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Abstract

Sample multiplexing facilitates single-cell sequencing by reducing
costs, revealing subtle difference between similar samples, and
identifying artifacts such as cell doublets. However, universal and
cost-effective strategies are rather limited. Here, we reported a
concanavalin A-based sample barcoding strategy (CASB), which
could be followed by both single-cell mRNA and ATAC (assay for
transposase-accessible chromatin) sequencing techniques. The
method involves minimal sample processing, thereby preserving
intact transcriptomic or epigenomic patterns. We demonstrated its
high labeling efficiency, high accuracy in assigning cells/nuclei to
samples regardless of cell type and genetic background, and high
sensitivity in detecting doublets by three applications: 1) CASB
followed by scRNA-seq to track the transcriptomic dynamics of a
cancer cell line perturbed by multiple drugs, which revealed
compound-specific heterogeneous response; 2) CASB together with
both snATAC-seq and scRNA-seq to illustrate the IFN-c-mediated
dynamic changes on epigenome and transcriptome profile, which
identified the transcription factor underlying heterogeneous IFN-c
response; and 3) combinatorial indexing by CASB, which demon-
strated its high scalability.

Keywords CASB; combinatorial sample indexing; sample multiplexing;

single-cell RNA sequencing; single-nucleus ATAC sequencing

Subject Categories Chromatin, Transcription & Genomics; Methods &

Resources

DOI 10.15252/msb.202010060 | Received 15 October 2020 | Revised 7 March

2021 | Accepted 9 March 2021

Mol Syst Biol. (2021) 17: e10060

Introduction

Single-cell mRNA sequencing (scRNA-seq) and single-nucleus assay

for transposase-accessible chromatin using sequencing (snATAC-

seq) have emerged as powerful technologies for interrogating the

heterogeneous transcriptional profiles and chromatin landscapes of

multicellular subjects (Hashimshony et al, 2012; Ramskold et al,

2012; Buenrostro et al, 2015; Cusanovich et al, 2015). Early scRNA/

snATAC-seq workflows were limited to analyzing tens to hundreds

of individual cells at a time. With the latest development of single-

cell sequencing technologies based on microwells (Gierahn et al,

2017), combinatorial indexing (Cusanovich et al, 2015; Cao et al,

2017; Cao et al, 2018; Rosenberg et al, 2018; Cao et al, 2019) and

droplet-microfluidics (Klein et al, 2015; Macosko et al, 2015), the

parallel analysis of thousands of single cells or nuclei has become

routine. The increase in throughput does not only lower the reagent

costs per cell, but also enable the analysis of whole organs or entire

organisms in one experimental run.

Recently, with the ever-increasing throughput, these technologies

have also been used to reveal the temporal response of heteroge-

neous cell population under diverse perturbations, which require

tens of samples to be processed in parallel (Hurley et al, 2020;

Weinreb et al, 2020). Based on existing methods, sample-specific

barcodes (for example, Illumina library indices) are often incorpo-

rated at the very end of standard library preparation workflow. Such

workflow requires parallel processing of multiple individual samples

until the final step, therefore not only is labor-intensive and limits

the number of samples, but also increase the reagent costs if a small

number of cells would be sufficient to characterize the heterogeneity

of each individual sample. To overcome this, alternative multiplex-

ing approaches should label cells from each sample with distinct

barcodes before pooling for single-cell sequencing experiment. The

sample-specific barcodes could then be linked to cell barcodes

during single-cell sequencing library preparation. Several methods

have been developed in this endeavor, which introduce sample

barcodes using either genetic or non-genetic mechanisms. Geneti-

cally, researchers have used various strategies to express an exoge-

nous gene with sample-specific barcodes at its 30 UTR, which can be

captured similarly as endogenous genes (Hurley et al, 2020; Wein-

reb et al, 2020); non-genetically (summarized in Table EV1), people

have used oligonucleotide containing a sample barcode followed by

a poly-A sequences, which can be immobilized on the cell or

nuclear membrane through anchoring molecules (e.g., antibody and

lipid) (Stoeckius et al, 2017; McGinnis et al, 2019) or chemical

1 Shenzhen Key Laboratory of Gene Regulation and Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
2 Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
3 Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, China

*Corresponding author. Tel: +86 138 2328 8350; E-mail: fangl@sustech.edu.cn
**Corresponding author. Tel: +86 755 8801 8449; E-mail: chenw@sustech.edu.cn
†These authors contributed equally to this work

ª 2021 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 17: e10060 | 2021 1 of 16

https://orcid.org/0000-0003-4502-1756
https://orcid.org/0000-0003-4502-1756
https://orcid.org/0000-0003-4502-1756
https://orcid.org/0000-0002-3244-5499
https://orcid.org/0000-0002-3244-5499
https://orcid.org/0000-0002-3244-5499
https://orcid.org/0000-0002-7274-6034
https://orcid.org/0000-0002-7274-6034
https://orcid.org/0000-0002-7274-6034
https://orcid.org/0000-0002-5210-5301
https://orcid.org/0000-0002-5210-5301
https://orcid.org/0000-0002-5210-5301
https://orcid.org/0000-0003-3263-1627
https://orcid.org/0000-0003-3263-1627
https://orcid.org/0000-0003-3263-1627


cross-linking reaction (Gehring et al, 2020), or defused into perme-

abilized nuclei (Srivatsan et al, 2020), and then captured during

reverse transcription. Although being already quite powerful, each

of these methods has still its own limitations, including issues with

scalability, universality, or the potential to introduce artifactual

perturbations. Moreover, all of these methods have only been

combined with scRNA/snRNA-seq and have not yet been applied

and are likely incompatible with snATAC-seq.

Here, we developed a concanavalin A-based sample barcoding

strategy (CASB) that overcomes many of these limitations. Taking

advantage of the glycoprotein-binding ability of concanavalin A

(ConA), CASB was used to label cell or nucleus with biotinylated

single-strand DNA (ssDNA) through a streptavidin bridge. CASB

could be easily adapted into scRNA/snATAC-seq workflows and

showed high accuracy in assigning cells or nuclei regardless of

genetic background as well as in resolving cell doublets. The appli-

cation of CASB in samples with time-series experiments, followed

by scRNA- and/or snATAC-seq, allows revealing diverse transcrip-

tome/epigenome dynamics.

Results

CASB enables cell and nucleus labeling with ssDNA

The CASB complex consists of three components: biotinylated

ConA, streptavidin, and biotinylated ssDNA as barcoding molecules.

Both ConA and streptavidin form homo-tetramer autonomously,

allowing the assembly of ConA-streptavidin-ssDNA complex

(Fig 1A). Relying on the glycoprotein-binding ability of ConA, such

assembled complex can be immobilized on the cell or nuclear

membrane (Fig 1A). To measure how many ssDNA molecules can

be immobilized on the cell membrane, a biotinylated ssDNA with 50

and 30 PCR handles flanking an eight-nucleotide (N8) random

sequence was used to label the cells (Fig 1A). After incubation with

different quantity of preassembled ConA-streptavidin-ssDNA

complex in DPBS on ice (Methods), the number of ssDNA molecules

immobilized on mouse embryonic stem cells (mESC) was quantified

using qPCR. As shown in Fig 1B, the amount of ssDNA immobilized

on cells increased with the increased usage of ConA-streptavidin-

ssDNA complex and could reach as many as 50,000 molecules per

cell. To test whether ssDNA may fall off from labeled cells and

cause cross-contamination during sample pooling, a mouse embry-

onic fibroblast (MEF) cell population expressing mCherry fluores-

cent proteins was labeled with the ssDNA and then mixed with

another MEF cell population expressing GFP fluorescent proteins,

which was only coated with “empty” ConA (Methods). After 30 min

incubation in DPBS on ice, mCherry and GFP positive cells were

separated using fluorescence-activated cell sorting (FACS) and

subjected to qPCR measurement. As shown in Fig 1C, the ssDNA

immobilized on mCherry+ cells were not detectable from GFP+ cells,

demonstrating the stability of CASB labeling. In addition to labeling

the whole cell, we also measured the labeling efficiency of CASB for

cell nucleus, in which nuclei were labeled with preassembled ConA-

streptavidin-ssDNA complex in nuclear extraction buffer on ice

(Methods). As shown in Fig EV1A, the amount of ssDNA immobi-

lized on nuclei increased with the increased usage of CASB complex

and reached at least 120,000 molecules per nucleus. Given that cell

or nucleus aggregation could significantly affect single-cell sequenc-

ing experiments, we examined whether CASB may cause cells or

nuclei to aggregate. Both imaging and flow cytometry analysis

demonstrated that ConA-streptavidin-ssDNA complex did not

induce cell or nucleus aggregation (Fig EV1B and C). Taken

together, these results demonstrated that CASB is able to stably label

both cell and nucleus with biotinylated ssDNA and potentially suit-

able for single-cell sequencing experiments.

CASB enables scRNA-seq sample multiplexing

In scRNA-seq, cell-specific barcodes are attached to the cDNA during

reverse transcription (RT) by using primers consisting of a cell

barcode sequence, a unique molecular identifier (UMI) sequence,

and a poly-T sequence that anchors to the poly-A tail of mRNA

molecule. To make our CASB compatible with the standard scRNA-

seq workflow, we designed a biotinylated barcoding ssDNA with a

50 PCR handle followed by a N8 barcode and a 30 nt poly-A tail,

which can be captured by a RT primer consisting of a PCR handle

followed by a 30 nt poly-T tail (Fig 2A). After CASB labeling, MEF

cells were directly lysed and subjected to RT reaction (Methods).

The barcoding ssDNA immobilized on cell membrane was quanti-

fied together with the endogenous housekeeping gene ActB using

qPCR. As shown in Fig EV2A, both barcoding ssDNA and ActB gene

can be efficiently captured by RT primer. Therefore, CASB could be

easily adapted into scRNA-seq workflow with high efficiency.

To demonstrate the strength of CASB in scRNA-seq, a breast

cancer cell line MDA-MB-231 was perturbed with 5 different

compounds, collected at 3 different time points after treatment, and

pooled with 3 other breast cancer cell lines as well as MEF cells after

separate sample labeling using CASB (Fig 2B). Unlabeled MDA-MB-

231 cells were also added into the sample pool to measure the

potential influence of CASB on transcriptome profile. Sample pool

was then subjected to scRNA-seq using the 10× Genomics Chro-

mium system with minor modifications: (i) in order to examine the

efficiency of CASB to detect doublets, we intentionally overloaded

the system (~20,000 instead of ~10,000 cells recommended by the

manufacturer) to create more cell doublets; (ii) CASB barcode and

transcriptome library were separated by size selection before next-

generation sequencing library construction, enabling pooled

sequencing at user-defined proportions (Methods).

As a result, a total of 12,068 cells were captured with sufficient

reads for transcriptome analysis. For each cell, the reads derived

from each of the 20 different sample barcodes were counted and

used to demultiplex the samples using HTODemux method (Stoeck-

ius et al, 2018) (Methods). A total of 483 cells were assigned as

“Unlabeled”, as expected due to the inclusion of unlabeled MDA-

MB-231 cells (Fig EV2B). Among the remaining ones, 3,962 cells

were assigned as cell doublets encapsulated in the same droplet, as

they contained two or more major barcodes (Fig EV2B). Indeed, the

doublets consisting of both mouse and human cells, which could be

unambiguously detected based on their mapping results, could also

be efficiently identified based on the mixture of CASB barcodes. As

shown in Fig 2C, out of 110 mouse-human doublets, 107 (97.3%)

were defined as doublets based on our CASB data. When compared

with singlets, more UMI derived from both CASB barcode and

mRNA transcripts were detected in doublets (Fig EV2C), further

validating the correct assignment of cell doublets. Within 7,623
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singlets, the number of detected UMI from CASB per cell ranged

from 245 to 2,134 (5–95 percentile) and significantly correlated with

UMI detected for endogenous transcripts in the same cell

(Fig EV2D), suggesting a similar cell-specific capture efficiency

between CASB barcode and endogenous transcripts, and that CASB

did not impair mRNA capture. Based on the qPCR quantification,

that the same amount of CASB mixture could label cells with

~20,000 ssDNA (Fig 1B), mean UMI (1,051) detected in the scRNA-

seq indicates a ~5% capture efficiency at current sequencing depth

(25 million total sequencing reads). To determine the variation of

labeling efficiency among different cells, given the cell-specific

capture efficiency, we first normalized the number of UMI numbers

from CASB by that of UMI derived from the endogenous transcripts

in the same cell. As shown in Fig EV2E, the CASB barcoding

manifested a good uniformity of labeling efficiency among all sing-

lets and within individual cell samples. Taken together, our CASB

strategy could achieve high sensitivity in detecting cell identity and

doublets in scRNA-seq experiments.

For the 7,623 cells with unambiguously assigned sample origin,

we then clustered them based on their scRNA-seq profiles. As

shown in Fig 2D, different human and mouse cells formed 5 distinct

cell clusters, respectively. Each cluster was composed of cells from

individual cell line labeled with distinct CASB indices (Fig 2D). We

also compared the untreated MDA-MB-231 cells with to those with-

out CASB labeling. As shown in Fig EV2F and G, single-cell profiles

were intermingled together and their cumulative transcriptome was

highly correlated, demonstrating a negligible influence of CASB

labeling on transcriptome profile. Within the MDA-MB-231 cell

A

B C

Figure 1. Cell labeling with CASB.

A An illustration of CASB. Biotinylated ssDNA was immobilized on glycoprotein on cell/nuclear membrane through streptavidin and biotinylated ConA. The ssDNA
contains 50 and 30 PCR handles that flank an 8 nt random sequence.

B mESC were labeled with different quantity of CASB, and the number of ssDNA molecules immobilized on mESC was quantified used qPCR. The amount of ssDNA
immobilized on cells increased with the increased usage of ConA-streptavidin-ssDNA complex and reach as many as 50,000 molecules per cell. Three independent
biological replicates were performed. Error bars represent SD.

C CASB-labeled mCherry+ MEF cells were incubated with unlabeled GFP+ MEF cells. The number of ssDNA molecules immobilized on mCherry+ and GFP+ cells was
quantified used qPCR after FACS separation. The ssDNA immobilized on mCherry+ cells was not detectable from GFP+ cells. “n” means number of qPCR reactions.
Error bars represent SD.
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population, all 16 sample barcodes can be detected (Fig EV2H).

Cells associated with 24 h-treatment of Niraparib, Rucaparib, and

OSI-027 could be well distinguished from untreated cells, whereas

those with LCL161 and Fludarabine could not (Fig EV2I). As

expected, Niraparib- and Rucaparib-treated cells were intermingled

due to their common molecular target PARP.

MDA-MB-231 is of triple-negative breast cancer origin, which

lacks efficient targeted therapy. As intratumoral heterogeneity has

A

C

F G

D E

B

Figure 2.
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been associated with therapy resistance, we investigated whether

drug treatments could lead to heterogeneous response in the MDA-

MB-231 cells. We focused on compound OSI-027, as it induced the

largest transcriptomic changes (Fig EV2I). As shown in Figs 2E and

EV3A and B, in which cells treated with OSI-027 were plotted with

untreated cells, there indeed existed three cell populations with

distinct transcriptomic responses. Although one showed clearly time-

dependent transcriptomic changes (Fig 2E, cluster 0 circled in pink),

the other two had limited alteration in gene expression even after

24 h (Fig 2E, cluster 1 and 2 circled in green and blue, respectively),

suggesting that the latter were less sensitive to the OSI-027. Neighbor

proportion analysis also confirmed that untreated cells were well

separated from treated cells in cluster 0, while it is not the case for

cluster 1 and 2 (Fig EV3C). As demonstrated in Fig EV3D, three

distinct cell clusters could already be observed in the untreated MDA-

MB-231 cells, in which specific marker genes could be identified

(Fig EV4A). Next, we sought to further check whether the insensitive

cell populations were also resistant to other two effective

compounds, Niraparib and Rucaparib, suggested in Fig EV2I. Indeed,

as shown in Figs 2F and EV3E, cells in cluster 1 and 2 also appeared

less sensitive to Niraparib and Rucaparib, suggesting the intrinsic

multidrug insensitivity. Differential gene expression analysis

revealed that OSI-027, Niraparib, and Rucaparib induced expression

alteration of 613, 365, and 296 genes (|logFC| > 0.25, P-value < 0.05,

Dataset EV1) in the sensitive cell population (cluster 0), respectively,

which are highly enriched in cell death and survival pathway

(Fig EV3F), suggesting their potency on this cell population.

To explore the underlying factors of drug insensitivity, we

perform function enrichment analysis on genes that were commonly

up- or downregulated in cluster 1 and 2 compared to cluster 0 using

IPA software (Methods). Interestingly, these genes were highly

enriched in the cellular compromise and movement pathways

(Dataset EV2 and Fig EV3G). Importantly, many genes upregulated

in cluster 1 and 2 are known to promote cellular movement

(Fig EV3H). In tumor cells, increased cell motility mediated by

epithelial–mesenchymal transition (EMT) is highly associated with

drug resistance (Singh & Settleman, 2010; Zhang & Weinberg,

2018). Our results suggested that the intrinsic multidrug insensitiv-

ity of MDA-MB-231 cells may result from the activated EMT. More

interestingly, while overlapping the potential insensitivity-causing

genes in cluster 1 and 2 with OSI-27-regulated genes in cluster 0, we

observed that many genes, including VIM, SQSTM1, NPM1, and

RACK1, were induced by OSI-027 in sensitive cells (Fig 2G). Given

these genes are involved in promoting EMT and potentially also

drug resistance (Fig EV3F), this observation indicated the potential

of OSI-027 treatment in inducing acquired therapy resistance.

CASB enables snATAC-seq sample multiplexing

So far, no sample multiplexing method has been developed for

droplet-based snATAC-seq. In droplet-based snATAC-seq, cell nuclei

are firstly incubated with transposase in bulk, where genomic DNA

is fragmented and tagged with adapter sequences (also referred to

as “tagmentation”). Afterward, single nuclei are encapsulated, and

cell barcodes are added to DNA fragments during PCR in individual

droplets using primers targeting the adapter sequences. To adapt

CASB into snATAC-seq workflow, we designed a 222 nt barcoding

ssDNA with S5-ME and S7-ME adapter sequences flanking a

sequence containing sample barcodes (Fig 3A). S5-ME and S7-ME

adapter sequences were used as primer anchoring sites during

snATAC-seq library amplification (Methods). The labeling efficiency

using such ssDNA was measured similarly as before, in which

nuclei were directly labeled with preassembled ConA-streptavidin-

ssDNA complex in nuclear extraction buffer on ice (Methods). As

shown in Fig EV5A, the amount of ssDNA immobilized on nuclei

increased with the increased usage of ConA-streptavidin-ssDNA

complex and could reach at least 80,000 molecules per nucleus.

Before applying CASB for large-scale snATAC-seq, we tested

whether CASB is compatible with tagmentation reaction and may

interfere with epigenomic profile using plate-based snATAC-seq. In

this experiment, CASB-labeled HAP1 cells were pooled with the

same number of unlabeled HAP1 cells and then subjected for bulk

tagmentation, FACS, and ATAC-seq library preparation (Methods).

In total, 162 out of 192 cells, which were collected by FACS in two

96-well plates, were obtained with sufficient quality. We then sepa-

rate CASB-labeled HAP1 cells from unlabeled cells based on the

number of CASB barcode reads in individual cells (Fig EV5B). As

shown in Fig EV5C, CASB-labeled and unlabeled cells were inter-

mingled in UMAP projection according to the ATAC signal, suggest-

ing no influence of CASB labeling on epigenomic profile. This was

further confirmed, when the cumulative ATAC signal of the labeled

and unlabeled cells was compared: The correlation between the

labeled and unlabeled cells was similar as that between the two

plates (Fig EV5D).

◀ Figure 2. CASB enables scRNA-seq sample multiplexing.

A An illustration of CASB used in scRNA-seq. A biotinylated barcoding ssDNA with a 50 PCR handle followed by an 8 nt barcode and a 30 nt poly-A tail was used to
mimic the endogenous transcripts.

B The design of the experiment. MDA-MB-231 cells were perturbed with 5 different compounds, collected at 3 different time points, CASB-labeled, and then pooled
with 3 other breast cancer cell lines and MEF cells.

C Scatter plot depicting the number of UMIs associated with transcripts from human or mouse genome. Cell doublets revealed by CASB were marked in black. Out of
110 mouse-human doublets, 107 were detected as doublets by CASB barcodes. Three interspecies cell doublets that were not detected by CASB were circled in red.
Beside interspecies cell doublets, cell doublets from one species were also detected by CASB.

D Transcriptome-based UMAP of cells captured in scRNA-seq. Cells were colored according to the CASB barcodes, and doublets were excluded. Different human and
mouse cells formed 5 distinct cell clusters, respectively.

E, F Transcriptome-based UMAP of untreated and (E) OSI-027-, (F) Niraparib- and Rucaparib-treated MDA-MB-231 cells. Three cell populations with distinct
transcriptomic responses were observed in each UMAP: Sensitive cell subpopulation was circled in red, while insensitive ones in green and blue, respectively.

G Transcriptome-based UMAP of untreated and OSI-027-treated MDA-MB-231 cells. Sensitive cell subpopulation was circled in red, while insensitive ones in green
and blue, respectively. Relative expression level of VIM, SQSTM1, NPM1, and RACK1 is indicated by color code, which was expressed in untreated insensitive cell
populations and induced by OSI-027 in sensitive cells.
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Figure 3. CASB enables snATAC-seq sample multiplexing.

A An illustration of CASB used in snATAC-seq. A biotinylated barcoding ssDNA with S5-ME and S7-ME adapter sequences flanking a sequence containing sample
barcodes was used to mimic the transposed genomic DNA.

B A simplified illustration of INF-c signaling pathway. Upon binding of INF-c to its receptor, JAK is activated and induces the phosphorylation of STAT. Phosphorylated
STAT is then translocated into the nucleus and activates the expression of different sets of target genes by itself or in combination with other transcription factors.

C t-SNE projection based on the CASB barcode reads captured in snATAC-seq. Cells were colored according to the CASB barcodes, and doublets were marked in black.
D ATAC-based UMAP of all HAP1 cells captured in snATAC-seq. Cells were colored according to the CASB barcodes, and doublets were excluded. HAP1 cells showed a

continuous shift in chromatin profile from 0 to 12 h.
E Dot plot revealing the TFs with the most variable activity across all cells including IRF, STAT and NF-jB.
F ATAC-based UMAP of all HAP1 cells, in which the TF activity was presented by bias-corrected deviation z-score across all cells in color code.
G Violin plots demonstrating the deviation z-score of different TFs across different cells at different time points. Each dot represents a cell. While IRF and STAT activity

showed continuous upregulation upon IFN-c stimulation, the activity of NF-jB remained unchanged but showed high heterogeneity within HAP1 cells.
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To demonstrate the application of CASB in large-scale snATAC-

seq, we sought to monitor the temporal chromatin changes induced

by interferon-gamma (IFN-c) in HAP1 cells. IFN-c is an important

cytokine in the host defense against infection by viral and microbial

pathogens (Shtrichman & Samuel, 2001). It mediates innate immu-

nity through regulating effector gene expression (Fig 3B), which is

accompanied by substantial changes at epigenetic level (Ivashkiv,

2018). However, how heterogeneously and dynamically cells

respond to IFN-c stimulation at the chromatin level has remained

elusive. Taking advantage of CASB, we analyzed the changes in

chromatin accessibility of HAP1 cells at 7 different time points after

IFN-c stimulation using snATAC-seq. MDA-MB-231 cells were

added into the pool here as an outlier control. Of a total of

345,538,181 sequencing reads, the 5,095,947 (about 1.5%) were

derived from CASB barcodes. 3,218 cells were obtained with suffi-

cient reads, 305 of which were identified as cell doublets that have

at least two major CASB barcodes (Fig 3C, marked in black), and 23

cells were unlabeled (Fig EV5E and F). MDA-MB-231 cells with its

specific CASB barcode presented as an isolated cluster (Fig EV5G).

As revealed by UMAP projection, HAP1 cells showed a continuous

shift in chromatin profile from 0 to 12 h (Fig 3D). To uncover the

key transcription factors (TFs) that mediate IFN-c-induced chro-

matin remodeling, we analyzed their binding motifs on the ATAC

peaks across all cells and observed that peaks containing motifs of

IRF, STAT, and NF-jB TF showed large variation in their intensity,

indicating their critical functions in modulating IFN-c response

(Fig 3E) (Methods). Indeed, IRF- and STAT-associated peaks

showed continuous activation across different time points (Fig 3F

and G, left and middle panel). This is expected as IFN-c activates

JAK/STAT signaling through binding to its receptor, which in turn

activates the expression of IFN-c-responsive genes through tran-

scription factors STATs and IRFs (Fig 3B) (Leonard & O’Shea,

1998). Interestingly, the large variation of NF-jB peak intensity did

not result from IFN-c treatment but was instead largely due to the

heterogeneity within HAP1 cells (Fig 3F and G, right panel). It is

known that NF-jB can be activated by IFN-c and is able to facilitate

the transcription activation of IFN-c targets, including CXCLs (Qin

et al, 2007; Pfeffer, 2011). This result suggested that heterogeneous

NF-jB activity may give rise to heterogeneous IFN-c response.

To evaluate whether heterogeneous NF-jB activity causes hetero-

geneous IFN-c response, IFN-c treated samples from the same time

points were also analyzed using CASB followed by scRNA-seq. A

total of 3,407 cells were captured, 294 of which were identified as

cell doublets and 9 cells were unlabeled (Fig EV6A and B). As

shown in Fig 4A, HAP1 cells showed a continuous shift in the tran-

scriptome profile from 0 to 12 h on UMAP projection. To globally

evaluate the correlation between chromatin accessibility and gene

expression, we analyzed the dynamic expression patterns of

predicted IRF and STAT target genes. In consistent with the activity

of IRF and STAT observed in snATAC-seq (Fig 3G, left and middle

panel), the expression of their target genes also exhibited continu-

ous upregulation (Fig 4B).

As revealed by unsupervised clusteringwith Louvainmethod, cells

at later time points (4, 6, 8, and 12 h) were clustered into two popula-

tions, one of which exhibited more divergent transcriptome profile

from earlier time points (Fig 4C, cluster 2, circled in red). To see

whether this is associated with heterogeneous NF-jB activity identi-

fied in snATAC-seq, the expression of predicted NF-jB target genes

was compared between the two cell populations. Consistent with the

heterogeneous NF-jB activity, its target genes also exhibit heteroge-

neous expression and were expressed at a higher level in cluster 2 at

later time points (Fig 4D). The high induction of CXCL10 and 11,

well-known targets of IFN-c, only in cluster 2 cells further corroborate

that the heterogeneous NF-jB activity indeed results in differential

responses to IFN-c in HAP1 cells (Figs 4E and EV6C and D).

CASB enables combinatorial sample indexing

Combinatorial sample indexing allows more samples to be indexed

with limited number of barcodes and, therefore, to increase index-

ing capacity in a cost-effective way (Cusanovich et al, 2015; Cao

et al, 2017; Cao et al, 2018; Cao et al, 2019). Commonly used strate-

gies include simultaneous combinatorial indexing and sequential

split-pool indexing. To test if CASB could be applied with these two

strategies, we performed four-by-four combinatorial barcoding using

CASB to index 16 different cell lines from seven different species

(Methods), which was followed by one round of four-group split-

pool barcoding to increase the complexity of barcode combinations

(Fig 5A). Here, while the combinatorial barcoding will help to

assign cell types and identify cell doublets consisting of cells from

different cell lines (referred to as “doublets between samples”), the

split-pool barcoding helps to identify cell doublets consisting of cells

from the same cell line (referred to as “doublets within sample”).

To investigate the influence of CASB on cell transcriptome,

before loading on the 10X system for scRNA-seq, equal number of

unlabeled cells from each cell type were pooled (Fig 5A). After

sequencing, a total of 7,935 cells were captured with sufficient

reads for transcriptome analysis, in which 4,176 cells were

assigned as “Unlabeled” using HTODemux method (Methods).

Based on the barcode information, we determined cell doublets

between samples and within sample (Methods). Out of 3,759

labeled cells, 427 and 26 cells were assigned as “Doublet” between

samples and within sample, respectively (Figs 5B and EV7A),

which, as expected, showed higher UMI counts (Fig EV7B). As

shown in Fig EV7C, the cell from the 16 cell lines were all labeled

with sufficient amount of total CASB barcode with limited variabil-

ity in labeling efficiency among different cell lines, demonstrating

the universality of CASB technique.

When cell singlets were plotted on UMAP projection, distinct cell

clusters could be observed, and cells from the same species were

close to each other (Fig EV7D). The eight CASB barcodes used in

four-by-four combinatorial labeling were exclusively distributed in

individual cell clusters (Fig 5C and D), demonstrating the success of

cell type-specific barcoding. Meanwhile, the four barcodes used in

split-pool labeling were distributed evenly among different cell clus-

ters (Fig 5E), showing the efficient and unbiased sequential barcod-

ing. CASB barcode combinations successfully helped assigning cell

types to the distinct cell clusters (Fig 5F and G, more detailed UMAP

for human cell lines in Fig EV7D and E). Finally, to assess the influ-

ence of CASB on transcriptome profiling, labeled and unlabeled cells

were compared for each of the 16 different cell lines. As shown in

Fig 5H, single-cell profiles of labeled cells and unlabeled cells within

distinct cell clusters were intermingled (Fig 5H), and the cumulative

transcriptome profiles were also highly correlated between labeled

and unlabeled cells for each of the 16 cell lines (Fig EV7F), showing

a negligible influence of CASB labeling on transcriptome profile.
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Taken together, these data demonstrate both good scalability and

universality of CASB method.

Discussion

CASB is a flexible sample multiplexing approach, ready to be

prepared in an average molecular biology laboratory. CASB could

be used to label cells and nuclei of different cell types and from dif-

ferent species. Moreover, the binding of CASB molecules to the

subject is fast and stable, and takes place even at low temperature,

which is critical to preserve sample integrity. Importantly, the

design of CASB barcoding ssDNA is extremely flexible, which can

be easily adapted to different single-cell sequencing workflows.

As the first-in-class non-genetic single-cell sample barcoding tech-

nique, CITE-seq was originally developed for simultaneous quan-

tification of cell surface epitope and transcriptome (Stoeckius et al,

2017). Although antibody against common epitope could be

employed for multiplexing of cells from a same species (Stoeckius

et al, 2018), CITE-seq inevitably requires different antibodies for

labeling samples from different species and types (i.e., cells or

nuclei). In addition, the production of conjugated antibody is

complicated and expensive. Using lipid-modified oligonucleotides

that incorporate into the plasma membrane, MULTI-seq is applicable

to cells or nuclei from different species (McGinnis et al, 2019).

However, when preforming MULTI-seq, samples need to be

maintained on ice to avoid the loss and exchange of labeling

oligonucleotides. Given that snATAC-seq workflow includes a step

of 1 h transposition reaction at 37°C, MULTI-seq is, therefore, likely

incompatible with snATAC-seq. More recently, through two-step

chemical reaction, ClickTags allowed methyltetrazine-modified

oligonucleotides to be immobilized on the surface proteins of

methanol-fixed cells (Gehring et al, 2020). However, its sophisticated

procedure consisting of multiple washing steps may cause significant

sample loss and may not be suitable for precious samples. Moreover,

given ATAC-seq is not compatible with methanol-fixed sample,

ClickTags is also unlikely to work for snATAC-seq. Finally, nuclear

hashing strategy used in sci-Plex seems to be a straightforward

method (Srivatsan et al, 2020), but its application is restricted to sci-

Plex. Although sci-Plex achieved ultra-high throughput, it could only

analyze nuclear mRNA and has significantly lower mRNA capture

efficiency than droplet-based technology.

In comparison (summarized in Table EV1), CASB overcomes

many above-mentioned limitations. Due to the universal presence of

A

C D E

B

Figure 4. Transcriptomic heterogeneity within HAP1 cells.

A Transcriptome-based UMAP of HAP1 cells captured in scRNA-seq, in which cells were colored according to the CASB barcodes. HAP1 cells showed globally a
continuous shift from 0 to 12 h.

B Violin plots demonstrating the continuous transcriptional activation of predicted IRF and STAT target genes across different time points. Each dot represents a cell,
and Y-axis represents the average relative expression level of TF target genes.

C Transcriptome-based UMAP of HAP1, in which cells were unsupervised clustered and colored according to the transcriptomic feature revealed by Louvain algorithm.
Cells were clustered into two populations at 4–12 h, one of which exhibited more divergent transcriptome profile from earlier time points and was highlighted with
red dashed line.

D Violin plots comparing the expression of predicted NF-jB target genes between cluster 0 and 2 at 4–12 h. Each dot represents a cell, and Y-axis represents the
average relative expression level of NF-jB target genes. Predicted target genes were heterogeneously expressed and more actively induced in cluster 2.

E Transcriptome-based UMAP of HAP1 cells, in which the relative expression of CXCL10 were presented with color code and showed activation only in cluster 2 (circled
in red) at later time points.
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glycoprotein on plasma membrane, CASB is applicable to any

sample with an accessible plasma membrane. Worth noting, after

1 h transposition reaction at 37°C, the CASB barcodes remained

abundant and showed minimal cross-contamination. Therefore, in

addition to scRNA/snATAC-seq, CASB should, in principle, be

compatible with other single-cell sequencing technologies (e.g.,

single-cell multiome assay provided by 10X Genomics and SNARE-

seq (Chen et al, 2019)) and work for samples preserved with dif-

ferent methods (e.g., flash-frozen and formalin-fixed).

CASB allows scalable sample multiplexing by solely increasing

the variety of barcoding ssDNA. In this study, we tested CASB’s

scalability by performing a 20-plex perturbation assay followed by

scRNA-seq, which revealed new information about drug response of

triple-negative breast cancer cells. Specifically, it demonstrated the

different response dynamics of different compounds, and different

response of different cell subpopulations to the same drug. More-

over, by combining simultaneous combinatorial barcoding and

sequential split-pool barcoding, we further demonstrated CASB’s

A

C

F G H

D E

B

Figure 5. CASB enables combinatorial indexing.

A An illustration of the combinatorial indexing experiment. A four-by-four combinatorial barcoding strategy was used to index 16 different cell lines, which was
followed by one round of four-group split-pool barcoding. The same number of unlabeled cells from the 16 cell lines was also added into the sample pool.

B–E Transcriptome-based UMAP of 16 different cell lines, in which cells were unsupervised clustered. (B) Cell doublets were highlighted in red. (C-E) 12 CASB barcodes
were indicated with different colors. Eight barcodes used in four-by-four combinatorial labeling were exclusively distributed in distinct cell clusters (C and D), while
the four barcodes used in split-pool labeling distributed evenly among different cell clusters (E).

F Cells were colored according to the transcriptomic feature revealed by Louvain algorithm.
G Cells were colored according to CASB barcode combinations, which successfully helped assigning cell types into distinct cell clusters.
H Labeled and unlabeled cells were marked in red and blue, respectively. They were intermingled within different cell clusters.
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high scalability. Notably, sequential barcoding has not been tested

in other single-cell sample labeling techniques (summarized in

Table EV1). When integrated with automated cell handling system,

CASB followed by scRNA-seq could serve as a powerful platform for

single-cell sequencing-based drug screens.

Cell doublets, i.e., two or more cells encapsulated in a same

droplet, posed a challenge for single-cell sequencing data analysis.

Without sample barcoding, cell doublets from the same species

could only be estimated mathematically with certain ambiguity

(DePasquale et al, 2019). To reduce the doublet rate, an often-

sought strategy is to limit the number of cells loaded in the microw-

ell- or droplet-based systems. As demonstrated in this study, CASB

could reveal cell doublets in high accuracy, and as such, its applica-

tion would allow to increase the throughput of single-cell sequenc-

ing systems by loading more cells. Indeed, similar strategy has been

proposed by using antibody-based barcoding approach (Stoeckius

et al, 2018). However, the efficiency of doublet identification corre-

lated to the diversity of sample barcodes. By increasing the sample

barcodes to hundreds or even thousands, which could be easily

achieved using CASB combinatorial indexing, we would envisage a

much higher doublet detection efficiency, which allows the further

optimization of cell loading rate.

In summary, CASB allows to incorporate additional layers of

information into single-cell sequencing experiments. With the ever-

increasing throughput of single-cell sequencing technologies, CASB

does not only reduce reagent costs, improve data analysis, minimize

the batch effect, but also can become a versatile tool in this field by

incorporating more diverse types of information, including time

points, treatment conditions, and potentially also spatial coordi-

nates. With further improvement, such as using ConA-Streptavidin

fusion protein or fluorophore-labeled ssDNA, it will facilitate more

novel applications of single-cell sequencing technology.

Materials and Methods

Reagents and Tools table

Reagent/resource Reference or source Identifier or catalog number

Experimental models

HAP1 cells (H. sapiens) Horizon discovery C631

HEK-293T cells (H. sapiens) ATCC CRL-11268

MDA-MB-231 cells (H. sapiens) ATCC HTB-26

MDA-MB-453 cells (H. sapiens) ATCC HTB-131

T-47D cells (H. sapiens) ATCC HTB-133

MCF7 cells (H. sapiens) ATCC HTB-22

RPE-1 cells (H. sapiens) ATCC CRL-4000

Jurkat cells (H. sapiens) ATCC TIB-152

K-562 cells (H. sapiens) ATCC CCL-243

HCT116 cells (H. sapiens) ATCC CCL-247

HepG2 cells (H. sapiens) ATCC HB-8065

HeLa cells (H. sapiens) ATCC CCL-2

786-0 cells (H. sapiens) ATCC CRL-1932

RAW264.7 cells (M. musculus) ATCC TIB-71

CT26 cells (M. musculus) ATCC CRL-2638

4T1 cells (M. musculus) ATCC CRL-2539

mESC (M. musculus) Wei Li’s Laboratory N/A

MEF (M. musculus) Wei Li’s Laboratory N/A

REF cells (R. norvegicus) Wei Li’s Laboratory N/A

MDCK cells (C. familiaris) ATCC CCL-34

CHO cells (C. griseus) ATCC CCL-61

Vero cells (C. aethiops) ATCC CCL-81

S2 cells (D. melanogaster) ATCC CRL-1963

Recombinant DNA

CROPseq-Guide-Puro Addgene #86708

Chemicals, enzymes, and other reagents

Biotinylated ConA Sigma-Aldrich C2272
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Reagents and Tools table (continued)

Reagent/resource Reference or source Identifier or catalog number

Streptavidin Coolaber CS10471

Hieff qPCR SYBR Green Master Mix Yeasen 11201ES08

1st strand cDNA synthesis kit Yeasen 11119ES60

High Sensitivity DNA Kit Agilent 5067-4626

RMPI1640 medium Gibco 22400089

DMEM medium Gibco 11995040

Neurobasal medium Gibco 21103-049

DMEM/F-12 medium Gibco 11330-032

DPBS Gibco C14190500BT

N2 Gibco 17502048

B27 Gibco 17504-044

Chir99021 Selleck s1263

PD0325901 Selleck s1036

mLIF Millipore ESG1107

FBS Gibco 10270106

P/S Gibco 15070063

IFN-c Peprotech #300-02

LCL161 MedChemExpress HY-15518

Fludarabine MedChemExpress HY-B0069

OSI-027 MedChemExpress HY-10423

Niraparib MedChemExpress HY-10619

Rucaparib MedChemExpress HY-10617

Nuclei extraction buffer Sigma-Aldrich NUC101-1KT

TrionX-100 Sigma-Aldrich T8787

Single Cell 3’ Reagent Kits v2 10X Genomics PN-120237

Single Cell ATAC Reagent Kits 10X Genomics PN-1000111

2X SPRIselect Reagent Beckman Coulter B23318

PrimeSTAR Max PCR master mix Takara R045A

TruePrep DNA Library Prep Kit V2 for Illumina Vazyme TD501

TruePrep Index Kit V2 for Illumina Vazyme TD202

ZYMO DNA clean & concentrator kit ZYMO RESEARCH D4014

VAHTS DNA Clean Beads Vazyme N411-03

Digitonin Promega G9441

Tween-20 Sigma-Aldrich P7949

NP40 Sigma-Aldrich NP40S

Triton X-100 Sigma-Aldrich T8787

DAPI Roche 10236276001

Oligonucleotides

Oligonucleotides This study Dataset EV3

Methods and Protocols

Cell culture and pre-processing
The HEK-293T, MDA-MB-231, MDA-MB-453, T-47D, MCF7, RPE-1,

Jurkat, K-562, HCT116, HepG2, HeLa, 786-0, RAW264.7, CT26, 4T1,

MDCK, CHO, Vero, and S2 cells were obtained from the ATCC,

while HAP1 from Horizon discovery. The MEF, REF, and mESC

were kindly gifted by the Wei Li’s Laboratory at the Institute of

Zoology, Chinese Academy of Sciences. The MDA-MB-231, MDA-

MB-453, T-47D, MCF7, HEK-293T, HeLa, HCT116, HAP1,

RAW264.7, CT26, 4T1, MEF, REF, MDCK, CHO, and Vero cells were

cultured in DMEM medium with 10% FBS and 1% P/S with 5%
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CO2 at 37°C, while the mESC were cultured in Neurobasal-DMEM/

F12 based medium with N2, B27, PD0325901, Chir99021 and mLIF

with 5% CO2 at 37°C. HAP1, Jurkat, K-562, HepG2, 786-0 cells were

cultured in RMPI1640 medium with 10% FBS and 1% P/S. For stim-

ulation with IFN-c, HAP1 cells were treated with 100 ng/ml IFN-c
for 2, 4, 6, 8, and 12 h. For scRNA-seq-related experiments, cells

were trypsinized and washed once with DPBS, while for snATAC-

seq-related experiments, after washing with DPBS, cells were cryop-

reserved in 200 µl cryo-medium (10% DMSO, 40% FBS, 50%

culture medium) and kept in �80°C.

Compounds and treatment
The compounds used in this study include LCL161 targeting XIAP,

Fludarabine inhibiting DNA synthesis, OSI-027 blocking mTOR,

Rucaparib, and Niraparib targeting PARP1, which were chosen

based on their selective inhibitory effect on MDA-MB-231 cells (Gar-

nett et al, 2012; Iorio et al, 2016). Compounds LCL161, Fludarabine,

OSI-027, Niraparib, and Rucaparib were obtained from MedChem-

Express and dissolved in DMSO. For scRNA-seq experiment, 0.1 µM

of LCL161, 0.15 µM of Fludarabine, 2.5 µM of OSI-027, 15 µM of

Rucaparib, and 12.5 µM of Niraparib were used to treat the cells for

4, 8 or 24 h.

Design and synthesis of CASB barcoding ssDNA
For measuring the number of ssDNA molecules immobilized on cell

or nuclear membrane, a 50-biotinylated ssDNA with 50 and 30 PCR
handles flanking a N8 random sequence (Oligo-#1) was designed.

For scRNA-seq-related experiments, 50-biotinylated ssDNAs with a

50 PCR handle followed by a N8 barcode and a 30 nt poly-A tail

(Oligo-#2) were designed. For snATAC-seq-related experiments, a

50-biotinylated forward primer (Oligo-#3) and a revers primer

(Oligo-#4) were used to amplify 222 bp fragments from CROPseq-

Guide-Puro plasmids which have been inserted with different gRNA

sequences. To generate ssDNAs, purified PCR products were dena-

tured at 95°C for 2 min and immediately put on ice. Information of

CASB barcode sequences and their corresponding samples can be

found in Dataset EV4.

Assembly of CASB complex
Biotinylated ConA and streptavidin were dissolved in 50% glycerol

at concentration of 1.6 lM and store in �20°C, while different

biotinylated ssDNAs were diluted at concentration of 100 nM in

nuclease-free water and stored in �20°C. To assemble CASB

complex, streptavidin was firstly mixed with biotinylated ssDNA

and incubated for 10 min at room temperature. Afterward, biotiny-

lated ConA was added to the streptavidin-ssDNA mix and incubated

for 10 min at room temperature. The molar ratio of streptavidin:bi-

otinylated ssDNA:biotinylated ConA is 4:1:4.

Cell labeling with CASB complex
1 5 × 105 cells were collected by trypsinization and resuspended

in 0.5 ml DPBS.

2 Indicated amount of assembled CASB complex was added to

the cells and incubated for 10 min on ice after thorough

mixing. For labeling mCherry+ MEF cells, 2.5 µl assembled

CASB complex was used, while, for GFP+ MEF, 0.4 µl biotiny-

lated ConA (1.6 lM) was used. For RT–qPCR and scRNA-seq,

5 µl assembled CASB complex was used.

3 Centrifuge cells at 300 g for 5 min at 4°C and then discard the

supernatant by pipette. Resuspend cells in 0.5 ml DPBS.

Repeat the centrifuge and resuspend step again.

4 Count cell number by the hemocytometer. Use appropriate

number of cells for the following experiments.

Nuclei labeling with CASB complex
1 5 × 105 cells were thawed by adding 800 µl warm culture

medium and collected by centrifugation. Afterward, cells were

resuspended in 0.5 ml nuclei extraction buffer, incubated for

5 min on ice, and collected by centrifugation (500 g, 5 min, 4°C).

2 Nuclei were resuspended in 0.5 ml fresh nuclei extraction buffer

containing indicated amount of assembled CASB complex. Then

incubate on ice for 5 min after thorough mixing by pipette. For

snATAC-seq, 2.5 µl assembled CASB complex was used.

3 Centrifuge nuclei at 500 g for 5 min at 4°C and then discard

the supernatant by pipette. Resuspend nuclei in 0.5 ml nuclei

wash buffer (10 mM Tris pH 7.4, 10 mM NaCl, 3 mM MgCl2,

1% BSA, 0.1% Tween-20). Repeat the centrifuge and resus-

pend step again.

4 Count nuclei number by the hemocytometer. Use appropriate

number of nuclei for the following experiments.

Quantification of ssDNA immobilized on cell or nuclear membrane
For all quantification experiments using qPCR, standard curves were

always first drawn using serially diluted pure ssDNA for calculating

the precise number of ssDNA in each reaction. For each reaction of

qPCR, 200 labeled cells or nuclei in 5 µl DPBS were directly mixed

with 5 µl of primermix (1 lM) and 10 µl of qPCRmastermix. Primers

used for quantifying barcoding ssDNA are Oligo-#5 and Oligo-#6.

For measuring the ssDNA with the poly-A tail, 20,000 cells were

directly lysed in 6 µl of 0.17% TrionX-100 for 3 min at 72°C and

then reverse-transcribed with first-strand cDNA synthesis kit using

RT primer Oligo-#7 (final concentration 2.5 lM). The qPCR was

performed with ssDNA-specific forward primer Oligo-#8 and Actb-

specific forward primer Oligo-#9 combining with common reverse

primer Oligo-#10.

Aggregation analysis of cell and nucleus after CASB labeling
K562 cells were collected by centrifugation (300 g, 5 min, room

temperature). 5 × 105 cells were used for cell aggregation analysis,

and 5 × 105 cells were used to extract nuclei for nucleus aggregation

analysis. The labeling procedures for cells and nuclei were like

before. For cells and nuclei, 5 and 2.5 µl assembled CASB complex

was used, respectively. After labeling, DAPI was added to nuclei

suspension according to manufacturer’s instruction. Afterward,

cells and nuclei were imaged by fluorescence microscopy (Eclipse

Ts2-FL, Nikon) and analyzed by flow cytometry (B75442, Beckman

Coulter).

Combinatorial indexing with CASB complex
1 To assemble CASB complex, 2 µl biotinylated ConA (1.6 µM),

8 µl biotinylated ssDNA (0.1 µM) and 2 µl streptavidin

(1.6 µM) were used.

2 Adherent cells were collected by trypsinization, and 2.5 × 105

cells were resuspended in 0.25 ml DPBS. Suspension cells

were collected by centrifugation (300 g, 5 min, room tempera-

ture), and 2.5 × 105 cells were resuspended in 0.25 ml DPBS.
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3 For four-by-four combinatorial indexing, 1.25 µl of each group

A (A1 ~ A4) and group B (B1 ~ B4) CASB complex were added

to the cells and incubated for 10 min on ice after thorough

mixing by pipette.

4 Then, centrifuge cells at 300 g for 5 min at 4°C and discard the

supernatant by pipette. Resuspend cells in 0.25 ml DPBS.

Repeat the centrifuge and resuspend step again.

5 Collect all cells into 15 ml conical centrifuge tube. Mix thor-

ough by pipette. Split cells mixture into four 1.5 ml Eppendorf

tubes (250 µl each).

6 For four-group split-pool barcoding, 0.75 µl group C (C1 ~ C4)

CASB complex were added to the cells and incubated for

10 min on ice after thorough mixing by pipette.

7 Then, centrifuge cells at 300 g for 5 min at 4°C and discard the

supernatant by pipette. Resuspend cells in 0.25 ml DPBS.

Repeat the centrifuge and resuspend step again.

8 Collect all cells into a new 1.5 ml Eppendorf tube. Mix thor-

ough by pipette.

9 Count cell number by the hemocytometer. Combine the same

amount of CASB-labeled and unlabeled cells together. Use

appropriate number of cells for scRNA-seq.

scRNA-seq and snATAC-seq
The scRNA-seq experiments were performed according to the stan-

dard protocol of Single Cell 3’ Reagent Kits v2 with following modi-

fications. During cDNA amplification, additional primer (Oligo-#8,

0.1 lM) was added to amplify CASB barcode. To capture amplified

CASB barcode, during “post-cDNA amplification reaction cleanup”,

the amplified full-length cDNA library was purified with 2× SPRIse-

lect Reagent and eluted in 40 µl of nuclease-free water, 10 µl of

which was subject to PCR with primer pair Oligo-#11 and Oligo-#12

using PrimeSTAR Max PCR master mix to add sequencing adapter

sequences to CASB barcode.

The snATAC-seq experiments were performed according to the

standard protocol of Single Cell ATAC Reagent Kits with no modifi-

cation.

Plate-based snATAC-seq
1 Prepare the 96-well plates by adding 1 µl 2× Lysis Buffer

(100 mM NaCl pH 7.4, 100 mM Tris–HCl pH 8.0, 40 µg/ml

proteinase K, 0.4 % SDS) and 1 µl of 10 µM S5xx/N7xx

Nextera Index Primer Mix (5 µM each) (TD202, Vazyme) to

each well.

2 Pre-coat 1.5 ml Eppendorf tubes with 500 µl 0.5% BSA/

DPBS. Collect 5 × 105 cells in DPBS into 1.5 ml Eppendorf

tube and then centrifuge at 300 g for 5 min at room tempera-

ture. Wash the cells once with 200 µl DPBS and then with

200 µl ATAC resuspension buffer (10 mM NaCl, 10 mM Tris–

HCl pH 7.4, 3 mM MgCl2). Centrifugation condition is 600 g,

5 min at 4°C.

3 After washing, resuspend cells in 100 µl ATAC cell lysis buffer

(10 mM NaCl, 10 mM Tris–HCl pH 7.4, 3 mM MgCl2, 0.1%

Tween-20, 0.1% NP40, 0.01% Digitonin) with 2.5 µl assem-

bled CASB complex (control group was only resuspended in

ATAC cell lysis buffer). Mix thorough by pipette. Incubate on

ice for 5 min, then add 950 µl ATAC wash buffer (10 mM

NaCl, 10 mM Tris–HCl pH 7.4, 3 mM MgCl2, 0.1% Tween-20)

to quench reaction.

4 Centrifuge nuclei at 1,000 g for 5 min at 4°C and discard the

supernatant by pipette carefully. Resuspend nuclei in 1 ml

ATAC wash buffer and pool labeled and unlabeled nuclei

together. Centrifuge again.

5 Resuspend nuclei in 50 µl tagmentation reaction (TD501,

Vazyme). Incubate at 37°C on a ThermoMixer (600 rpm) for

30 min. Then, stop the reaction by adding 50 µl tagmentation

stop buffer (20 mM EDTA, 10 mM Tris–HCl pH 8.0). Incubate

on ice for 10 min.

6 Add 300 µl 0.5% BSA/DPBS into nuclei. Then, add DAPI

according to manufacturer’s instruction. Use FACS (MA900,

Sony) to sort single nucleus into each well of prepared 96-well

plates.

7 Incubate plates at 65°C for 15 min with lip temperature at

100°C.

8 Add 2 µl 10% Tween-20 into each well to quench SDS and

then 6 µl PCR mix (from TD501, Vazyme). Perform PCR reac-

tion as following: 72°C 10 min, 98°C 1 min, (98°C 30 s, 63°C

30 s, 72°C 30 s) ×25, 72°C 5 min, 10°C hold.

9 All PCR products were pooled into a 15-ml conical centrifuge

tube and purified with ZYMO DNA clean & concentrator kit.

10 Perform size selection using VAHTS DNA Clean Beads accord-

ing to manufacturer’s instruction.

Next-generation sequencing
All sequencing experiments were performed with Illumina NovaSeq

6000 System. The service for scRNA-seq was provided by HaploX

genomics center, while for snATAC-seq by Genergy Bio. For scRNA-

seq, paired-end 150 bp with i7 8 bp sequencing strategy was used,

while for snATAC-seq, paired-end 150 bp with i7 8 bp and i5 16 bp

sequencing strategy was applied.

Computational methods

CASB barcode analysis
For scRNA-seq, raw barcode library FASTQ files were converted to

barcode UMI count matrix using custom script leveraging the pysam

(Li et al, 2009) package (https://github.com/pysam-developers/

pysam). This procedure was similar with a previous method

(McGinnis et al, 2019). Briefly, raw FASTQ files were first parsed to

use only the reads where the first 16 bases of R1 perfectly match

any of the cell barcodes predefined by Cell Ranger. Then, reads

where the 20–28 bases of R2 align with at most 1 mismatch to any

predefined sample barcodes were used. Reads were grouped by cell

barcodes and duplicated UMIs were identified as reads where 17–26

bases of R1 exactly matched.

In snATAC-seq, sample barcodes were in R2 reads and cell

barcodes were in R1 reads. Reads with sample and cell barcodes

were first extracted from raw FASTQ files of snATAC library using

custom script to get the cell-by-sample count matrix.

Barcode raw count matrix was first “CLR” normalized; then,

HTODemux method (Stoeckius et al, 2018) implemented in Seurat

package was used to define “doublets”, “singlets” and “negatives”.

For CASB combinatorial barcodes, HTODemux was used on set

A barcodes, set B barcodes, and split-pool barcodes, respectively.

Then, the “doublets” between samples were defined if it is doublet

for both set A and B. The “doublets” within sample were defined if

it is singlet for both set A and B but doublet for split-pool barcodes.
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The “negatives” were defined if it is negative for either set A or B.

And the rest were defined as “singlets”.

scRNA-seq gene expression analysis
FASTQ files were processed using Cell Ranger (10× Genomics,

v3.1.0). The reads were aligned to the concatenated hg38-mm10

or hg38 reference using STAR (Dobin et al, 2013). Cell-associ-

ated barcodes were defined by Cell Ranger. Gene expression

UMI count matrix (h5 file) was obtained using Cell Ranger with

default parameters.

After the pre-processing, RNA UMI count matrices were prepared

for scRNA-seq analysis using the “Seurat” R package (Butler et al,

2018). Cells with no more than 4,000 reads or 2,000 expressed genes

were removed. Outlier cells with elevated mitochondrial gene

expression were visually defined and discarded. Ribosomal genes

and mitochondrial genes were then filtered out.

“sctransform” R package (Hafemeister & Satija, 2019) was used

to normalize the RNA UMI count data and find highly variable

genes. These variable genes were then used during principal compo-

nent analysis (PCA). Elbow plot was used to select the top principal

components. Then, these principal components were used for

dimensionality reduction with UMAP and unsupervised clustering

with Louvain method. Differential gene expression analysis was

performed using the “FindMarkers” function in Seurat with “MAST”

method (Finak et al, 2015). To quantify the magnitude of perturba-

tion induced by drug on gene expression, we compared the propor-

tion of each cell’s k (k = 9) nearest neighbors in principal

component space with the “knn.covertree” R package. The propor-

tion was normalized by the cell numbers of different groups.

For the combinatorial indexing dataset with 16 cell lines from 7

species (human, mouse, rat, dog, fly, hamster, and monkey), gene

annotation gtf file and genome reference fasta file for each species

were downloaded from Ensembl (version 102). The gtf file was

processed using mkgtf (--attribute = gene_biotype:protein_coding)

as suggested by cellranger. Cellranger were used to build a

customed STAR index with all 7 species genome and gtf as input

(--memgb = 128 --limitSjdbInsertNsj 2000000). FASTQ files were

processed using Cell Ranger (10X Genomics, v3.1.0). The subse-

quent analysis was similar as described above.

snATAC-seq data analysis
For plate-based dataset, reads from each cell were processed inde-

pendently. The reads were trimmed using fastp (Chen et al, 2018)

v0.19.5 (-a CTGTCTCTTATA --detect_adapter_for_pe -w 6 --

length_required 20 -q 30). CASB were extracted and counted while

the reads without CASB were aligned to hg38 reference by bowtie2

v2.3.4.3 (-X 2000) (Langmead & Salzberg, 2012). Reads mapped to

mitochondria or with low mapping quality (MAPQ < 20) were

removed. Sambamba v0.7.0 (Tarasov et al, 2015) were used to sort

and remove duplicated reads. Macs2 (Zhang et al, 2008) were used

to call peaks with all the 192 cell deduplicated and sorted bam file

as input. The peaks were centered at the summit and extend 500 bp

both sides as features. FeatureCounts (Liao et al, 2014) were used to

count the number of read pairs from each cell that were aligned

within each feature, resulting in a peak/feature-by-cell count matrix.

This matrix was binarized and peaks occurred in only on cell was

filtered. Cell with no more than 300 peaks was also filtered. The

resulting matrix was normalized by term frequency-inverse

document frequency (TF-IDF). Latent semantic indexing analysis

was performed as applying singular value decomposition (SVD) on

the normalized count matrix. Only the 2nd-50th dimensions after the

SVD were passed to UMAP for 2D visualization. The distribution of

CASB barcode read number from individual cells in plate-based

snATAC-seq was used to separate labeled from unlabeled cells (the

cutoff was 20,000).

For 10X Genomics dataset, after filtering out the reads with

sample barcodes, Cellranger-atac (version 1.2.0) was used to process

the raw FASTQ files. The reads were aligned to hg38 reference using

BWA-MEM (Li & Durbin, 2009). The filtered peak-by-cell matrix (h5

file) obtained after cellranger-atac processing was used in the subse-

quent analysis. The matrix was first binarized. Cells of low quality

(no more than 4,000 peaks or more than 500,000 peaks, percent of

reads in peaks <= 30%, percent of peaks in ENCODE blacklist > 5%)

were filtered out. Only cells defined by HTODemux as “singlet” were

used for subsequent analysis. ATAC peaks with low coverage (< 50

cells) or ultra-high coverage (more than 2,000 cells) were also

removed. The binarized count matrix was normalized by term

frequency-inverse document frequency (TF-IDF). Latent semantic

indexing analysis was performed as applying singular value decom-

position (SVD) on the normalized count matrix. Only the 2nd-50th

dimensions after the SVD were passed to UMAP for 2D visualization.

Motif analysis was performed using chromVAR (Schep et al, 2017).

The predicted target genes of TF were defined by the nearest

genes within 100 kb of the activated ATAC peaks with the TF motif

at 12 h. The activated ATAC peaks were called by using FindMark-

ers function with parameter test.use=“LR”. The average expression

levels of these predicted target genes were calculated using

“AddModuleScore” function in Seurat package.

CoveragePlot in Signac (v0.2.5) (preprint: Stuart et al, 2020)

package was used to plot the accessibility tracks for defined region.

Gene function enrichment and network analysis using
IPA software
The differentially expressed genes in cluster 1 and 2 compared to

cluster 0 of MDA-MB-231 cells and genes differentially expressed

upon compound treatment in cluster 0 cells were subjected to the

Ingenuity Pathway Analysis (IPA) (QIAGEN) (Kramer et al, 2014) to

gain insights into the gene functions. The “Diseases and Functions”

module under the “Expression Analysis” was used for this purpose.

In “Diseases and Functions” module, the analysis was restricted to

“Molecular and Cellular Functions”.

Data availability

All next-generation sequencing data were submitted to Gene Expres-

sion Omnibus under the accession number GSE153116 (https://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153116). Scripts

used for CASB barcode analysis is publicly available at https://

github.com/GuipengLi/CASB.

Expanded View for this article is available online.
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