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Colorectal cancer (CRC) has complex pathological features that defy the linear-

additive reasoning prevailing in current biomedicine studies. In pursuing a

mechanistic understanding behind such complexity, we constructed a core

molecular–cellular interaction network underlying CRC and investigated its

nonlinear dynamical properties. The hypothesis and modelling method has

been developed previously and tested in various cancer studies. The network

dynamics reveal a landscape of several attractive basins corresponding to both

normal intestinal phenotype and robust tumour subtypes, identified by their

different molecular signatures. Comparison between the modelling results

and gene expression profiles from patients collected at the second affiliated

hospital of Zhejiang University is presented as validation. The numerical ‘driv-

ing’ experiment suggests that CRC pathogenesis may depend on pathways

involved in gastrointestinal track development and molecules associated

with mesenchymal lineage differentiation, such as Stat5, BMP, retinoic acid

signalling pathways, Runx and Hox transcription families. We show that the

multi-faceted response to immune stimulation and therapies, as well as differ-

ent carcinogenesis and metastasis routes, can be straightforwardly understood

and analysed under such a framework.
1. Introduction
Colorectal cancer (CRC) is a leading cause of cancer deaths in the USA [1] and

around the world [2,3]. The current research on combined molecular-targeting

agents [4], the need for better risk models to incorporate genetic, lifestyle and

environmental effects [5], and the development for early detection method [6]

all require a better understanding at the molecular level. Ideally, a causal and

quantitative model may be used as a ‘dry-experiment’ platform to recapitulate

carcinogenesis and metastasis routes, and to test efficacy of drug combinations.

Towards such a goal, we investigated CRC under the framework that cancer is a

robust state(s) evolutionarily formed from the underpinning endogenous mol-

ecular–cellular interaction network [7,8]. The method has been developed and

tested in recent years [9–12]. The model construction and analysis are presented

in this work. We show that the model indeed captures the essential features of

CRC complexity. The nonlinearity of the interaction network dynamics is

directly responsible for the formation of the robust CRC subtypes and their

differential responses to intervention.
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CRC is a clinically heterogeneous disease. About 40% of

patients with CRC develop liver metastasis at the time of presen-

tation, with approximately 20% presenting as synchronous

metastasis and the remaining 20% as metachronous metastasis

[13–15]. Classification schemes are researched to associate clinical

outcome with both genetic and phenotypic biomarkers, such as

KRAS/BRAF mutations [16], overall mutation frequency [17],

mesenchymal character [18], methylation [19] and gene

expression profiles [20]. Forexample, patients who differ in micro-

satellite instability, which accounts for 7–20% of all patients,

appear to have a different prognosis and benefit from chemother-

apy [18]. However, these tumour classification schemes have

intrinsic difficulties in themselves, such as the choice and

comparison across and within different patient sets used in associ-

ation studies [21]. In addition, the classification schemes do not

directly translate molecular heterogeneity of CRC into the disease

progression and response to therapies mechanistically. A better

understanding for CRC heterogeneity is still needed. Neverthe-

less, a remarkable finding of a possible robust classification

system, by analysing six independent classification systems and

their convergence into four consensus molecular subtypes [22],

suggests that CRC may have intrinsic robust subtypes regardless

of approaching angles. This observation of robust molecular sub-

types is consistent with our hypothesis that cancer corresponds to

intrinsic robust states formed by an endogenous molecular–cellu-

lar interaction network [7].

The hypothesis of an endogenous molecular–cellular

interaction network for cancer has been tested in hepatocellu-

lar [9], prostate [10] and gastric cancers [11], and acute

promyelocytic leukaemia [12]. The major assumption is that

the collective effects of interactions among molecular/cellular

agents lead to robust states including normal physiological

states and cancer subtypes. Carcinogenesis may be understood

as a transition from a normal state to cancer state(s). The effect

of mutations is naturally incorporated [23]. The idea of collec-

tive emergence in biology goes back to Waddington and

Delbruck, followed by Monod and Jacob, Hinshelwood and

Kauffman [24–29]. High-dimensional attractor states in gene

expression patterns and their functional robustness have

meanwhile been experimentally demonstrated [30,31].

Genetic and epigenetic studies have identified dozens of

genes and molecular pathways, which could possibly have

causal relation to CRC. Large-scale molecular profiling, on

the other hand, has identified thousands of molecules differ-

entially expressed in CRC and its progression [32,33]. As

constructing a network that includes all the genes known to

be differentially expressed in CRC and their regulatory mol-

ecules is not practical and may not be necessary to provide

a picture for the mechanism, we focused on the ones which

may be casual to CRC pathology. In addition to well-

known molecules and pathways in carcinogenesis, such as

p53, Myc, Wnt and NF-kB [34–36], we included molecules

important in embryonic development, notably of the gastro-

intestinal (GI) track and mesenchymal lineage. The

feedbacks from intra- and extracellular signalling as well as

other molecular interactions are collected from molecular

biology and biochemical low-throughput experiments

designed to be valid under normal physiological conditions.

The network dynamics simulation reveals the robust states,

their transition paths and the associated drives by the orche-

strated activities of key regulatory molecules. The calculated

robust heterogeneity is validated by the reported phenotypes

in the literature and microarray experiments. The implication
of such a roadmap in carcinogenesis and metastasis potential

is considered in the Discussion section. The intrinsic landscape

of CRC may also shed new light on the debate about the sti-

mulating/inhibitory effect of immune response to cancer.

Future clinical and biological studies are needed to fully vali-

date these predictions and explore for therapeutic purposes.
2. Results
2.1. Molecular – cellular network model for colorectal

cancer
The molecular–cellular network we constructed is aimed to

be a consolidated and simplified core network for studying

CRC development (figure 1). Some of the nodes in the net-

work represent pathways, such as Notch, SHH and Wnt

signalling pathways. Cascading effects within these path-

ways are included in the same manner. Similarly, EGFR,

VEGF represent pathway activities, not the expression level

of these proteins. Growth factor feedback loops are assumed

to be self-contained within the tumour tissue. For example,

although VEGF receptors are primarily expressed on endo-

thelial cells, tumour cells might also express them [37].

Production of cytokines is not assumed to be from tumour

cells but from the tumour tissue, and emphasis in defining

interactions is on receptors/ligands and crosstalk between

signalling pathways. Importantly, the model involves cell–

cell interactions because of the feedback from cytokines and

extracellular matrix. To keep the model simple, only repre-

sentative molecules of given functional modules are

included. For example, for cell cycle regulation, only Cyclin

E and Cyclin D are included. The nodes and edges of the

CRC network that represent molecules, pathways and their

interactions are listed in electronic supplementary material,

table S1. Cell cycle, apoptosis, growth factor signalling, differ-

entiation, immune response, stress response, angiogenesis

and metastasis are incorporated in the model. The inter-

actions among molecules are obtained from the literature,

with preference given to interactions with solid biochemical

basis. The constructed network is presented in electronic sup-

plementary material, table S1, with detailed references in

electronic supplementary material, table S2.

The network construction is hypothesis-driven in seve-

ral respects. First, a number of important molecules and

pathways identified in previous genetic and molecular

biological studies (such as APC and KRAS), with a causal

relationship to CRC development, are included as nodes in

the network. Second, we assumed that there are intrinsic mol-

ecular feedback loops of these genes or molecules. We looked

into developmental programmes for these feedback loops.

There are studies showing that overactive pathways can

lead to pathological conditions. For example, the Wnt path-

way, which is active in the developmental process, induced

a programme of intestinal genes in the developing lung

[38]. Third, we hypothesized that feedback loops mediated

by immune response also might have a developmental link

in haematopoiesis. Development of leucocyte is orchestrated

by the comprehensive regulation of inflammation-related

molecular programmes. In addition, physiological inflam-

mation in response to external stimulation dissolves after

withdrawal of stimuli, while the developmental programme

presumably requires self-sustained feedbacks to quarantine
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Figure 1. Schematics of endogenous molecular – cellular network construction and modelling. We started with a minimal core network representing regulation of
basic cellular functions, such as cell cycle, apoptosis and stress response, similar to previous cancer models [9 – 12]. Molecules and molecular pathways specific for GI
track development and functions, such as transcription factors Cdx2, HNF1, glucocorticoids signalling pathways, were added to the minimal core network. The
molecular interactions were collected from the literature, with priority given to those verified by molecular biology experiments. Feedback loops related to inflam-
mation and hematopoiesis were also included. Dynamical system equations (described in electronic supplementary material) were used to compute the attractor
states generated by the defined network structure, as well as saddle points for spontaneous transitions between attractors. Random parameter tests were performed
to demonstrate robustness of the obtained results. Comparison of gene activity profiles predicted by the attractors with microarray data validated the modelling.
Specifically, CRC subtypes as well as normal intestinal phenotype corresponded to the attractors of network dynamics.
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robustness. More details can be found in the electronic

supplementary material.

2.2. From network model to phenotypes: robust states
In a molecular network, due to the interactions in the net-

work that include feedbacks only for a limited number of

combinations, these interactions are ‘balanced’, that is, do

not exert any driving force to change the network state. Math-

ematically, these ‘balanced states’ correspond to fixed-point

solutions of a nonlinear dynamical system [39]. If a fixed

point is also stable under perturbation, it is an attractor of

the system. These attractors are more likely to occur and

have a longer residence time in real biological systems with

the presence of noise. Saddle points or other fixed points

that are partially (i.e. in a subset of state space directions)

stable can serve as passes for stochastic transitions between

attractors. The attractors are interpreted as cell phenotypes

because of their stability, which affords homeostatic robust-

ness to the specific molecular profile that determines

phenotype [9,10,40]. We obtained 10 attractors from the

network constructed (figure 2), representing the predicted

phenotypes. These attractors are robust over a large range
of parameters. Among them, attractors S7–S10 display mol-

ecular profiles that resemble apoptotic states. Attractors S1

and S2 are proliferation phenotypes, epitomized by upregula-

tion of E2F, Cyclin D/E. By contrast, attractors S5 and S6

represent differentiated phenotypes. Attractors S3 and S4

appear to encode cell cycle arrested state, but otherwise

resemble the proliferation attractors S1 and S2.

Among the two growth states with predicted active cell

cycle activity (attractors S1 and S2 in figure 2), one seems to rep-

resent growth factor-stimulated proliferation, characterized by

active FGF, HGF, IGF, EGF signalling, consistent with epithe-

lia-to-mesenchymal transition and endoderm organ

formation (attractor S1 in figure 2) [41], while the other appears

more typical of CRC: active Wnt pathway [42], high expression

of Runx1 and osteopontin [43]. These two growth states might

both contribute to cancer progression because they intercon-

vert into each other relatively easily. The growth-factor-

stimulated state (attractor S1) is inducible from attractor S2

by reduction in Stat3 pathway (figure 3). By contrast, the typi-

cal CRC-like state (attractor S2) is not inducible from attractor

S1 by inflammation alone. Instead, attractor S2 is induced by

both inflammatory and immune suppression from attractor

S1 by increasing TNF-a and TGF-b. There are different ways
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Figure 2. The molecular profiles of the attractors in the dynamical system model of the CRC network (see also electronic supplementary material, table S1). The
corresponding equations are listed in electronic supplementary material. Note that attractors S1 and S2, which correspond to proliferating, differ mainly in Stat5
activities. This difference may influence metastasis. Attractors S3 and S4 correspond to non-proliferating states but are otherwise similar to S1 and S2. S5 represents
the normal intestine phenotype. S6 resembles a differentiated phenotype with a secretory signature. S7 – S10 map into apoptotic states.
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to interpret the possible phenotypes represented by attractors

S1 and S2, but it is apparent that they have characteristics of

both an aberrant developmental process and inflammation.

The differentiated states (attractor S5) represent an intes-

tine-like phenotype, characterized by activated Cdx2 and

HNF1. Both genes are indispensable for intestinal function

[44]. Attractor S5 also has higher GATA4/6 level, consistent

with an intestinal epithelial cell phenotype [44]. Attractor S6

differs from S5 by being Foxa1,2/SHH/Sox-positive. It might

represent stomach or intestinal secretory cell lineage [11,45–

47]. For these attractors, the active network nodes (with a

high expression level) can be identified, as shown in electronic

supplementary material, figure S1. This is a way to visualize

the effective subnetwork specific for each attractor. The active

nodes for the normal intestine-like state (attractor S5) are com-

pared with those for S1, S2 and S6 separately in electronic
supplementary material, figure S1. The network topology

indeed suggests that attractors have their own separate positive

feedback loops. Also, attractors have mutual suppressing

relations, as shown in the graph, although not in the simple

form as seem in direct node-to-node switches.
2.3. Comparison with observations I: common features
of colorectal cancer

CRC is a disease that exhibits inter-individual variation both

in pathology and in its response to treatment. The model pre-

dicts multiple fixed points. This multi-stability opens the

possibility that cells in a tumour occupy distinct attractors,

and possibly interconvert between them—giving rise to mix-

tures of cell phenotypes—which would explain the widely
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observed non-genetic cellular heterogeneity of tumour tissues

[48,49]. However, obviously transcriptome analyses of

tumours [50] still can identify subtypes of CRC, perhaps

because some attractor dominates. Thus, we first identified

common features in CRC profiles derived from modelling

and compared them with clinical measurements.

Attractor S5 (figure 2) represents normal intestinal pheno-

type. If the intestinal cells were trapped in other attractors,

they would be pathological, although not necessarily CRC.

We assume that cancer tissue is a heterogeneous combination

of attractors S1–S4 and S6, then compare with real tumours.

Figure 2 shows that HNF1, HNF4, Cdx2, TGF-b pathway,

E-cadherin and glucocorticoid pathway characterize normal

intestine. They are unambiguously downregulated in every

possible abnormal state in the computed attractors S1–S4

and S6. The microarray profile from patients obtained from

the second affiliated hospital of Zhejiang University showed

downregulation of HNF1B expression in CRC patients.

As expected [51], HNF1B transcript downregulation

accompanied a decrease in gluconeogenesis (manifest in

PCK1, phosphoenolpyruvate carboxykinase), upregulated

glycolysis (GPI, glucose-6-phosphate isomerase) and lipogen-

esis (SCD, stearoyl-CoA desaturase). Microarray results for

Cdx2 and HNF4A were not conclusive. TGF-b signalling

impairment is consistent with upregulation of negative regu-

lators TGIFs [52,53]. Glucocorticoid receptor NR3C1 and

mineralocorticoid receptor NR3C2 were both downregulated

in CRC patients. Glucocorticoids target genes CYP3A4 [54],
SGK1 [55] and CYP11B1 (steroid 11-b-hydroxylase), which

are required for synthesis of glucocorticoids [56], were down-

regulated in CRC patients. The model predicts upregulation

of Stat3 in attractors S1–S4. Expression of several Stat3

target genes, SULF1, PIM3 and KLF4 [57] was altered accord-

ingly, as shown in figure 4a. In addition to transcripts, the

kinase activities of the Akt and MAPK pathways were

shown to be active in CRC stem cells [58], consistent with

both attractors S1 and S2. These experimental results show

that network modelling results are consistent with obser-

vation. One application for these common features (shown

in figure 4a,b) predicted by models is to use them as molecu-

lar signature in prognosis and diagnosis. Unlike signatures

defined by brute-force statistical analysis of data [50,59],

attractor-informed patterns capture the natural constraints

imposed by the underlying regulatory network.
2.4. Comparison with observations II: heterogeneous
features of colorectal cancer

The computed attractors S1–S4 and S6 (figure 2) together with

their combination define a set of subtypes that the network

model predicts. There are two proliferating attractors S1 and

S2. Stat3 and Stat5 pathways are both active in attractor S1,

while only Stat3 is active in attractor S2. Runx1, interleukin sig-

nalling, Wnt pathways and NR4A are more active in attractor

S2, while Hox genes and FGF signalling are more active in S1
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attractor. Attractor S2 also predicts upregulated OPN, which

favours metastasis [60]. When comparing patients’ mRNA pro-

files, we can determine which attractor the profile of an
individual tumour is closer to. For example, patient 6 (in elec-

tronic supplementary material, file 2) is close to attractor S2,

with high OPN, Runx1 and low Hoxa10. Compared with
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patient 6, patient 9 is closer to attractor S1, with low OPN,

Runx1 and high Hoxa10. Attractor S6 resembles a differen-

tiated state with possible secretory signature. There are
reports of mucinous CRCs [61–63], which express Sox2,

MUC5AC, MUC2, MUC5B and p21 (CDKN1A). In the micro-

array data (in electronic supplementary material, file 2), several
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tumours (of patients 2, 3, 4, 5, 7, 15) exhibit a molecular profile

resembling that of S6, characterized by upregulated p53 or p27

and upregulated mucins. However, there is a difference

between attractor S6 and these patients’ profiles, in that the

apparent Stat3 activity is high in these patients, as suggested

by elevated SULF1, PIM3 and KLF4. It is now well documented

that most (if not all) tumours, including CRC, contain multiple

cell types, even among the isogenic cells [58]. Such phenotypic

heterogeneity is best explained by multi-stability [48,49]. One

possibility is that these patients’ tumours may contain cell

types other than S6 that would map into attractor S1 or S2.

These p53- or p27-positive patients are particularly interesting

because they have a worse clinical outcome.

2.5. Transition between robust states
Mathematically, in addition to attractors, the network dynamics

also predict saddles and other unstable fixed points. However,

these states are not locally stable. When perturbed, they will

flow to different attractors, driven by molecular interactions

[9,10,64,65]. The saddle points have straightforward dynamical

interpretation as the point of passage of the ‘least effort’ path for

spontaneous transitions between attractors driven by noise

[66–68]. Such paths are shown in figure 3a. Attractors S1–S4

are connected through multiple saddles and other unstable

fixed points to each other. Therefore, it is likely that cells inter-

convert due to external perturbations or internal fluctuations.

The exception is attractor S6, which is not connected to prolifer-

ating states represented by S1 and S2. As S6 resembles a non-

proliferative and differentiated state, it has to coexist with

either S1 or S2 to allow for tumour growth. This heterogeneity

of growth behaviour fits the biological framework of cancer

stem cells that drive tumour growth. Among the possible

CRC attractors S1–S4, attractor S3 is connected by a saddle

point to the normal intestine-like attractor S5. This would

suggest the possibility that carcinogenesis could be initiated

by a transition from the normal intestine-cell-type attractor

S5–S3 through the saddle point.

Transition from one attractor to another in the model can

also be enforced by resetting the values of a few selected

nodes of the network, which in reality maps into upregulat-

ing or downregulating of the corresponding molecules by

external induction. Starting from normal intestine-like attrac-

tor S5, if Myc is upregulated, and p21 and PTEN

downregulated simultaneously, this would cause a switch

to the proliferative state S2, with typical CRC molecular pro-

file. In the model, when NF-kB is numerically upregulated in

the normal intestine-like attractor S5, the cell will switch to

attractor S3, consistent with the notion of inflammation as

promoter of carcinogenesis. A switch from attractor S3–S1

is caused by activation of Myc. Computed trajectories for

selected attractor switching are shown in figure 3b. Consistent

with the modelling results that attractor S6 is not as closely

connected through saddles or other unstable fixed points to

the rest of the attractors, inducing S6 from S5 is more difficult.

2.6. Validation of the modelling results
We use standard hypothesis testing for the validation.

Comparison between modelling results and clinical data:
Vector (a). Extracting results from clinical data. We use the

average gene expression value of the microarray data from

CRC (26 samples) versus the average value of those from
normal tissue (17 samples) to generate a vector (a column

matrix) with 1 and 21 elements. The rule is listed below: if

the expression level of a gene from the CRC data over that

from the normal tissue is larger than 1 plus a threshold

value, we consider this gene is upregulated in CRC and vice

versa. In case the upregulation or downregulation is not deter-

mined by data, we remove the gene from the list, because we

cannot distinguish the two possibilities that (i) the upregula-

tion or downregulation of the gene is not shown due to

inaccurate measurements, and (ii) the gene expression level is

similar in CRC and normal tissue.

CRC

Normal
. 1þ threshold, 1 (upregulated in CRC)

Normal

CRC
. 1þ threshold, � 1 (downregulated in CRC)

Otherwise, 0 ðundetermined by data, removed) :

8>>>><
>>>>:

Vector (b). The vector (with 21, 1, 0 elements) for the mod-

elling results can be similarly generated without removing

zeros, because zeros mean that the modelling results predict

a similar gene expression level. We use the same threshold for

the two vectors (a) and (b). We could then compare the two

vectors directly and compute an accuracy rate for the consist-

ency (see electronic supplementary material, file 3 for details).

For a 5% threshold value, the accuracy is about 73% with a

total of 78 genes, which is close to the accuracy of microarray

data based on our previous experience [8,10–12,23]. We also

compute the accuracy with a varying threshold value in

figure 5b. It demonstrates the robustness of our results.

Test 1: Comparison with random guess. We generate 1 million

random vectors with uniformly distributed 1 and 21. For

better matching with the data, we do not include zeros here.

The distribution of the accuracy is shown in electronic sup-

plementary material, figure S3. The test shows that our

modelling results have p , 0.00001.

Test 2: Comparison with randomly rewiring networks. The null

hypothesis is that the accuracy of the results from the CRC net-

work model versus clinical data is not significant compared

with results generated from randomly rewiring networks.

For randomly rewiring networks that have the same total

number of interactions but are randomly rewired the connec-

tions and interaction types (inhibition or activation), we

compute the accuracy rate distribution shown in figure 5a.

For each randomly rewiring network, we compute its dyna-

mical stable states and the optimal two-state combination

(assigned to cancer and normal separately) compared with

the data. The estimated distribution from 200 networks

shows that the p-value is less than 0.005, such that the null

hypothesis should be rejected.
3. Discussion
3.1. Clinical implications: colorectal cancer

carcinogenesis, metastasis and treatment
CRC development may take years and involve multiple risk fac-

tors [3,69–71]. Intermediate steps have been observed. The

molecular network constructed here exhibits both normal intes-

tine-like attractors and proliferating CRC-like attractors. The

predicted possibility for switching from normal intestinal to

CRC states may be relevant to carcinogenesis summarized in

figure 3. The results are consistent with the heterogeneous
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nature of carcinogenesis and the role of inflammation and stress

[72,73]. The network model naturally allows for a multitude of

paths for the transition to the cancerous attractors [74], many of

which are associated with an inflammatory programme.

Specifically, the model predicts that tumour attractors can be

reached through changes in Myc, p21 or PTEN, or activation

of NF-kB as intermediate steps. In addition, increased stress

and p53, in combination with loss of retinoic inducible tran-

scription factor AP2 and nuclear factor HNF4, may also lead

to switching to CRC, from normal intestine-like attractor S5–S1.

The network supports several attractors that might associ-

ate with distinct phenotypes; in principle, how they

contribute to metastasis can be discussed. For instance, the

proliferating attractors S1 and S2 differ in Stat5 pathway

activities. Stat5 signalling has been shown to have an inde-

pendent effect on cell morphology via regulation on the

expression of adhesion molecules [75,76]. Impaired Stat5 sig-

nalling leads to non-healing wounds in the intestine [76]. The

loss of intestinal barrier due to Stat5 dysfunction might con-

tribute to metastasis in the phenotypes given by the network.

Another metastasis-related protein, PRL-3, is a downstream

target of Stat5 and Stat3 [77,78]. Note that all the network-

supported phenotypes of CRC have metastasis potential.

The Runx1 and OPN high/low phenotype might favour

metastasis through loss of intestinal barrier/activate PRL-3.

Transition from CRC to normal intestine state, on the other

hand, might be relevant to the prevention and treatment of

CRC. There are three major types of CRC, represented by the

type with positive p53 or p27 (S6), and the OPN- and Runx1-

positive (S2/S4) and-negative (S1/S3) types. For the OPN-

and Runx1-negative phenotype, switching to the normal intes-

tinal phenotype requires a suppression of the inflammation

programme, which could be achieved through a transition

from S3 to S5 by reducing Stat3 and Stat5. For the OPN- and

Runx1-positive phenotype, switching to the normal intestinal

phenotype would require first a switching to the OPN- and

Runx1-negative phenotype, from S2 to S1, through suppression

of RARs signalling and simultaneous anti-inflammation (redu-

cing Stat3, increasing TGF-b signalling). The p53/p27-positive

CRC type could be converted to the OPN- and Runx1-positive

phenotype via S4, by promoting inflammation (NF-kB and

TNF-a) and suppressing retinoic acid signalling RARs.
The theoretical base under immunotherapies is the cancer

immunosurveillance hypothesis [79]. However, experimental

evidence leads to various conclusions, ranging from that the

immune system naturally protects against cancer [80] to that

the immune reaction is almost always stimulatory to the

tumour’s growth [81]. The current focus on the differential

responses to immunotherapy is usually about the state of the

immune system, such as the T cell population and types

[82,83]. Our results show that different intrinsic robust cancer

subtypes may respond to immune cells, such as T cells and

macrophages, differently (figure 3b). Since the focus of the

model is on tumour cells, the calculated different responses are

due to the network-wide regulation over NF-kB and Stat3/5

inside tumour cells. If the internal status of a tumour does not

favour NF-kB activation, the remaining effect of cytokines is

left as a growth factor. Therefore, the calculated likely routes

for transitions between normal and cancer states, corresponding

to the genesis and development of cancer and transition among

subtypes, have non-identical dependence on immune activation.

The network for CRC presented in this work is essentially a

core decision-making network for intestinal development and

function. Signal transduction and transcriptional regulation are

two main molecular interaction types included. There are no

particular cancer-specific genes or cancer pathways in the net-

work. As consequences of the network wiring diagram, its

dynamics generate multiple attractors, which are robust

states and correspond to both normal intestinal phenotype

and CRC subtypes. For each of the robust state, a subnetwork

of the active nodes thus represents ‘cancer network’ or ‘normal

network’ separately, although they are part of the same

endogenous network. Interestingly, the nodes active in the

normal and CRC-like attractors have mutual inhibiting effects.

The concept of multiple attractors emanating from a single net-

work naturally suggests that healthy and abnormal cell states

are ‘alternative sides of the same coin’—a feature not manifest

in the traditional notion of specific linear pathways implicated

in individual ‘hallmarks’ of cancer [84,85]. Here, we tested the

cancer attractor concept, which has a solid foundation in a

formal framework, but typically has been articulated in generic

terms. We link it for the first time to specific biological obser-

vations, both in terms of the network topology (by modelling

experimentally tested molecular interactions) and network
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dynamics (by comparing measured transcriptomes with

predicted attractors). We show high consistency in that

our network model predicted features of CRC including its

diversity among individual patients.
alsocietypublishing.org
Open

Biol.7:170169
4. Material and methods
4.1. Network construction
The construction of the network followed an incremental pro-

cedure aimed at capturing the essential features of CRC while

keeping the network to the core level. To start with, we first

built a minimal cellular model, with cell cycle, apoptosis,

growth factor signalling, immune response and stress

response modules, similar to previous works [9–12]. Mol-

ecules and molecular pathways well established in cancer,

such as PTEN, p53, Myc, Ras and NF-kB, were in this mini-

mal model. Then we added several additional modules

specific to CRC. First, Cdx2 [86] and Notch signalling path-

way [87] were included for their role in intestinal

differentiation. Cdx2, HNF1 and Gata family were added

for their indispensable roles for intestinal function [44]. Wnt

[88,89], SHH and BMP signalling pathways [90–92] were

also included for mesoderm development. Wnt signalling is

active in posterior endoderm in early mouse development.

Wnt induces Cdx2, a cell fate switch of intestinal differen-

tiation [93]. Glucocorticoid pathway was included for its

effect on GI mucosa [94] and PPARg for inhibiting intestinal

inflammation [95,96]. We explored inflammation beyond

NF-kB pathway, into haematopoiesis because of many

shared transcription factors in CRC and leukaemia. One poss-

ible feedback link is Runx1, which is often over-expressed in

CRC. Runx1 is both a gastric gene and indispensable in haema-

topoiesis, and associates with the myeloid leukaemia [97–99].

A number of leukaemia-related genes and molecular signal-

ling pathways (Hox family, Pu.1, IL3) were also added for

their possible role in immune response. Finally, angiogenesis

and metastasis modules were included in the model.

4.2. Network modelling
The dynamical model for the CRC network was constructed

based on a framework of the endogenous molecular–cellular

network proposed previously [7,8]. Endogenous network

models have been built for hepatocellular [9], prostate [10]

and gastric cancers [11], as well as acute promyelocytic leukae-

mia [12]. As detailed knowledge about the interactions

between the network nodes (e.g. in vivo parameters) is usually

absent, a coarse-grained modelling of the network dynamics

was employed. The interactions between the network nodes

(agents) were described by activation/inhibition using

differential equations [9–12], as a refinement of coarser

descriptions such as the threshold Boolean network [100,101].

The dynamical equations for the concentration/activity

of an agent xi under the influence of other agents

x ¼ ðx1, x2, . . . , xnÞ take the following form:

dxi

dt
¼ fiðxÞ �

xi

ti
:

This expression consists of a generation term and a degra-

dation term, which is consistent with the chemical rate

equation. The degradation time is set to be unity for all
agents (i.e. ti ¼ 1). The underlying assumption is that the

baseline decay times for the agents are of the same order of

magnitude. Although protein degradation time may vary sig-

nificantly, most of the agents in the network for the core

endogenous interactions operate at the regulatory level rel-

evant to cell proliferation and death. It has been shown that

the lifetimes of more than 4000 proteins in a non-dividing

mammalian cell are narrowly distributed, with a median

value of 35.5 h [102]. No structural proteins with a long life-

time are included in the model. For the signal transduction

processes, the signalling pathways are treated as a whole

until downstream transcription takes effect, avoiding the

possible short response time of the initial stages. The active

regulations of protein degradation, such as the regulation of

PTEN stability, are included as activation/inhibition in the

network [103].

Here, we use a nonlinear Hill function to implement the

coarse-grained activation and inhibition. For example (see

electronic supplementary material, table S1), HNF1 is acti-

vated by HNF4 a and Notch, and inhibited by C/EBP a;

the equation has the form

dxHNF1

dt
¼

aðxn
HNF4a þ xn

NotchÞ
1þ aðxn

HNF4a þ xn
NotchÞ

� 1

1þ axn
C=EBPa

� xHNF1:

In general, if an agent x is activated by agents y1, y2, . . . , yk

and inhibited by agents z1, z2, . . . , zl, we have

dx
dt
¼ aSk

i¼1 yn
i

1þ aSk
i¼1 yn

i

� 1

1þ aSl
i¼1 zn

i

� x,

where two parameters n and a can be tuned in the equation.

Note that our differential equation modelling results are con-

sistent with those from the parameter-free Boolean dynamics

(see electronic supplementary material, table S6), such that

the model is intrinsically not sensitive to parameters. Our

large-scale random parameter tests also validate this point

(see electronic supplementary material, figure S2).

The value for each agent is normalized from zero to one.

The dynamics have a conservation property: they will keep

the value of each agent normalized (between zero and one).

A full list of 89 equations can be viewed in the electronic sup-

plementary material. The equations can generate several local

attractors with biological significance. In this CRC model, we

obtained 10 attractors, as well as 14 saddle points and seven

other unstable fixed points (shown in electronic supplemen-

tary material, table S3 and table S7 separately). A series of

random searches crossing several magnitudes in the number

of random initial points are executed. It turns out that no

new attractors can be found, which means the results may

cover the major attractors that are biologically stable (with a

relatively large attractive basin) in the state space.

To validate the modelling results: (i) we use both New-

ton’s iteration method and Euler’s method separately to

obtain attractors from the differential equations (electronic

supplementary material, table S3); (ii) we made a series of

random parameter tests (see electronic supplementary

material, figure S2) that allow independent random Hill coef-

ficient n and prefactor a for each interaction (total of 525

interactions), and the obtained results are almost invariant;

(iii) we used alternative forms of equations and the attractors

are reproduced (electronic supplementary material, tables S4

and S5); and (iv) we computed the Boolean network model

and found the result supports nine of the 10 attractors
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obtained from the differential equations (see electronic sup-

plementary material, table S6).

4.3. Sample collection and microarray experiments
Colorectal tumour and normal tissue specimens from 26 CRC

patients with clinical outcome and three healthy individuals

were collected from the second affiliated hospital of Zhejiang

University. All samples were concurrently analysed using

Affymetrix Human Genome U133 Plus 2.0 microarrays.

The extraction of RNA was performed following standard

protocols provided by the manufacturers.

4.4. Microarray data analyses
For gene expression analysis, tumour and adjacent normal tis-

sues were investigated using an Affymetrix Human Genome

U133 Plus 2.0 microarray. Data were acquired by GENECHIP

operating software v. 1.4. After quality checks, raw intensity
data were processed by quantile normalization with robust

multi-array average to remove systematic bias using Affymetrix

EXPRESSION CONSOLE v. 1.12. The complete table of microarray

data with recognized gene symbol and function is provided in

electronic supplementary material, file S2.
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Krüger M, Mann M. 2011 Systems-wide proteomic
analysis in mammalian cells reveals conserved,
functional protein turnover. J. Proteome Res. 10,
5275 – 5284. (doi:10.1021/pr101183k)

103. Chen Z et al. 2005 Crucial role of p53-dependent
cellular senescence in suppression of Pten-deficient
tumorigenesis. Nature 436, 725 – 730. (doi:10.1038/
nature03918)

104. Theilgaard-Mönch K, Jacobsen LC, Borup R,
Rasmussen T, Bjerregaard MD, Nielsen FC, Cowland
JB, Borregaard N. 2005 The transcriptional program
of terminal granulocytic differentiation. Blood 105,
1785 – 1796. (doi:10.1182/blood-2004-08-3346)

105. Hollnagel A, Oehlmann V, Heymer J, Rüther U,
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