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Abstract

Antibody-based therapeutics provides novel and efficacious treatments for a number of diseases. Traditional experimental
approaches for designing therapeutic antibodies rely on raising antibodies against a target antigen in an immunized animal
or directed evolution of antibodies with low affinity for the desired antigen. However, these methods remain time
consuming, cannot target a specific epitope and do not lead to broad design principles informing other studies.
Computational design methods can overcome some of these limitations by using biophysics models to rationally select
antibody parts that maximize affinity for a target antigen epitope. This has been addressed to some extend by OptCDR for
the design of complementary determining regions. Here, we extend this earlier contribution by addressing the de novo
design of a model of the entire antibody variable region against a given antigen epitope while safeguarding for
immunogenicity (Optimal Method for Antibody Variable region Engineering, OptMAVEn). OptMAVEn simulates in silico the
in vivo steps of antibody generation and evolution, and is capable of capturing the critical structural features responsible for
affinity maturation of antibodies. In addition, a humanization procedure was developed and incorporated into OptMAVEn
to minimize the potential immunogenicity of the designed antibody models. As case studies, OptMAVEn was applied to
design models of neutralizing antibodies targeting influenza hemagglutinin and HIV gp120. For both HA and gp120, novel
computational antibody models with numerous interactions with their target epitopes were generated. The observed rates
of mutations and types of amino acid changes during in silico affinity maturation are consistent with what has been
observed during in vivo affinity maturation. The results demonstrate that OptMAVEn can efficiently generate diverse
computational antibody models with both optimized binding affinity to antigens and reduced immunogenicity.
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Introduction

Therapeutic antibodies are widely recognized to be among the

most promising agents to treat various diseases, including cancers,

immune disorders, and infections [1,2]. The earliest used

technology for the generation of therapeutic antibodies is raising

antibodies against a target antigen in immunized mice. Although

widely utilized, the low clinical success rate using mouse antibodies

reflects that these foreign proteins can be highly immunogenic in

humans, and they typically have weak interactions with human

complement and antibody receptors, resulting in inefficient

effector functions [3]. These limitations have largely been

overcome by grafting the variable domains of a mouse monoclonal

antibody to the constant domains of a human antibody, a process

known as chimerization [4,5]. Although chimeric antibodies are

more human-like and induce considerably less response by the

human immune system, they are still not completely human. More

recently, complete human antibodies have been designed using

directed evolution techniques [6,7] that mimic the natural

selection of the process to evolve antibodies towards a desired

property. Among them, phage display [8,9], a technique based on

the presentation of peptides or protein fragments on the surface of

bacteriophages, is most widely used and offers robust and

complementary routes to the generation of potent human

antibodies. Despite these advances in the design of antibodies,

current experimental methods still have considerable limitations

and cannot: (1) target a specific antigen epitope, (2) provide

universally applicable structural design routes, and (3) rationally

engineer mutations with significantly reduced immunogenicity.

By contrast, computational methods could efficiently overcome

some of these shortcomings. For example, a number of successful

applications of computational methods have been reported in

antibody-antigen recognition [10–13], antibody structure and

stability prediction [14–17], design of mutations and antibody-

antigen interface [16–22], and immunogenicity prediction [23,24].

However, most of the current examples of computational antibody

design have been largely limited to existing antigen–antibody

complex structures (i.e. re-designs of antigen–antibody interfaces),

and the de novo design of antibodies to target a pre-selected

antigen epitope has remained elusive.
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To address the limitations of current platforms for antibody

design, we have developed the OptCDR method that can de novo
design an antibody paratope model against any targeted antigen

epitope by modeling and optimizing the complementarity

determining regions (CDRs) [21]. However, CDRs only capture

part of the binding capacity of an antibody and were not

constrained to fully human designs. Therefore, in this paper we

take the next step and introduce a new computational framework

named OptMAVEn for de novo design of not just the CDRs, but

fully human, complete antibody variable domain models by

expanding the concepts pioneered in OptCDR. OptMAVEn

designs antibody models by mimicking the natural evolution of

antibody generation and affinity maturation (Fig. S1). In

particular, it is implemented as a three-step workflow (Fig. 1).

First, for a given antigen, an ensemble of possible antigen binding

conformations is generated in a virtual antibody-binding site. This

site is defined as a rectangular box that covers all the geometry

centers of 750 antigen epitopes with known structures (Fig. 2A–

2D). Second, the best scored antigen conformation and combina-

tion of six modular antibody parts from the Modular Antibody

Parts (MAPs) database [25] are selected using a mixed-integer

linear programming (MILP) formulation and the initial antibody

structure is predicted by assembling the six MAPs. Third, the

antibody model is redesigned and optimized through our Iterative

Protein Redesign & Optimization (IPRO) protocol [26].

A new aspect in the last step of OptMAVEn is that we

incorporated a 9-mer-sequence-based humanization algorithm to

reduce the potent immunogenicity of designed antibody models

while optimizing their binding affinity to an antigen. The

immunogenicity of an antibody is triggered by molecular

recognition of its immunogenic peptides by the major histocom-

patibility complex (MHC) and/or T cells [27]. A variety of

humanization methods such as CDR grafting [28], resurfacing

[29], superhumanization [30], framework shuffling [31] and

guided selection [32] have produced antibodies more homologous

to human sequences, often but not always leading to reductions in

immunogenicity to clinically acceptable levels [33]. Our approach

is inspired by a humanness score termed ‘‘human string content’’

(HSC) [23] that quantifies a sequence at the level of potential

MHC/T cell epitopes. HSC is principally based on the

assumption that having more human sequence present in the

antibody will reduce its immunogenic potential [34–36].

OptMAVEn aims at designing a diverse library of antibody

models that is simultaneously co-optimized on both binding

affinity to an antigen epitope and immunogenicity. The resulting

computational antibody models are de novo designs, probably

never seen in nature before, generated de novo through

Figure 1. OptMAVEn workflow. Step 1: Antigen positioning. Step 2: Assembly of antibody models targeting the antigen epitope. Step 3:
Affinity maturation and humanization of antibody models by redesigning.
doi:10.1371/journal.pone.0105954.g001

OptMAVEn for the Design of Antibody Models against Antigen Epitopes

PLOS ONE | www.plosone.org 2 August 2014 | Volume 9 | Issue 8 | e105954



computations. In this study, we benchmarked the corresponding

protocols in each step individually and show that OptMAVEn

could: (1) efficiently position antigens in the antibody-binding site

with a high success rate of 96% using a benchmark set of 120

experimentally determined antigen-antibody complexes (2) redis-

cover 57.5% of native antibody parts using MILP based

optimization for the same benchmark set (3) recapitulate known

interactions responsible for affinity maturation using two known

germline and affinity maturation antibody pairs as the benchmark

set and (4) unambiguously distinguish human antibody sequences

from other species (P value ,0.000001). As case studies, we

applied OptMAVEn to design broadly neutralizing antibody

models against two antigens: envelope glycoprotein gp120 (gp120)

and hemagglutinin (HA), which are well-known antigens for the

HIV-1 and influenza viruses, respectively. The presented designs

are diverse in sequence and structure spanning a wide array of

affinity maximization interactions. These designed interactions

(partially) mimic the geometry of their natural receptors while

maintaining the computational humanness of the sequences.

Overall, our results demonstrate that OptMAVEn is a computa-

tional framework for an open challenge that could make significant

contribution to the development of a new generation of

therapeutic antibodies and vaccines.

Method

Step 1: Antigen positioning
Antigen positioning starts with the definition of a general

antibody-binding site (Fig. 2A–2D), which is represented by a

rectangle grid box located close to the origin. This box was

obtained by analyzing the locations of known antigen epitopes

from a precompiled antibody-antigen crystal structure database

consisting of 750 antibody-antigen complexes and sharing three

common features: (1) X-ray resolution is better than 2.5 Å, (2)

both heavy and light chains are available in the structures, and (3)

an antigen is included for each structure. Among the 750

structures, there are 214 hapten, 109 peptide and 427 protein

binders. The size of the box was adjusted to include all the mean

coordinates of atoms of antigen epitopes, and its X, Y and Z values

were within the ranges of (210 Å, 5 Å), (25 Å, 10 Å) and (3.75 Å,

16.25 Å), respectively (Fig. 2D). The box was divided into a set of

grid points by assigning grid spacing, which is user-defined (default

of 2.5, 2.5 and 1.25 Å for X, Y and Z axis, respectively). During

Figure 2. Illustrations of antibody-binding site and the algorithm of antigen positioning. H and L chains are colored in cyan and
green, respectively; epitope is colored in magenta. (A) Database of 750 antibody-antigen structures. H and L chains are colored in cyan and
green. Antigens are in different colors. (B) All the complex structures superimposed onto a reference antibody structure whose coordinate center of
CDRs attachment points was placed on the origin. (C) A rectangular box that covers all the mean epitope coordinates. Figure S2 shows the
distributions for the mean coordinates of all the epitopes along the X, Y, and Z axes. (D) The virtual antibody-binding site. (E) An antigen initial
conformation. Epitope is colored in magenta. (F) The rotated antigen conformation having the most negative epitope coordinates. (G) A positioned
antigen conformation with epitope’s geometry center at one grid point. (H) A rotated antigen conformation around Z axis.
doi:10.1371/journal.pone.0105954.g002
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the positioning, the coordinate center of an antigen epitope was

placed into its corresponding grid box (Fig. 2G) and rotated along

the Z coordinate for 360u with an interval of 60u (Fig. 2H) to

generate an ensemble of initial antigen positions. Prior to

positioning, the antigen was rotated so that the epitope had the

most negative Z coordinates (Fig. 2E and 2F), thus ensuring that

the target epitope forms the maximum number of interactions

with the CDRs. In total, 3234 (76761166) initial positions of

antigens were generated for this study.

Step 2: Assembly of antibody models targeting the
antigen epitope

At each position, the interaction energies (IEs), including van

der Waals and electrostatic terms, between the antigen and all

MAPs were calculated and stored. To avoid detrimental clashes, a

‘‘softening’’ atom van der Waals radius whose value is half of that

from the CHARMM force field [37] was used to estimate the

hydrophobic interaction. The modular antibody parts were

previously constructed in the spirit of template-based modeling,

with each part being a prototype structure of the random variable

(V), diversity (D), and joining (J) regions in the MAPs database

[25]. The recently generated database contains 929 parts

constructed from an analysis of 1168 human, humanized,

chimeric, and mouse antibody structures and encompasses all

currently observed structural diversity of antibodies. Table S1

shows the numbers of antibody parts from the MAPs database. V,

CDR3 and J structures can assemble both H and L chains of an

antibody. There exist two types of light chain, KAPPA and

LAMBDA, which are treated separately. Each MAPs structure

was numbered using IMGT’s unique numbering [38–41] and

consistently placed in the 3D space so that its CDRs attachment

points were approximately on the same X-Y plane and centered

on the origin with CDRs perpendicularly directed in the positive Z

direction.

Once the IEs are calculated, the problem of selecting the best

scoring combination of non-clashing antibody parts at each position

could be mathematically represented using an MILP representation.

This requires the definition of the index set I
I~ i DHV , HCDR3, HJ, KV , KCDR3, KJ, LV , LCDR3, LJf g,
denoting modular antibody parts. H denotes Heavy, K for KAPPA

and L for LAMBDA. V denotes Variable region, CDR3 for Diversity

region and J for the Joining region. Also required is the set

P~ p D1,2, . . . ,Nif g, which denotes the number of MAPs structures

at position i. Set IPclash contains all pairwise MAPs combinations (i1,

p1) and (i2, p2) that sterically clash with one another. The binary

variables Xi,p denotes if antibody part p is selected at position i
(Xi,p = 1) or not (Xi,p = 0). Parameter Es

i,p encodes the calculated

energy between structure p at position i and the antigen substrate.

Switching parameters Hd and Ld have values of one if a VH or VL

respectively, are being designed and zero if they are not chosen. This

allows the user to possibly design only a VH or VL, as would be

appropriate for a nanobody. The MILP formulation can then be

written as follows:

Minimize
X9

i~1

XNi

p~1

Xi,pEs
i,p ð1Þ

Xi1,p1zXi2,p2ƒ1, V(i1,p1,i2,p2)[IPclash ð2Þ

XNi

p~1

Xi,p~Hd , Vi[ HV ,HCDR3,HJf g ð3Þ

XNi

p~1

XKV ,p~
XNi

p~1

XKCDR3,p~
XNi

p~1

XKJ,p ð4Þ

XNi

p~1

XLV ,p~
XNi

p~1

XLCDR3,p~
XNi

p~1

XLJ,p ð5Þ

XNi

p~1

XKV ,pz
XNi

p~1

XLV ,p~Ld ð6Þ

Equation 1, the objective function, entails the minimization of

the interaction energy between the antigen and the selected MAPs.

The inequality in Equation 2 precludes the simultaneous presence

of two antibody part structures that sterically clash. Equation 3

guarantees exactly one part is selected for each heavy chain region

when a VH is designed. OptMAVEn defines both KAPPA and

LAMBDA light chains and Equations 4–6 make sure that when a

VL is being designed, it is composed of parts entirely from one

domain type or the other. Equation 4 requires that the same

number of KAPPA V, CDR3, and J structures are selected and

Equation 5 does the same for the LAMBDA structures. Equation 6

then selects either a KAPPA or LAMBDA V part when a VL

domain is being designed, and Equations 4 and 5 together ensure

the selection of the proper type of CDR3 and J structures. The

optimization formulation described collectively by Equations (1–6)

can be solved using CPLEX [42] called directly from Python.

After the MILP selection, the lowest energy solutions (10 in our

current study) were selected and submitted to local refinement (i.e.,

500 iterations) by randomly moving antigens and reselecting the

optimal MAPs. The goal of the refinement is to explore the local

conformational space for the antigen and to energetically rescreen

the best MAPs. In each iteration, the antigen was randomly

translated and rotated for a small distance and angles whose value

was generated using a Gaussian distribution centered at zero with

a standard deviation of 0.5 Å and 5u, respectively. Subsequently,

the IEs between the antigen at this position and the entire MAPs

database were reevaluated. A simulated annealing algorithm was

used to determine whether or not to retain the results of the

iteration.

Step 3: Computational affinity maturation and
humanization by redesigning

The refined antibody models were redesigned with IPRO [26]

in order to find sequences that maximally improve the binding

affinity and possess minimal computational immunogenicity. The

standard IPRO design protocol was modified for use in

OptMAVEn, which consists of five main steps: sequence design,

backbone perturbation, optimal rotamer selection, antigen re-

docking and energy evaluation. This sequence is carried out

iteratively (default max of 10,000 iterations).

Sequence design. For each round, a set of 1–3 continuous

residues in either VH or VL is randomly selected for mutation.

Residues from CDRs are given 3-fold higher preference over those

OptMAVEn for the Design of Antibody Models against Antigen Epitopes
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from frameworks (FRs) because more mutations are expected in

the binding site [25]. A selected residue is allowed to mutate to a

set of permitted amino acid types that is site-specific and could be

determined according to sequence alignments of relevant

antibodies. In this study, the alignments of broadly neutralizing

HIV and influenza antibody sequences were used (Data S1 and

S2).

At the same time, during the sequence design, a sequence-based

humanization algorithm is introduced to guarantee that designed

sequences are human. This algorithm starts with constructing a

human antibody 9-mer sequences database by splitting 69,032

human antibody sequences (collected from Abysis [43], IMGT

[38] and the PDB database [44]) into 1,309,657 unique human 9-

mers. For a given test sequence, all the possible 9-mer sequence

frames are extracted and the minimum number of mutations

between each frame and those from the human 9-mer-sequence

database is counted. All frame scores are totaled and defined as the

humanness score (HScore, Equation 7).

HScore(S)~
XN

n~1

Mmin
n ð7Þ

S denotes a given antibody sequence, N is the total number of

all the possible 9-mers-fragment sequences, and M is the minimum

count of the mutations between a 9-mer sequence and those from

the human 9-mer fragment database. During each iteration only

sequences with HScore equal to or lower than the previous

iteration are retained for further optimization.

Backbone perturbation. Once the sequence is designed, the

perturbed region, which includes 5 more residues on both sides of

the design positions and surrounding residues within 4.5 Å, is

subjected to backbone perturbation. For each one of the perturbed

residues, the Q and y dihedral angles are randomly perturbed

using a Gaussian distribution centered at zero degrees with a

standard deviation of 1.5u. No modification greater in magnitude

than five degrees is permitted. Five residues on each side of the

perturbed region are free to move during the perturbation to

prevent the dihedral angle changes from causing long-range

structural effects. These residues are mutated to glycine and an

energy minimization with strong restraints on the perturbed

dihedral angles is carried out to make the perturbed structure. All

other residues are fixed in place during the process. Different

backbone conformations are sampled by iteratively perturbing

small regions of the backbone that are randomly chosen during

each cycle throughout the variable domains.

Optimal rotamer selection. The following step of IPRO

involves the use of a rotamer library and MILP optimization to

repack the amino acid side chains in and around the perturbed

region. The perturbed residues that are mutated to glycine are

always repacked. The residues that are spatially close to the

perturbed region are also repacked. Only design positions within

the perturbed region are permitted to mutate. The permitted kinds

of amino acid mutations for each design position are specified

during the sequence design stage. We use the abbreviations R and

NR to refer to antibody designed residues (side-chains) and

antigen/conserved antibody parts, respectively.

The R–NR (i.e. the antigen and all parts of the antibody that

are not being replaced by rotamers) and R-R interaction energies

are calculated using the pairwise additive, non-bonded energy

terms from the force field (i.e. van der Waals, electrostatics, and

implicit solvation). Once all of the R-NR and R-R interaction

energies have been calculated, MILP optimization is used to select

the minimum energy arrangement of rotamers. The rotamer

selection MILP has been previously discussed [26].

Antigen redocking. The fourth step of an IPRO iteration is a

local, rigid-body redocking of the antigens. Since docking may

take a long time for some antigens, this step is only carried out

every third iteration. Docking uses the same pairwise additive

energy functions used during the rotamer selection step. During

docking, an antigen is randomly perturbed along and around the

X, Y, and Z axes. The perturbations are generated using a

Gaussian distribution centered at zero, with user-defined standard

deviations (defaults of 0.2 Å and 2.0u). After the antigen is

perturbed, the net IE is evaluated and the movement of the

antigen is kept or rejected based on the Metropolis criterion. Each

antigen is sequentially randomly perturbed during an iteration of

docking, and a user-defined number of iterations are carried out

(default of 500 iterations).

Energy evaluation. The fifth step involves a total energy

minimization and complex and interaction energies evaluation. A

high-resolution score function that evaluates van der Waals,

electrostatics, bonds, angles, dihedral angles, improper dihedral

angles, and generalized Born with molecular volume integration

implicit solvation energy functions from CHARMM is used. The

complex and interaction energies are used in the Metropolis

criterion to determine whether or not to retain the results of the

IPRO iteration. The user may set the temperature used to make

the decision (default is to retain 25% of designs within 10 kcal/mol

of the best design).

Benchmark test set
For benchmarking our antigen positioning and MILP selection

algorithms, we curated a non-redundant set of bound antibody-

antigen complex structures gathered from IMGT [40]. Identical

antigens in different binding modes with antibodies were also

included. This set includes 120 antibody-antigen complex crystal

structures (Table S2) and at present, we only focus on the antigens

that are either peptides or small proteins. Amino acid lengths for

the antigens range from 4 to 148. This set is used to characterize

the distribution of antigen epitopes, verify the initial antigen

positioning and adjust the energy function. To test the IPRO

design algorithm, we chose two germline (GL) / affinity matured

(AM) pairs, all with known X-ray structures. Among them, one

antibody pair is broadly neutralizing influenza virus antibody

CH65 (AM) [45] and its putative GL precursor [16], and another

is broadly neutralizing HIV-1 gp120 antibody VRC01 (AM) [46]

and its GL precursor [17]. The influenza HA1 and HIV-1 gp120

antigens were both modeled into the binding sites of their

corresponding GL antibodies referencing their positions in the AM

complex structures. For testing the proposed HScore, human,

mouse, rat and rabbit antibody sequences were collected from

Abysis [43] with the number of residues between 90 and 130.

Implementation
OptMAVEn is primarily written in Python and C++ and is

available for download on our website, http://maranas.che.psu.

edu. The most computationally demanding modules such as

energy calculation, antigen positioning and humanness scores

calculation are implemented in C++. Parts of OprMAVEn such as

energy calculation between antigens and the entire MAPs and

computational affinity maturation may use several processors at a

time by sharing files. Using its default parameters and 10

processors as an example, a design run against an antigen with

100 amino acids is expected to take no more than three weeks.

OptMAVEn for the Design of Antibody Models against Antigen Epitopes
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Results

Benchmark test of the initial antigen positioning
The starting point for an OptMAVEn design is the positioning

of the target antigen in a predefined antibody-binding site in order

to obtain the initial antigen conformations. To evaluate whether

the positioning protocol is capable of generating near-native poses,

we tested it against a benchmark set (Table S2) that contains 120

antigens varying in both length and conformations. As described

in the Methods and shown in Fig. 2, each antigen was first rotated

to make the epitope have the most negative Z coordinates and

then positioned into the binding site box with its mean epitope

coordinate placed in every grid point with rotations around Z axis.

We used Root Mean Squared Deviation (RMSD) of backbone

atoms between an antigen position and its corresponding native

conformation as a metric for evaluating the quality of positioning.

The quality of a positioning is classified as high (RMSD ,1.0 Å),

medium (1.0 Å,RMSD,2.0 Å), and acceptable (2.0 Å,

RMSD,4.0 Å) according to CAPRI-defined criteria for protein

docking [11]. A successful prediction was described as a

positioning run in which at least one of the ensemble members

of initial positions has an acceptable RMSD (i.e.,4.0 Å). The

benchmark results of antigen positioning are summarized in

Table 1. Across the entire benchmark set, OptMAVEn success-

fully predicted at least acceptable or better quality solutions for

115 targets, representing an overall success rate of 96%, which

indicates OptMAVEn could sample the correct antigen orienta-

tion and position without any a priori knowledge of antibody-

binding site. With respect to antigen type, OptMAVEn success-

fully predicted near-native structures for 99% of the peptide

antigens and 92% of the protein antigens. The slightly better

predictions of conformations of peptide antigens are most likely

due to their relatively simple and linear epitopes.

Four representative positioning successes of PDB 1MVU,

1NQZ, 1DZB and 2FEL with RMSDs of 1.28, 2.27, 1.35 and

2.74 Å, respectively, are illustrated in Figure 3. As observed, the

predicted positions of 1MVU and 1DZB are in close agreement

with their corresponding native poses. For 1NQZ and 2FEL, the

prediction quality is considered acceptable and further translations

and rotations could improve the positions. The predictions for

1OBE and 1JRH serve as representative examples of positioning

failures with RMSDs of 4.05 and 4.68, respectively. For 1OBE,

the predicted conformation of its L-shaped antigen adopted an

almost opposite orientation compared to its native pose; for 1JRH,

considerable differences are derived from rotations around the X

and Y axes. In both cases, erroneous positioning mainly arise from

the approximation of using coordinate centers of antigen epitopes

for representing the entire epitopes, and further rigid-body

rotations around X and Y axes are required for successful

positioning. Extra rotation sampling around the X and Y axes will

almost certainly give more accurate predictions, at the expense of

longer computational time.

Benchmark test for the MILP based residue design step
In OptMAVEn, the variable domain of an antibody structure is

initially predicted by assembling the six best-scoring MAPs (HV,

HCDR3 and HJ for VH; KV, KCDR3, KJ or LV, LCDR3, LJ for

VL) if both the VH and VL are being designed. For a given

antigen conformation, the IE between this antigen and each MAPs

is calculated using a pairwise energy functions involving both van

der Waals and electrostatic terms (MILP energy). The MILP

formulation described in Equations 1–6 is used to select the

combination of MAPs structures with the lowest IE. To measure

whether the MILP selection could identify native antibody parts

T
a

b
le

1
.

C
o

n
t.

P
e

p
ti

d
e

P
ro

te
in

P
D

B
R

M
S

D
P

D
B

R
M

S
D

P
D

B
R

M
S

D
P

D
B

R
M

S
D

2
EH

8
2

.3
5

3
Q

G
6

2
.4

8
3

D
8

5
2

.6
3

A
ve

ra
g

e
St

d
M

in
M

ax
M

e
d

iu
m

A
cc

e
p

te
d

Fa
ilu

re

P
e

p
ti

d
e

2
.2

5
0

.4
7

1
.2

8
4

.0
5

3
0

%
6

9
%

1
%

P
ro

te
in

2
.7

5
0

.8
4

1
.3

5
4

.6
8

2
0

%
7

2
%

8
%

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

1
0

5
9

5
4

.t
0

0
1

OptMAVEn for the Design of Antibody Models against Antigen Epitopes

PLOS ONE | www.plosone.org 7 August 2014 | Volume 9 | Issue 8 | e105954



efficiently, we tested it on the same benchmark set used to evaluate

antigen positioning. Starting with only the native pose of each

antigen, the IE to the best MAPs is compared to that to its native

antibody part. The results are summarized in Table S3. For each

complex, we also performed a further energy minimization and

reevaluated the IE using the full CHARMM energy function.

In the majority of cases, calculated MILP IEs were negative,

indicating favorable binding between antibodies and antigens. In

contrast, for five cases (1KTR, 1OAZ, 1TZH, 2A6I and 2IFF)

native antibodies were predicted to disfavor the antigen binding.

This could arise from subtle steric clashes or over-approximated

MILP energy functions. Therefore, we further minimized each

complex and reevaluated the IEs using the full Charmm energy

function, including the van der Waals, electrostatics, bonds, angles,

dihedral angles, improper dihedral angles and generalized Born

with molecular volume integration implicit solvation terms. Using

this more detailed description for IE led to negative IEs for all

antigen-antibody complexes. This suggests that with a relaxation

and energy reevaluation step, it is possible for the MAPs structure

selection MILP to design initial antibody models that successfully

bind the antigen for favorable initial antigen positions (e.g. native

positions).

Of particular note is the fact that for 51/120 cases (i.e. 42.5%),

the selected antibody models have better CHARMM IEs than the

native antibodies, by an average of 95.2690.7 kcal/mol. In the

other 69 cases, the native complex is better by an average of

91.8664.4 kcal/mol. It is not surprising that OptMAVEn

identifies initial antibody models in some cases that have higher

energy interaction scores than the native antibodies for two

reasons. First, at any given moment the immune system will not

have all possible naı̈ve antibodies available, so suboptimal

antibodies can be expected to be chosen in many cases. In

contrast, MILP selection will always be able to pick an optimal

combination of MAPs structures. Second, the objective of an

immune response is to eliminate a problem as rapidly as possible,

not to design optimally binding antibodies. Although strong

binding is important, other factors such as stability, concentration,

and when an antibody is discovered play a role. Since OptMAVEn

is solely trying to design optimal binders, it is to be expected that

the designed antibody models would differ from the naturally

occurring ones.

Benchmark test of the IPRO design
We next assessed the performance of the computational affinity

maturation protocol in IPRO using two experimentally charac-

terized GL and AM antibody pairs against influenza virus (AM

antibody CH65) and HIV-1 (AM antibody VRC01), respectively.

Structures for each pair of GL and AM structures were available

[16,17,45,46]. Experimental data shows that the GL precursor of

CH65 possesses 200-fold lower binding affinity to HA1 than the

matured CH65 [16], and that VRC01 exhibits no detectable

affinity for wild-type gp120 [17]. Two design tests were performed.

The first one considered mutations only among the residues that

differ between GL and AM and a second where all residues could

be mutated. The first test aimed to evaluate whether IPRO could

redesign the antibody model to match the amino acid usage

patterns in the AM pair starting from the GL sequence. The

second test, without specified mutation positions, broadly models

affinity maturations aiming to evaluate whether IPRO would

independently discover results highly similar to natural affinity

maturation.

In the first test, forward and reverse designs were conducted for

both systems. Forward design is denoted here as a design starting

from a GL structure, while reverse design is the one starting from

an AM structure. For each design, mutations along the entire

sequence were specified according to their corresponding GL/AM

partners. For each design, 25 independent IPRO trajectories were

generated and the final IE results are the average of the

trajectories, as listed in Table 2. As expected, the IEs indicate

that the AM antibodies bind to antigens more tightly than the GL

antibodies, which is in agreement with the free energy calculation

Figure 3. Examples of positioning successes and failures for
peptide and protein binders. H and L chains are colored in
cyan and green, respectively. Antigens are colored in yellow (native
poses) and orange (best positioned poses).
doi:10.1371/journal.pone.0105954.g003

Table 2. Forward and reverse designs using IPRO with specified positions for mutations.

Antibody Structurea Mutationsb IEc
IE differenced

VH VL GL AM

Influenza CH65 4HK0 (GL) 11 6 2294 2444 2150

3SM5 (AM) 2295 2389 294

HIV VRC01 4JPK (GL) 39 25 2167 2258 290

3NGB (AM) 2272 2384 2111

aThe starting X-ray structures used for IPRO designs. GL in the parentheses indicate the structure is germline and AM is for affinity maturation.
bThe number of mutations identified by comparing GL and AM antibody sequences.
cInteraction energy between an antigen and an antibody. All energies are in kcal/mol.
dThe IE difference calculated from AM - GL.
doi:10.1371/journal.pone.0105954.t002
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(DG) in Table S4. That this result could be recapitulated in

forward and reverse designs for both systems demonstrates the

robustness of the sampling and scoring function of IPRO. This is

critical for the correct identification of a set of mutations that

improve binding to an antigen.

In the second test, only forward designs were performed because

the aim is to assess the ability of IPRO to recapitulate the native

mutations. The preferred amino acid types for FR residues were

assigned according to site-specific amino acid probabilities

obtained from the alignments of existing broadly neutralizing

influenza and HIV antibodies, respectively (Data S1 and S2). No

mutation positions or preferred amino acid types for the CDRs

were specified. As seen in Table 3, in the designed sequences 35%

and 20% of mutations in the native AM influenza and HIV-1

antibody models, respectively, are recaptured. These percentages

are comparable to those from a protein interface design for Ran

GTPase with 22–39% native sequence recovery using single-

constraint design strategy and mutating only interface residues

[47]. Our design is more challenging because the entire sequence

space requires sampling, typically more than 200 positions for

paired heavy and light variable domains. In addition, it has been

observed that native somatic mutations evolved from the same GL

antibody against the same antigen epitope can be quite diverse

[43,44,48]. Among the ten VRC01-like HIV broadly neutralizing

antibodies isolated by RSC3 binding from different donors, only

two residues from the same germline IGHV1-2*02 allele mature to

the same amino acids [48]. Therefore, for a given mutation

position there exist multiple native mutations. In this test, we used

only one AM antibody as the reference for defining the native

mutations. The two reported percentages of native mutation

recovery would be higher if multiple AM antibodies were used as

native references.

Benchmark test for the humanness score
The fundamental assumption of our humanization protocol is

that human sequences contain ensembles of local sequences that

possess minimal immunogenicity due to a lack of binding to MHC

and/or recognition by T cells. Based on this assumption, HScore

in OptMAVEn was developed to measure the 9-mer differences of

all possible 9-mer frames in a test sequence by comparing them to

a precompiled human 9-mer-sequence database. An immunolog-

ical fragment with size of 9 is chosen because it is the basic peptide

unit required for high affinity binding to MHC II [49]. Essentially,

an antibody humanness score should have the ability to

differentiate human antibody sequences from other species’

antibody sequences (e.g. mouse) with high specificity. To meet

this end, analysis of the human, mouse, rat and rabbit antibody

sequences was performed according to the HScore definition and

the results are summarized in Table 4. According to its definition,

a lower HScore indicates sequences that are more homologous to

human antibody sequences and are predicted to have lower

immunogenicity than a higher HScore and vice versa.

Overall, there was a marked difference in HScores between the

human and mouse sequences with p,0.000001. Even better

statistical significances were observed for the rat and rabbit

antibodies, but the number of sequences evaluated was many

Table 4. Calculated HScores of human, mouse, rat and rabbit sequences.

Species Region Number of sequences Meana SD (±)b

Human VH 3000 0 0

VL 3000 0 0

Synthetic VH 720 40 41

VL 599 21 33

Mouse VH 3462 54 29

VL 3480 34 27

Rat VH 1062 57 42

VL 173 99 49

Rabbit VH 244 149 18

VL 244 109 19

aThe mean of HScore.
bThe standard deviation of HScore.
doi:10.1371/journal.pone.0105954.t004

Table 3. Forward designs using IPRO without specified positions for mutations.

Antibody Structuresa Mutationsb Native mutations recoveryc IEd
IE differencee

GL AM

Influenza CH65 4HK0 17 6 2294 21663 21359

HIV VRC01 4JPK 64 13 2167 21247 21080

aThe starting structures used for IPRO designs. GL in the parentheses indicate the structure is germline and AM is for affinity maturation.
bThe number of mutations identified by comparing GL and AM antibody sequences.
cThe numbers of designed mutations occurring both in GL and AM antibodies.
dInteraction energy between an antigen and an antibody. All energies are in kcal/mol.
eThe IE difference calculated from AM - GL.
doi:10.1371/journal.pone.0105954.t003
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fewer than for mouse. It appears that synthetic sequences are more

similar to those of human than mouse, rat and rabbit. For

example, synthetic VL has a mean lowest mean HScore of 21. The

lower HScore of synthetic antibodies are consistent with their

sequence contents, which are often created through joining two

genes, one of which is human. Conversely, rabbit VH has the

highest mean HScore of 149, indicating it has the most different

local 9-mer sequences to human VL sequences. Overall, our

results demonstrate that HScore is an efficient humanization score

for evaluating the predicted immunogenicity of a target antibody

sequence by correctly differentiating human sequences from other

mammal.

Two case studies: Design of models against influenza
hemagglutinin and HIV gp120

We showed that OptMAVEn could accurately position antigens

in the predefined antibody-binding site, select appropriate

antibody parts from MAPs and identify interaction energy

improving mutations while distinguishing human from other

mammal sequence. OptMAVEn is carried out by combining

antigen positioning, MILP based antibody model assembly and

IPRO based in silico affinity maturation as a complete pipeline.

For demonstration we applied OptMAVEn to design broadly

neutralizing antibody models that target HA and gp120, which are

well-know antigens for the influenza [45,50–52] and HIV-1

[46,53–55] viruses, respectively.

Identification of epitope
HA proteins, which attach the influenza virus to sialic acid

receptors on the cell surface, are a prime drug target. The majority

of human antibodies are directed against sites on the head of HA1,

in particular the receptor-binding site, to prevent the attachment

of virus to target cells. Other antibodies target the stem region to

prevent membrane fusion. In this study, we target the receptor-

binding site of HA1, the epitope in PDB 3SM5. The B chain and

some residues of chain A far from the binding site were ignored to

reduce computation time. The receptor-binding site is a broad and

shallow pocket framed by three loops and one helix forming the

outer ridges, illustrated as the 130-loop (magenta), the 150-loop

(yellow), the 190-helix (blue) and the 220-loop (red) in Fig. S3A.

The second study involves designing antibody models against the

gp120 protein of the human immunodeficiency virus type 1 (HIV-

1). Gp120 is a glycoprotein exposed on the surface of the HIV

envelope vital for virus entry into a cell. A series of broadly anti-

HIV-1 neutralizing antibodies bind to sites located in variable

regions of gp120 and help prevent HIV infection. In this study, we

designed antibody models targeting the CD4-binding site of gp120

[56]. The gp120 structure was obtained from PDB 3NGB and the

epitopes residues are located in CD4-binding-loop, V5-loop and

D-loop (Fig. S3B). For each antigen, we chose two targeted

epitopes: one includes all the residues in the receptor-binding site

(named as HA-all and gp120-all, respectively) and another

includes residues that form a loop in the receptor-binding site

(i.e., 130-loop for HA1 (HA-130) and CD4-binding-loop for gp120

(gp120–365)).

Assembly of antibody models from MAPs
Table 5 reports the selected best MAPs structures for each

epitope before and after a local conformation refinement of the

antigen. The negative MILP energies in each case suggest the

selected MAPs structures favor antigen binding. Significantly

reduced MILP energies were observed after a refinement of the

local antigen conformation and a reselection of the best MAPs
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structures. Note that the refinement step was only performed for

the antigen position with the best-scored MAPs structures and

aims to provide a further local conformational sampling around

the best conformation from the initial screen. Comparing the

antigen conformations before and after refinement (Fig 4A–D),

with all RMSDs higher than 2 Å, confirms that local antigen

refinement had a pronounced effect on the antigen conformations

and the selection of the best-scored MAPs structures.

Figure 4E-H show the selected MAPs structures. It can be seen

that the CDR3s in both VH and VL exhibit considerable diversity,

in accordance with their critical roles in recognizing different

epitopes. In addition, the V parts exhibit some variability as well,

especially in the CDRs. By contrast, there is less variability in the

selected J parts. The selection results from these four designs

indicate that the MILP could identify promising initial antigen

positions. Once the best low energy conformations are identified,

an additional refinement step is required to explore the local

antigen positions for obtaining the final modular parts.

In silico affinity maturation and humanization
To increase the relevance of the identified designs, the

permitted amino acid mutations at each FR position were pre-

selected according to the amino acid frequency of each kind of

amino acid at that position in alignments of broadly neutralizing

HIV and influenza antibodies (Data S1 and S2). However, the

residues in CDRs were allowed to mutate into any of the 20

standard amino acids. Figure 5 depicts the predicted lowest-energy

amino acid sequences and corresponding alignments between the

initial and designed sequences. The sequence distribution of

mutations involved in affinity maturation is very diverse, with no

clearly preferred amino acids/positions.

The HA-all and HA-130 antibody models have 10/9 and 11/19

mutations in VH/VL, respectively (Table 6). In contrast, gp120-

all and gp120–365 antibody models have 12/7 and 11/6

mutations in the corresponding domains. Antibodies typically

accumulate 5–20% changes in somatic mutations, but in the case

of HIV-1-neutralizing antibodies, the level of somatic mutation

ranges from 15% to 44% [57]. Our results suggest that the

mutation rate from computational affinity maturation is compa-

rable to that of somatic mutations evolved in vivo.

For all four designs, the IPRO results show significant energy

improvements both in complex and interaction energies, alluding

that the designed antibody models are much more stable and

could bind to the antigens more tightly (Table 6). Figure 6 shows

the amino acid compositions before and after affinity maturation.

Interestingly, Glu, Gly, His, Met, Arg and Ser occur more than

other amino acids (counts . = 3) in designed sequences, whereas

Leu, Pro and Tyr occur less frequently (counts , = 3). Table 7

summarizes the changes of usage during affinity maturation. An

apparent trend is that charged residues are favorable in the affinity

mature sequences while aromatic residues are disfavored. Despite

the importance of aromatic residues in the binding to antigens

[31], this finding is in agreement with previous studies that

tyrosine and tryptophan are abundant in the germline genes and

the degree of aromaticity is typically reduced during affinity

maturation [58]. Meanwhile, the number of polar residues is

slightly increased. More polar and charged residue occurrences

contribute to the improvement of binding affinity and complex

stability in the solvent.

Table 6 lists the humanness score for the initial and designed

antibody model sequences. Most of the initial sequences, except

for the HA-130 light chain and gp120–365 heavy chain possess

low humanness scores, indicating they are already human-like

sequences and probably have low immunogenicity. The predicted

immunogenicity contributions of designed sequences are primarily

from CDR3 because the V* and J* model structures in the MAPs

Figure 4. Designed antibody model. (A)–(D) Model structures for epitopes of HA-all, HA-130, gp120-all and gp120–365 before (in yellow) and
after (in orange) refinements. (E)–(H) MILP reselected best scored MAPs after refinements. H and L chains are colored in cyan and green, respectively.
V, CDR3 and J represent corresponding MAPs (See definition in Method).
doi:10.1371/journal.pone.0105954.g004
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database are based on human genes whereas CDR3 has some

mouse genes to ensure the maximum amount of structural

diversity [25]. After the design, as expected, the humanness scores

are decreased or maintained at a similar level. For example, the

HScore of gp120–365 light chain is reduced to 0 from 4 and that

of HA-130 heavy chain is maintained at 0, both predicting no

immunogenicity in the final designs. However, it is also noted that

the light chain of HA-130 still has a HScore of 32, comparable to a

mouse or rat sequence. This shows that upon design the highest

binding affinity design may not have low immunogenicity.

The two generated designs against HA1 exhibit highly diverse

amino acid sequences, and antigen locations/orientations, but all

share the receptor-binding site (Fig. 7A and 7B). Interestingly, the

HA-all antibody model possesses a long HCDR3 loop composed

of 26 amino acids, which does not bind directly to the epitope

residues, but interacts with non-epitope loops on the right side of

HA1, as shown in Figure 7A. Such unusually long CDR3s [59] are

rarely found in existing HA1 antibodies, and provide a larger

antigen-binding surface, potentially introducing more favorable

interactions. Moreover, both HCDR1 and HCDR2 insert into the

receptor site and interact directly with the 130-loop with four

hydrogen bonds (Fig. 7E). In receptor analog LSTc bound to 1934

HA (PDB 1RVZ), the carboxylate group of sialic acid forms two

hydrogen bonds with backbone amide of HA1 Ala137, as does the

side-chain hydroxyl oxygen of HCDR2 Tyr58 with the backbone

amide of HA1 Ala80. The amide of the acetamido group has a

hydrogen bond with the backbone oxygen of HCDR1 Val135, as

does the backbone oxygen of HA1 with HCDR1 Ser35 (Fig. 7G).

In addition, the side-chain carboxyl oxygen of HCDR2 Asp59 of

HA-130 antibody model forms the same hydrogen bond with the

backbone amide of HA1 Ala80 (Fig. 7F). Thus, the designed HA-

all and HA-130 antibody models partially mimic the human

receptor that interacts with HA1 via insertion of HCDR1 and

HCDR2 into the receptor-binding site. This mode of receptor

mimicry has also been observed in related broadly neutralizing

antibodies CH65 [45] and 5J8 [60], which use HCDR3 insertion,

and S139/1, which uses HCDR2 insertion. Significantly, the

algorithm automatically generated these results with the only user

input being the identification of the epitope as a whole. The

recapitulation of this trend suggests that OptMAVEn could

reproduce expected antigen binding motifs. The newly designed

antibody models are expected to broadly neutralize a large

number of strains from a single HA or selected strains from

different subtypes and groups of influenza because the epitope in

the receptor-bing site is relatively conserved [61].

Both of the designed antibody models against gp120 are

predicted to interact directly with the targeted CD4-binding loop.

However, they adopt quite different binding modes (Fig. 7C and

7D). The gp120-all antibody model uses the residues where

LCDR2 attaches to grasp virtually all surface-exposed portions of

Figure 5. Alignments between designed and initial antibody model sequences for epitopes of HA-all, HA-130, gp120-all and
gp120–365. FRs, CDRs regions and the lengths of sequences are indicated on top of each alignment. Yellow shading shows introduced amino acid
mutations.
doi:10.1371/journal.pone.0105954.g005
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the CD4-binding loop. One hydrogen bond is formed: the side-

chain guanidinium nitrogen of Arg67 with the backbone oxygen of

gp120 Gly228 (Fig 7I). By contrast, the gp120–365 antibody

model uses HCDR3 to interact with CD4-binding loop, which

involves three hydrogen bonds: the amide nitrogen of HCDR3

Gln108 with the backbone oxygen of gp120 Ser365; the backbone

oxygen of Gln108 with the backbone nitrogen of gp120 Gly367;

the backbone nitrogen of HCDR3 Gly110 with the carboxyl

oxygen of gp120 Asp368 (Fig. 7J). Among CD4-binding site-

directed antibodies, most antibodies (such as the VRC01 class)

structurally mimic the CD4 receptor (Fig. 7H, PDB 3JWD) by

substantial b-strand contacts to the epitope using HCDR2 [56].

The HCDR3-dominated mode of interaction adopted by the

gp120–365 antibody model is similar to a recent isolated broadly

neutralizing HIV-1 antibody CH103 [33], which is less mutated

than most other CD4-binding site antibodies and reveals a new

loop-based mechanism of antibody neutralization.

Summary and Discussion

Previously, we have developed OptCDR for the de novo design

of antibody binding pockets composed of CDRs against any

specified antigen. We used OptCDR to generate a library of

antibody CDRs models against the FLAG antigen (i.e. DYKD)

[62] and a preliminary analysis of biological experiments has

shown multiple, unique antibody bindings (unpublished data).

Here, by expanding the idea of OptCDR, we presented an

efficient and general method for de novo design of the

computational models of the entire antibody variable domain

targeting a specific antigen epitope. Given an antigen, the method

entails positioning the antigen in a virtual antibody-binding site,

identifying the best modular parts from the MAPs database based

on the positioned antigen poses, de novo assembly of these MAPs

into the initial antibody model structure, and designing mutations

in the antibody model structure to simultaneously improve binding

affinity and reduce immunogenicity. For both HA and gp120,

novel antibody models with numerous interactions with their

target epitopes were generated. The observed rates of mutations

and types of amino acid changes are consistent with what has been

seen during in vivo affinity maturation. It is especially encouraging

that these features were not controlled for in OptMAVEn but were

automatically generated. Additionally, in the case of the HA

antibody models, a method of antigen binding that has been

previously observed in broadly neutralizing anti-influenza anti-

bodies was discovered in both designs.

In OptMAVEn, a pre-generated conformer library was adopted

to represent the possible antigen binding poses. Despite success in

most of the 120 benchmark cases (success rate of 96%), in some

cases, the antigen positioning algorithm still could not sample any

conformation having a RMSD within 4 Å of the native. This

limitation may have largely been due to the insufficient rotational

sampling of antigens around the X and Y axes. Although this

limitation could be overcome by adding further sampling around

both axes, caution should be taken. For each antigen conforma-

tion, its IE to each modular antibody part needs to be pre-

calculated and this computation could quickly become intractable

with a significantly increased number of antigen conformations.

Therefore, it is suggested to choose an appropriate size of the

conformer library by adjusting the parameters of antigen

positioning if further sampling is required.

OptMAVEn generates a prototype antibody model that targets

an antigen by assembling the six best-scored MAPs structures.

This idea is inspired by the natural evolution of an antibody in
vivo, in that the gene of a germline antibody is initially assembled

T
a

b
le

6
.

Su
m

m
ar

y
o

f
e

n
e

rg
ie

s,
m

u
ta

ti
o

n
s

an
d

H
Sc

o
re

s
o

f
th

e
fo

u
r

b
e

st
d

e
si

g
n

e
d

an
ti

b
o

d
y

m
o

d
e

ls
fo

r
e

p
it

o
p

e
s

o
f

H
A

-a
ll,

H
A

-1
3

0
,

g
p

1
2

0
-a

ll,
an

d
g

p
1

2
0

–
3

6
5

.

E
p

it
o

p
e

a
S

ta
g

e
b

C
o

m
p

le
x

E
n

e
rg

y
c

IE
d

M
u

ta
ti

o
n

co
u

n
te

H
S

co
re

f

H
L

H
L

H
A

-a
ll

B
e

fo
re

2
1

0
5

8
8

2
1

8
4

-
-

6
5

A
ft

e
r

2
1

2
3

9
1

2
1

4
9

5
1

0
9

5
5

H
A

-1
3

0
B

e
fo

re
2

1
2

4
1

3
2

9
9

-
-

0
5

4

A
ft

e
r

2
1

3
9

6
5

2
1

4
2

2
1

1
1

9
0

3
2

g
p

1
2

0
-a

ll
B

e
fo

re
2

1
4

9
5

6
2

1
3

1
-

-
5

7

A
ft

e
r

2
1

5
3

1
6

2
8

9
8

1
2

7
4

3

g
p

1
2

0
–

3
6

5
B

e
fo

re
2

1
4

1
8

8
2

2
3

3
-

-
1

9
4

A
ft

e
r

2
1

4
4

3
8

2
1

1
0

6
1

1
6

1
9

0

a
T

h
e

e
p

it
o

p
e

u
se

d
fo

r
d

e
si

g
n

s.
Se

e
th

e
d

e
fi

n
it

io
n

in
th

e
m

e
th

o
d

.
b

B
e

fo
re

o
r

af
te

r
th

e
d

e
si

g
n

.
c
T

h
e

e
n

ti
re

co
m

p
le

x
e

n
e

rg
y.

U
n

it
in

kc
al

/m
o

l.
d

T
h

e
in

te
ra

ct
io

n
e

n
e

rg
y

b
e

tw
e

e
n

th
e

an
ti

b
o

d
y

an
d

an
ti

g
e

n
.

U
n

it
in

kc
al

/m
o

l.
e
T

h
e

n
u

m
b

e
r

o
f

m
u

ta
ti

o
n

s
b

e
tw

e
e

n
th

e
d

e
si

g
n

e
d

se
q

u
e

n
ce

an
d

th
e

in
it

ia
l

se
q

u
e

n
ce

.
f T

h
e

h
u

m
an

n
e

ss
sc

o
re

.
Se

e
th

e
d

e
fi

n
it

io
n

in
th

e
m

e
th

o
d

.
d

o
i:1

0
.1

3
7

1
/j

o
u

rn
al

.p
o

n
e

.0
1

0
5

9
5

4
.t

0
0

6

OptMAVEn for the Design of Antibody Models against Antigen Epitopes

PLOS ONE | www.plosone.org 13 August 2014 | Volume 9 | Issue 8 | e105954



by V-(D)-J recombination. Note that the three differing MAPs

regions do not match exactly with their V-(D)-J genes because

MAPs utilizes CDR3 as a structural component representing the

whole diversity region. The primary advantage of using MAPs to

assemble an antibody model is that the prediction is fast and there

is no need for de novo folding calculations. The computational

savings do not come at the expense of accuracy of prediction, as

the RMSD of the predicted structures is at least as accurate as

earlier methods [25]. In addition, compared to traditional

fragment-assembly-based approaches for de novo protein structure

prediction, this approach could efficiently sample both local and

non-local contacts that are inherently present in the relatively large

structural fragments. The designed sequences therefore should

have a higher probability of proper folding. It should be also noted

that MAPs database includes a considerable amount of informa-

tion on pairwise clashes between parts. These clashes can thus be

avoided by not selecting both members of the pair by the MILP

problem in OptMAVEn. The aim of the MILP problem is to find

the best combination of the six MAPs with the lowest IEs with the

targeted antigen. In its current implementation, it does not

explicitly account for the interactions between MAPs except for

excluding clashing pairs. In our benchmark test, we found that the

selected MAPs have better IEs than native antibodies in 42.5% of

120 cases. While approximations in the energy function may

account for some of the improved scores, the general trends allude

that the cohort of designed sequences should bind more tightly

than the native ones.

A simplification of the protocol in its described implementation

is that it uses IE instead of binding free energy for evaluating the

binding affinity of an antigen and antibody model. Although we

found that IEs are in good agreement with experimental binding

data in two GL-AM antibody pairs, this replacement is still at the

expense of an overall bias in energy function, especially in systems

where conformational entropy is crucial for the binding interac-

tion. This is supported by the fact that we obtained large negative

IEs (Table S3) that are not quantitatively comparable to true

experimental binding energies for predicting the binding affinity of

native antigens and antibodies. This may have been due to a lack

of entropy term in the formulation of IE (Table S4). Effective

entropy could quantify the variability of sequence and their

rotamer states that are consistent with a target structure and other

properties specified as constraints on the properties of the

sequences [63]. However, the role of side-chain entropy plays in

protein design is still unclear. For example, both Kendra [17] and

Daniele et al. [64] demonstrate that changes in protein confor-

mational entropy can contribute significantly to protein sequence

design. Conversely, Hu et al. suggest that side-chain conforma-

tional entropy has a relatively small role in determining the

preferred amino acid at each residue position in a protein except

for longer amino acids: methionine and arginine [17]. Neverthe-

Figure 6. Counts of the type of amino acid mutations before (blue) and after (red) computational affinity maturation from the four
best designed antibody models for epitopes of HA-all, HA-130, gp120-all, and gp120–365.
doi:10.1371/journal.pone.0105954.g006

Table 7. Statistics of amino acid propensities from the four best designed antibody models for epitopes of HA-all, HA-130, gp120-
all and gp120–365.

Stagea Aliphaticb Aromaticb Polarc Chargedc

Before 35 7 28 15

After 29 1 31 24

aBefore or after the design.
bThe counts of amino acids belonging to this classification.
doi:10.1371/journal.pone.0105954.t007
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less, future work will consider introducing an appropriate entropy

model into the energy evaluation.

Another concern in the energy function is the employed

Lazaridis-Karplus implicit solvation model [65] which does not

adequately capture charged residue interactions with the solvent.

This is reflected by some test designs where charged residues were

continually selected without solvent exposure (data not shown).

This is a limitation of current implicit solvation models, which

yield higher or similar water-to-protein transfer free energies for

nonpolar as for many of the polar residues. As a result, they

improperly favor the burial of polar amino acids in the protein

interior over nonpolar ones [66].

During design runs, we also found that the energy calculations

often end up with a local energy minimum instead of the global

energy minimum due to the incomplete sampling of the complex

energy landscape given the allotted cpu time. This could lead to

inconsistent results between different repetitions of the same

computational design run. To address this issue, we introduced

ensemble structure refinement, which is a refinement carried out

by generating an ensemble of structures (default of 10) from the

‘‘refinement’’ iterations (default of 25) of IPRO. A structural

refinement has the same steps as a normal IPRO iteration except

no mutations are allowed. After all refinement iterations have been

completed, the average properties of the refinement ensemble are

evaluated to determine whether or not a particular design is

actually the best identified so far. This ensemble approach to

evaluating structures has given a high correlation (R2 = 0.960)

between calculated IEs and experimentally measured binding

affinities in previous work [17].

Another challenge for the de novo design is the uncertainty

associated with the employed scoring function [63]. For example,

energy functions are approximate, side-chain conformations are

treated discretely and solvation is represented using simplified

models. One solution is to apply site-specific amino acid probabil-

ities, which takes advantage of known inter-atomic interactions and

structural features to yield sequence information consistent with

naturally folded structures and desired functional properties. It is well

known that highly conserved residues are generally distributed in the

FRs, whereas the residues in CDRs tend to be considerably diverse.

Therefore, in OptMAVEn, we applied two different strategies to

Figure 7. Structures and binding modes of designed antibody models for epitopes of HA-all, HA-130, gp120-all, and gp120–365. H
and L chains are colored in cyan and green, respectively. Antigens are colored in orange. Hydrogen bonds are highlighted in dashed line and colored
in magenta. (A)–(D) Overall complex structures. (E) and (F) Antibody models that recognize 130-loop in the receptor-binding site of HA1. (G)
Interaction of receptor analog LSTc in the receptor-binding site of HA1. (H) Interaction of CD4 and CD4-binding loop of gp120. (I) and (J) Antibody
models that recognize of CD4-binding loop of gp120.
doi:10.1371/journal.pone.0105954.g007
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determine the permitted amino acid kinds to mutate for residues

both from FRs and CDRs. The permitted kinds for FRs residues

were site-specific and the probability in each position was obtained

from the sequence alignment of broadly neutralizing HIV and

influenza antibodies (Data S1 and S2), while those for CDRs residues

had no any constraint at all. In both case studies, multiple solutions

with quite different sequences and binding modes were identified.

Improved mutations were found in both the FRs and the CDRs. The

designed antibody models have an apparent trend of obtaining more

polar and charged residues while disfavoring aromatic residues.

Designed antibody models could be immunogenic and cause an

unexpected and serious immune reaction if applied. To address

this issue, we introduced an HScore to evaluate the immunoge-

nicity of designed antibody models in silico. The aim is to limit the

sequence design to mutations that either maintain or increase the

human-like sequence content. Our algorithm is inspired by a very

similar humanization method called HSC [23], which is calculated

by determining the maximal identity between a string of test

sequence and any sequence in an aligned set of human sequences,

and summing theses values over all pertinent sequence positions.

Although HScore works well to distinguish human antibody

sequences from other species, it should be noted that OptMAVEn

does not guarantee the design of antibody models without any

immunogenicity (HScore = 0) under the current design parame-

ters. OptMAVEn seeks to design antibody variant models

simultaneously having reduced immunogenicity and improved

binding in silico, and these two properties are often in inverse

proportion (i.e. high affinity binders may possess high immuno-

genicity and vice versa). This is supported by our case studies,

where the designed light chain of HA-130 still has an HScore of

32. This is comparable to what would be expected in a mouse

antibody. Also, fewer mutations were found to occur in CDR3,

where a considerable amount of energetically favorable mutations

were observed in naturally occurring AM antibodies. Parker et al.
demonstrated a similar difficulty in optimizing both the stability

and immunogenicity of therapeutic proteins by a structure-guided

deimmunization strategy [28]. Another probable reason for the

failure of deimmunization is that the maximum number of allowed

residues (3 under the current study) to mutate and the site-specific

amino acid probabilities both impose limits on the number of

sequences for immunogenicity evaluation. During some IPRO

iterations, few or no mutations are presented for further energy

optimization. As a result, in general trade-offs must be made to

design antibody models either with predicted moderate binding

affinity and lowest immunogenicity or highest binding affinity and

moderate immunogenicity.

Supporting Information

Figure S1 The assembly and affinity maturation of
gemline antibody. The variable region of the heavy chain is

generated from variable (V), diversity (D) and joining (J) gene

segments, whereas the variable regions of the light chains are

generated from V and J gene segments. For the heavy chain, the

first two CDRs and three framework regions (FRs) of the variable

region are encoded by V gene. CDR3 is encoded by a few

nucleotides of V, all of D, and part of J segment, while FR4 is

encoded by the remainder of the J segment. For the light chain, V

gene segment encode the first two CDRs and three FRs of the V

region, plus a few residues of CDR3. J segment encodes the

remainder of CDR3 and the fourth FR.

(TIF)

Figure S2 The distribution of the mean XYZ coordi-
nates of antigen epitopes. (A) Along X axis. (B) Along Y axis

(C) Along Z axis.

(TIF)

Figure S3 The epitopes of influenza HA1 (A) and HIV-1
gp120 (B). H and L chains are colored in cyan and green,

respectively. Antigens are colored in yellow and epitopes are

colored in blue, magenta and yellow, respectively.

(TIF)

Table S1 Numbers of antibody modular part structures
in MAPs.

(DOCX)

Table S2 Native antibody-antigen structure set.

(DOCX)

Table S3 Interaction energies for antibody-antigen
complexes.

(DOCX)

Table S4 Binding free energy for forward and reverse
designs using IPRO with specified positions for muta-
tions.

(DOCX)

Data S1 The alignments of broadly neutralizing HIV
and influenza antibody sequences.

(TXT)

Data S2 The alignments of broadly neutralizing HIV
and influenza antibody sequences.

(TXT)
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