with p < 0.0001 in alpha and high beta and p < 0.001 in delta
and sigma (12–15 Hz) with p-value 0.05. Interestingly, the prefrontal right cortex channels
(‘Fp1’, ‘Fp2’, and ‘F4’) were shown to be more significant in most relative power bands to
distinguish rest and stress conditions.

Similarly, Figure 7 shows the functional connectivity network features of PLV, which
measures the changes (increase/decrease) in the connectivity network between two pairs
of channels. The PLV was extracted from six frequency bands of both tasks (rest/stress).
The significant channels denoted either an increase or decrease (*+/*−) in the connectivity
network measurements from the rest condition to the stress condition. From Figure 7, it
can be seen that significant functional connectivity networks in delta and alpha decreased
from the rest condition to the stress condition. On the other hand, high beta shows an
increase in the connectivity network from the rest condition to the stress conditions. Other
bands showed increases and decreases in the connectivity network between different
brain regions. The significant discrimination connectivity features between stress and rest
conditions were selected using a t-test and fused with other significant features from the
time and frequency domains.

Figure 7. The PLV connectivity network among EEG channel pairs over all trails for rest and stress condition. The star (*)
symbol denotes the significant connections between electrodes selected by the t-test.

5.2. Classification Results

The overall classification performance results in terms of the average accuracy/
precision/recall/f-score and standard deviations of the proposed methods with the types
of classifiers are presented in Table 3 for time-domain features, in Table 4 for frequency-
domain features, and Table 5 for connectivity network features. Those average accuracies
were evaluated for the seven classification algorithms with respect to the number of chan-
nels selected by the t-test. From the time-domain features in Table 3, we obtain the following
significant findings:

• The best classification accuracy was obtained by using the peak-to-peak amplitude
feature with four channels (‘F7’, ‘F3’, ‘Fz’, and ‘F8’) of the frontal region with a mean
accuracy of 79.4% using Random Forest and 76.1% using SVM. Meanwhile, the rest of
the classifiers achieved an average accuracy of 75% for ptp_amp.

• The Hjorth parameters of complexity, mobility, and activity achieved a result of an
average of 69.1%, 71.5%, and 71.8% using KNN, SVM, and NB, respectively. The
significant channels of Hjorth complexity and mobility were located in the prefrontal
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cortex (‘Fp1’, ‘F3’, and ‘F4’), while Hjorth activity had only two significant channels
that were selected from the left frontal cortex of (‘F7’ and ‘F3’).

• Features with a low number of channels tends to achieve low accuracy due to low
spatial resolution. Kurtosis and skewness got one significant channel for each and ob-
tained a maximum average accuracy of 55% and 56%, respectively, for ‘Fp1’ and ‘F4’.

Table 3. The average accuracies and standard deviations of significant time-domain features from the selected channels
with the seven classifiers.

Features
Sig.

Channels
(p < 0.001)

Performance CART KNN LDA LR NB RF SVM

Hjorth complexity ‘Fp1’, ‘F3’,
‘F4’

accuracy 0.644 ± 0.146 0.691 ± 0.119 0.671 ± 0.103 0.659 ± 0.118 0.682 ± 0.114 0.671 ± 0.145 0.677 ± 0.124
precision 0.653 ± 0.151 0.715 ± 0.118 0.680 ± 0.109 0.672 ± 0.126 0.696 ± 0.116 0.673 ± 0.15 0.694 ± 0.128
recall 0.650 ± 0.149 0.701 ± 0.117 0.675 ± 0.107 0.668 ± 0.123 0.689 ± 0.117 0.672 ± 0.146 0.688 ± 0.127
f1-score 0.641 ± 0.149 0.688 ± 0.119 0.667 ± 0.108 0.656 ± 0.119 0.678 ± 0.118 0.667 ± 0.148 0.675 ± 0.125

Hjorth mobility ‘Fp1’, ‘F3’,
‘F4’

accuracy 0.706 ± 0.127 0.702 ± 0.158 0.705 ± 0.122 0.516 ± 0.072 0.709 ± 0.129 0.712 ± 0.146 0.715 ± 0.140
precision 0.711 ± 0.128 0.721 ± 0.159 0.713 ± 0.114 0.519 ± 0.081 0.715 ± 0.126 0.718 ± 0.140 0.729 ± 0.135
recall 0.704 ± 0.124 0.711 ± 0.155 0.711 ± 0.117 0.519 ± 0.078 0.711 ± 0.124 0.715 ± 0.136 0.725 ± 0.137
f1-score 0.703 ± 0.128 0.698 ± 0.160 0.702 ± 0.123 0.609 ± 0.039 0.707 ± 0.128 0.708 ± 0.147 0.710 ± 0.144

Hjorth activity ‘F7’, ‘F3’

accuracy 0.541 ± 0.000 0.706 ± 0.184 0.655 ± 0.173 0.511 ± 0.001 0.718 ± 0.168 0.540 ± 0.120 0.688 ± 0.117
precision 0.301 ± 0.000 0.714 ± 0.189 0.659 ± 0.179 0.431 ± 0.000 0.727 ± 0.164 0.387 ± 0.032 0.699 ± 0.183
recall 0.371 ± 0.000 0.705 ± 0.183 0.656 ± 0.177 0.372 ± 0.000 0.723 ± 0.166 0.394 ± 0.013 0.691 ± 0.177
f1-score 0.321 ± 0.000 0.699 ± 0.190 0.648 ± 0.180 0.321 ± 0.000 0.708 ± 0.177 0.386 ± 0.024 0.681 ± 0.176

Kurtosis ‘Fp1’

accuracy 0.549 ± 0.118 0.531 ± 0.089 0.515 ± 0.130 0.517 ± 0.129 0.516 ± 0.136 0.549 ± 0.118 0.518 ± 0.136
precision 0.551 ± 0.117 0.539 ± 0.107 0.539 ± 0.163 0.541 ± 0.163 0.511 ± 0.200 0.551 ± 0.117 0.524 ± 0.184
recall 0.549 ± 0.115 0.536 ± 0.100 0.526 ± 0.139 0.526 ± 0.139 0.523 ± 0.147 0.549 ± 0.115 0.521 ± 0.153
f1-score 0.544 ± 0.119 0.524 ± 0.095 0.504 ± 0.131 0.509 ± 0.129 0.484 ± 0.151 0.544 ± 0.119 0.498 ± 0.153

PTP_AMP ‘F7’, ‘F3’,
‘Fz’, ‘F8’

accuracy 0.758 ± 0.127 0.735 ± 0.146 0.754 ± 0.126 0.401 ± 0.000 0.745 ± 0.152 0.794 ± 0.122 0.761 ± 0.145
precision 0.764 ± 0.125 0.745 ± 0.144 0.767 ± 0.120 0.301 ± 0.000 0.752 ± 0.154 0.798 ± 0.119 0.766 ± 0.146
recall 0.759 ± 0.125 0.738 ± 0.141 0.761 ± 0.121 0.371 ± 0.000 0.745 ± 0.162 0.796 ± 0.121 0.766 ± 0.146
f1-score 0.754 ± 0.126 0.732 ± 0.146 0.752 ± 0.127 0.321 ± 0.000 0.734 ± 0.162 0.790 ± 0.123 0.756 ± 0.146

Skewness ‘F4’

accuracy 0.561 ± 0.108 0.538 ± 0.101 0.490 ± 0.141 0.467 ± 0.119 0.490 ± 0.120 0.561 ± 0.108 0.483 ± 0.125
precision 0.566 ± 0.112 0.546 ± 0.104 0.493 ± 0.148 0.467 ± 0.132 0.503 ± 0.153 0.566 ± 0.112 0.492 ± 0.154
recall 0.564 ± 0.110 0.546 ± 0.101 0.491 ± 0.145 0.467 ± 0.125 0.491 ± 0.128 0.564 ± 0.110 0.493 ± 0.134
f1-score 0.559 ± 0.107 0.533 ± 0.103 0.488 ± 0.140 0.461 ± 0.124 0.480 ± 0.118 0.559 ± 0.107 0.471 ± 0.134

Furthermore, significant findings from frequency-domain features in Table 4 were
elaborated below.

• The highest average accuracy achieved by the relative power of the high beta band
(20–30 Hz) with significant channels ‘Fp1’, ‘Fp2’, ‘F3’, and ‘F4’ was 73% accuracy with
KNN and 71% with both RF and SVM.

• For the lower frequencies of delta (1–4 Hz) and theta (4–8 Hz), the significant selected
channels were located in the prefrontal and middle frontal cortex area of the scalp—
‘Fp1’, ‘Fp2’, ‘F3’, and ‘F4’. Both achieved an average accuracy of 68% using SVM and
KNN, respectively.

• The lowest accuracy obtained in frequency-band features was 52.4% from sigma
relative power with only one channel of ‘F7’.

• Likewise, the average accuracy of alpha relative power and low betas were 63.4% and
64.5% with KNN and LDA, respectively.

The overall observation of significant selected channels for both time-domain and
frequency-domain features was observed in ‘Fp1’, ‘Fp2’, ‘F3’, and ‘F4’.
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Table 4. The summary of average accuracies and standard deviations of significant frequency-domain features from the
selected channels with the seven classifiers.

Band Sig. Channels
(p < 0.001) Performance CART KNN LDA LR NB RF SVM

Delta
‘Fp1’, ‘Fp2’,
‘F3’, ‘Fz’,
’F4’

accuracy 0.631 ± 0.127 0.659 ± 0.152 0.680 ± 0.123 0.488 ± 0.069 0.672 ± 0.128 0.675 ± 0.113 0.682 ± 0.144
precision 0.639 ± 0.122 0.679 ± 0.150 0.692 ± 0.120 0.488 ± 0.076 0.682 ± 0.128 0.686 ± 0.102 0.694 ± 0.145
recall 0.635 ± 0.121 0.674 ± 0.146 0.689 ± 0.121 0.495 ± 0.066 0.679 ± 0.129 0.682 ± 0.104 0.690 ± 0.145
f1-score 0.627 ± 0.127 0.652 ± 0.152 0.679 ± 0.123 0.481 ± 0.079 0.672 ± 0.128 0.673 ± 0.113 0.677 ± 0.145

Theta
‘Fp1’, ‘Fp2’,
‘F3’, ‘Fz’,
‘F4’

accuracy 0.614 ± 0.088 0.619 ± 0.087 0.679 ± 0.142 0.473 ± 0.059 0.655 ± 0.118 0.643 ± 0.107 0.656 ± 0.135
precision 0.614 ± 0.091 0.623 ± 0.100 0.683 ± 0.146 0.471 ± 0.064 0.662 ± 0.132 0.646 ± 0.107 0.659 ± 0.140
recall 0.614 ± 0.091 0.616 ± 0.095 0.671 ± 0.138 0.475 ± 0.060 0.652 ± 0.119 0.645 ± 0.104 0.655 ± 0.140
f1-score 0.611 ± 0.091 0.607 ± 0.097 0.669 ± 0.138 0.464 ± 0.068 0.647 ± 0.122 0.640 ± 0.103 0.648 ± 0.136

Alpha ‘Fp1’, ‘Fp2’,
‘F4’

accuracy 0.622 ± 0.107 0.634 ± 0.149 0.634 ± 0.089 0.481 ± 0.070 0.619 ± 0.123 0.606 ± 0.096 0.622 ± 0.137
precision 0.627 ± 0.108 0.646 ± 0.153 0.640 ± 0.096 0.477 ± 0.076 0.622 ± 0.126 0.608 ± 0.094 0.630 ± 0.141
recall 0.622 ± 0.101 0.639 ± 0.144 0.633 ± 0.091 0.477 ± 0.076 0.615 ± 0.124 0.607 ± 0.093 0.626 ± 0.136
f1-score 0.618 ± 0.105 0.628 ± 0.151 0.630 ± 0.091 0.474 ± 0.073 0.611 ± 0.122 0.602 ± 0.095 0.618 ± 0.136

Sigma ‘F7’

accuracy 0.524 ± 0.101 0.485 ± 0.153 0.467 ± 0.143 0.422 ± 0.083 0.520 ± 0.145 0.524 ± 0.101 0.494 ± 0.166
precision 0.532 ± 0.121 0.491 ± 0.161 0.470 ± 0.147 0.422 ± 0.091 0.522 ± 0.153 0.532 ± 0.120 0.501 ± 0.181
recall 0.528 ± 0.111 0.490 ± 0.156 0.473 ± 0.145 0.422 ± 0.087 0.519 ± 0.150 0.528 ± 0.111 0.499 ± 0.175
f1-score 0.521 ± 0.103 0.475 ± 0.156 0.463 ± 0.144 0.415 ± 0.085 0.510 ± 0.151 0.521 ± 0.103 0.480 ± 0.169

Low Beta ‘Fp1’, ‘F4’

accuracy 0.608 ± 0.081 0.597 ± 0.134 0.646 ± 0.087 0.494 ± 0.050 0.626 ± 0.123 0.574 ± 0.100 0.617 ± 0.104
precision 0.612 ± 0.082 0.601 ± 0.136 0.649 ± 0.091 0.489 ± 0.060 0.635 ± 0.124 0.580 ± 0.101 0.624 ± 0.106
recall 0.610 ± 0.082 0.598 ± 0.136 0.647 ± 0.090 0.492 ± 0.055 0.630 ± 0.120 0.578 ± 0.101 0.618 ± 0.101
f1-score 0.605 ± 0.081 0.592 ± 0.134 0.643 ± 0.091 0.488 ± 0.060 0.626 ± 0.123 0.571 ± 0.100 0.613 ± 0.103

High Beta ‘Fp1’, ‘Fp2’,
‘F3’, ‘F4’

accuracy 0.658 ± 0.120 0.729 ± 0.122 0.726 ± 0.133 0.505 ± 0.069 0.734 ± 0.136 0.713 ± 0.118 0.714 ± 0.115
precision 0.660 ± 0.105 0.736 ± 0.125 0.733 ± 0.137 0.505 ± 0.071 0.735 ± 0.135 0.716 ± 0.115 0.718 ± 0.109
recall 0.656 ± 0.104 0.731 ± 0.119 0.726 ± 0.129 0.509 ± 0.065 0.732 ± 0.134 0.713 ± 0.112 0.716 ± 0.111
f1-score 0.651 ± 0.111 0.727 ± 0.124 0.723 ± 0.132 0.499 ± 0.078 0.731 ± 0.137 0.707 ± 0.119 0.711 ± 0.116

Table 5 presents the classification performance of each significant PLV of the connec-
tivity frequency bands. The highest accuracy achieved by PLV bands were 0.752 ± 0.144,
0.734 ± 0.145, and 0.719 ± 0.177 for PLV’s of delta, high beta, and alpha, respectively, using
LDA. The rest of the PLV bands got an average accuracy of 0.65 ± 0.12.

Table 5. The summary of average accuracies and standard deviations of PLV’s significant connectivity network features
from each band.

Features Performance CART KNN LDA LR NB RF SVM

Delta_PLV

accuracy 0.678 ± 0.107 0.684 ± 0.141 0.752 ± 0.144 0.657 ± 0.161 0.718 ± 0.166 0.717 ± 0.150 0.724 ± 0.179
precision 0.678 ± 0.111 0.691 ± 0.153 0.757 ± 0.142 0.661 ± 0.161 0.720 ± 0.162 0.719 ± 0.152 0.731 ± 0.182
recall 0.677 ± 0.109 0.681 ± 0.143 0.753 ± 0.140 0.658 ± 0.160 0.717 ± 0.162 0.713 ± 0.146 0.725 ± 0.177
f1-score 0.674 ± 0.108 0.678 ± 0.143 0.749 ± 0.145 0.653 ± 0.161 0.712 ± 0.165 0.711 ± 0.148 0.717 ± 0.181

Theta_PLV

accuracy 0.606 ± 0.172 0.681 ± 0.137 0.683 ± 0.129 0.631 ± 0.163 0.683 ± 0.145 0.629 ± 0.170 0.651 ± 0.179
precision 0.614 ± 0.172 0.681 ± 0.139 0.687 ± 0.130 0.631 ± 0.168 0.690 ± 0.144 0.636 ± 0.174 0.651 ± 0.180
recall 0.612 ± 0.172 0.674 ± 0.136 0.685 ± 0.128 0.627 ± 0.164 0.681 ± 0.146 0.631 ± 0.169 0.649 ± 0.178
f1-score 0.604 ± 0.174 0.673 ± 0.137 0.681 ± 0.129 0.624 ± 0.164 0.676 ± 0.145 0.627 ± 0.169 0.646 ± 0.178

Alpha_PLV

accuracy 0.686 ± 0.140 0.662 ± 0.148 0.719 ± 0.177 0.657 ± 0.180 0.710 ± 0.162 0.699 ± 0.142 0.691 ± 0.143
precision 0.686 ± 0.139 0.664 ± 0.154 0.719 ± 0.182 0.659 ± 0.181 0.709 ± 0.161 0.701 ± 0.142 0.696 ± 0.146
recall 0.686 ± 0.139 0.657 ± 0.149 0.713 ± 0.181 0.658 ± 0.181 0.706 ± 0.160 0.703 ± 0.145 0.687 ± 0.143
f1-score 0.682 ± 0.139 0.653 ± 0.152 0.711 ± 0.178 0.654 ± 0.179 0.707 ± 0.159 0.698 ± 0.143 0.686 ± 0.142

Sigma_PLV

accuracy 0.613 ± 0.124 0.675 ± 0.125 0.659 ± 0.125 0.591 ± 0.120 0.677 ± 0.117 0.629 ± 0.136 0.656 ± 0.131
precision 0.619 ± 0.125 0.680 ± 0.126 0.662 ± 0.126 0.597 ± 0.122 0.681 ± 0.117 0.632 ± 0.137 0.659 ± 0.133
recall 0.616 ± 0.122 0.675 ± 0.121 0.657 ± 0.122 0.595 ± 0.121 0.675 ± 0.114 0.631 ± 0.136 0.656 ± 0.130
f1-score 0.611 ± 0.122 0.670 ± 0.124 0.653 ± 0.124 0.589 ± 0.121 0.672 ± 0.118 0.626 ± 0.136 0.655 ± 0.130

L_beta_PLV

accuracy 0.663 ± 0.148 0.628 ± 0.134 0.679 ± 0.163 0.595 ± 0.132 0.655 ± 0.127 0.642 ± 0.137 0.641 ± 0.183
precision 0.663 ± 0.144 0.635 ± 0.145 0.686 ± 0.162 0.604 ± 0.137 0.659 ± 0.126 0.641 ± 0.137 0.642 ± 0.186
recall 0.663 ± 0.144 0.631 ± 0.139 0.683 ± 0.161 0.603 ± 0.132 0.655 ± 0.123 0.643 ± 0.136 0.640 ± 0.186
f1-score 0.659 ± 0.149 0.624 ± 0.136 0.675 ± 0.165 0.592 ± 0.135 0.653 ± 0.126 0.636 ± 0.140 0.636 ± 0.183

H_beta_PLV

accuracy 0.714 ± 0.143 0.680 ± 0.133 0.734 ± 0.145 0.675 ± 0.134 0.696 ± 0.141 0.719 ± 0.126 0.698 ± 0.137
precision 0.715 ± 0.146 0.699 ± 0.136 0.738 ± 0.150 0.684 ± 0.137 0.701 ± 0.141 0.723 ± 0.129 0.708 ± 0.140
recall 0.715 ± 0.147 0.688 ± 0.131 0.734 ± 0.149 0.680 ± 0.133 0.696 ± 0.143 0.722 ± 0.127 0.702 ± 0.136
f1-score 0.710 ± 0.145 0.677 ± 0.132 0.732 ± 0.147 0.672 ± 0.131 0.691 ± 0.140 0.716 ± 0.126 0.696 ± 0.136

We further classified each subset of significant features of the time domain, frequency
domain, and connectivity features as feature vectors and passed them to the classifiers.
Figure 8 shows the average accuracy of 15 significant time-domain features and achieved a
high accuracy of 81.4% and 80% using RF and SVM, respectively, while other classifiers
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achieved an average of 76.4%. Figure 9 represents the average accuracies of 20 significant
features of relative powers in the frequency domain. The highest accuracy of 80% was
obtained by SVM, and 74% was the average accuracy of the other classifiers. Similarly,
Figure 10 shows the results of 29 significant features from the connectivity network of
PLV, and the average performance accuracy obtained was 88% with SVM and RF, while
the rest of the classifiers achieved an average of 84%. Meanwhile, Figure 11 presents
the average classification result of 64 hybrid significant features from the time domain,
frequency domain, and functional connectivity network, as shown in Tables 3–5.

Figure 8. The average classification performance and standard deviation σ of 15 significant features
of the time domain. The vertical line indicates σ.

Figure 9. The average classification performance and standard deviation of 20 significant features
from the frequency domain.
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Figure 10. The average classification performance and standard deviation of all significant connectiv-
ity network features of PLV.

Figure 11. The average classification performance and standard deviation of hybrid features consist-
ing of 42 significant features from the time domain, frequency domain, and connectivity network.

Figure 12 demonstrates the comparison of classification accuracy of each feature’s
subset domain (time-domain feature, frequency domain, connectivity network feature)
as well as after their fusion. In summary, these results show that SVM achieved the best
classification performance when fusing connectivity features with cortical connectivity
features, scoring 93.2%, 92.4%, 92.5%, and 92.1% for accuracy, precision, recall, and f1-score,
respectively. Overall, fusing the multi-domain feature set from cortical and connectivity
features improves the classification performance by 13% compared to a single subset
domain alone.
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Figure 12. A summary comparison between the average accuracy of single subset domain fea-
tures (time domain, frequency domain, connectivity network features) and the fusion of all three
using SVM.

6. Discussion

This study has presented a methodological approach based on the fusion of multi-
domain EEG features and ML for the sake of mental stress classification. To the best of our
knowledge, this is the first EEG study on stress that fused functional connectivity features
with temporal and spectral features. For this aim, an experimental paradigm based on MIST
was designed to induce mental stress and rest conditions using mathematical task with time
pressure and negative feedback. For the comparison between the two conditions, a valid
objective measurement using the alpha-amylase level (AAL) was collected from the saliva
of each subject under both conditions (rest/stress) and quantitatively analyzed, as shown
in Figure 4. We found that induced stress revealed a significant difference in AAL between
the rest and stress conditions across all subjects, with a considerable increase in AAL from
the rest condition to the stress condition. This study correlates to prior findings [13,57] of
utilizing arithmetical tasks to induce mental stress in the laboratory setting.

Compared to previous stress detection methods, the main contributions of the pro-
posed method are exploiting the different feature extraction methods and analyzing the
significant corresponding channels. For the identification of mental stress in EEG, three
scenarios for feature analysis were conducted:

The first scenario analyzed features of the time domain, frequency domain, and
functional connectivity network separately, as shown in Tables 3 and 4 and Figure 7. Prior
to the analysis, only significant channels were selected for classification. The selection of
significant channels in all types of features was based on a statistical t-test at p < 0.05. The
second scenario was based on combining the significant features within the time domain,
frequency domain, and connectivity features of PLV to form subset feature vectors for
classification (Figures 8 and 9). The third scenario was based on the fusion of the significant
features from all domains (time domain, frequency domain, and connectivity network
features) to form a single hybrid subset feature vector for subsequent classifiers.

In particular, for the temporal features of Hjorth complexity, Hjorth activity, ptp_amp,
and kurtosis, we found a significant decrease from the rest condition to the stress condition.
The decrease in the temporal activities within stress conditions indicates that participants
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experience difficulties in engaging with the MA task. In fact, the greater the complexity
value is, the more active the brain is. Previous studies have found that higher complexity
meant increased behavioral performance [58,59]. In line with that, the decreased complexity
in our study is a sign of decreased behavioral performance (accuracy of detection) due to
stress. It should be noted, however, that the decrease in brain activity/complexity in our
study was localized to a certain brain region. For example, when the temporal features of
Hjorth complexity are considered, the left frontal region at ‘Fp1’ and ‘F3’ is highly reduced
under stress. This reduction is consistent with the previous emotion study that utilized
videos to induce negative emotions in the participants [60]. Likewise, when the complexity
and skewness are considered, the right frontal region at ‘FP2’ and ‘F4’ is highly reduced.
This is also consistent with our previous studies that utilized simple arithmetic tasks with
time pressure to induce stress [13,27].

On the other hand, we found that the relative EEG power in theta, alpha, sigma,
and beta showed a significant increase from the rest condition to the stress condition at a
particular region of the brain. Considering all of the relative powers together, we found that
the right hemisphere was highly sensitive to stress exposure. This confirms that negative
emotions are induced under stress. This is in line with previous studies that showed when
the stress level increased, the alpha power increased across the frontal cortex [44,57,61,62].
Likewise, the increase in relative beta power in our study is also consistent with previous
studies that utilized driving and public speaking as stressors in their studies [39,63]. These
findings demonstrate the potential of using temporal, spectral, and connectivity features in
finding patterns associated with mental stress, as demonstrated in our previous studies on
stress and control states [64,65].

We further analyze the classification accuracy of stress based on the first scenario
using CAR, KNN, LDA, LR, NB, RF, and SVM classifiers. The temporal features of the
peak-to-peak amplitude of the significant channels—‘F7’, ‘F3’, ‘Fz’, and ‘F8’—showed the
highest classification accuracy of 79.4% using SVM. Meanwhile, the frequency-domain
features of the high beta band (20–30 Hz) at significant channels of ‘Fp1’, ‘Fp2’, ‘F3’, and
‘F4’ achieved the highest classification accuracy of 73% using KNN.

Meanwhile, in the second scenario (domain feature subset analysis), we observed a 2%,
7%, and 13% improvement in classification accuracy in the time domain, frequency domain,
and connectivity features, respectively, when compared to the first scenario. Particularly,
the high accuracies of 81.4%, 80% and 88% were achieved when using the significant feature
subset of the 15 time-domain features, 20 frequency-domain features, and 29 connectivity
network features, respectively. It is noteworthy that the subset of connectivity features
outperformed other domains in classifying mental stress. Our findings are consistent with
prior functional connectivity research, which has shown that functional connection is more
reflective of the mental task performance [66].

Additionally, in the third scenario, fusing significant features of the time domain,
frequency domain, and connectivity features of PLV (a total of 64 features) improved the
overall accuracy of detecting the rest/stress condition with the highest accuracy of 93.2%
obtained using SVM. As expected, the improvements in the classification performance
support the hypothesis that fusing multi-domain features may provide complementary
information for better stress detection. In general, the proposed method of selecting a
significant EEG-channel-based feature yield a total reduction of feature space of almost
60%, with 64 significant features out of 210 features.

The overall classifiers’ performance depends significantly on relevant EEG features
and the selected channel related to the given task. Previous studies have found that using
a large number of EEG channels could provide high resolution and improve accuracy;
however, they have inherited issues, such as cost and applicability, particularly outside
laboratories. Subhani [57] discusses the identification of stress using 19 EEG channels
with features of absolute power, relative power (RP), coherence, phase lag, and amplitude
asymmetry, and they reported high accuracy of 94.58%; yet, high dimensionality existed
when the 190-feature vector was used. This high accuracy could be interpreted as the
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result of using a high spatial resolution of 19 EEG channels. However, in this study, the
maximum accuracy was 93.2% with the 64-feature vector. Although the accuracy was
slightly lower than the one reported by [57,63], this study efficiently reduced feature space
with high performance.

This study confirmed that the fusion of temporal, spectral, and connectivity features
significantly improved mental stress classification accuracy. Although the study was
informative for the mental stress classification, it had a few limitations. First, we only
reported the results of EEG feature extraction at an epoch length of one second, which
corresponds to 256 EEG data points. Future studies may consider reporting the results of
epochs with more than one second, i.e., in the range of one to ten seconds. Second, this
study was constructed on fusion functional connections using PLV with cortical features.
Other connectivity features, such as the Phase Lock Index (PLI), Partial Directed Coherence
(PDC), and Directed Transfer Function (DTF) [54], were not included in the study. Third,
while we conducted statistical analysis with a t-test to select the brain regions relevant
to mental stress in this study, different methods for detecting mental stress using feature-
based channel selection (e.g., swarm intelligence) should be considered in future work to
reduce the high dimensionality and select the optimal feature set. Finally, throughout the
experiment, we found that the SVM outperformed other classifiers in terms of classification
performance using the selected hyperparameters, but using algorithm optimization for
finding optimal parameters could improve the overall performance.

In essence, the proposed framework empirically proved the possibility of having
significant channels corresponding to each feature while eliminating the redundancy and
ignoring un-relevant channels. Then, it could be suggested that EEG signals have the
potential to be reliable for identifying stress for home-based applications with an optimal
number of channels and the relevant features. However, multiple methods for detecting
mental stress using feature-based channel selection should be considered in future work.

7. Conclusions

This paper aims to find feature sets that would distinguish the stress and non-stress
conditions using seven frontal EEG channels. EEG’s features from the time domain,
frequency domain, functional connectivity network, and all three fused together were
investigated. Seven classifiers were used to evaluate the performance of each feature set
before and after fusion. The highest accuracy of 93.2% was achieved using hybrid features
with the SVM classifier. In comparison, the evaluation performance of the time domain,
frequency domain, and connectivity feature subsets were 81.4%, 80%, and 88% respectively.
The results demonstrated that the proposed method of fusing the connectivity network
with temporal and spectral features was capable of detecting mental stress state with high
classification performance. The overall results support developing a real-time system for
stress measurement and analysis.
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