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Abstract: Cancer is at present one of the utmost deadly diseases worldwide. Past efforts in cancer
research have focused on natural medicinal products. Over the past decades, a great deal of initiatives
was invested towards isolating and identifying new marine metabolites via pharmaceutical companies,
and research institutions in general. Secondary marine metabolites are looked at as a favorable source
of potentially new pharmaceutically active compounds, having a vast structural diversity and diverse
biological activities; therefore, this is an astonishing source of potentially new anticancer therapy.
This review contains an extensive critical discussion on the potential of marine microbial compounds
and marine microalgae metabolites as anticancer drugs, highlighting their chemical structure and
exploring the underlying mechanisms of action. Current limitation, challenges, and future research
pathways were also presented.

Keywords: marine; microbes; microalgae; cancer; prevention; therapy; in vitro; in vivo;
clinical studies

1. Introduction

According to a World Health Organization (WHO) report, by 2030 there will be 21 million
new cases of cancer and 13 million deaths due to this disease [1]. Currently, 13% of all deaths
worldwide are induced by cancer, and it is estimated that 30% of such deaths can be avoided by
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modifying or preventing the major risk factors, such as tobacco smoking, radiation exposure, alcohol,
and infections [2]. Nearly all anticancer medications currently on the market have serious adverse
effects, and therefore, new and safer anticancer drugs are desirable. Although there has been a decline
in the interest of the pharma industry in natural products in the recent past, they are still the best
platform for providing novel, effective, and unique chemical structures that may have considerable
potential to treat or prevent cancer or serve as scaffolds or lead molecules for more effective anticancer
drugs. From 1981 to 2010, approximately 1355 drugs were approved for therapeutic application,
and among these, 128 were anticancer drugs with approximately 35% of them from either natural
products or compounds extracted from natural products [3].

More than 70% of medicinal products for clinical use are derived from natural products, and this
also extends into cancer chemotherapy, in which natural products make up most of the current
chemotherapy medications [4]. Nature remains a rich resource of bioactive and varied chemotypes,
and while comparatively very few of the extracted natural products are developed into clinically useful
drugs by themselves, these specific molecules also act as preparatory models for more efficacious
analogues and prodrugs through the implementation of chemical methodology. The main priority of
natural products for the identification and development of new anticarcinogenic pharmaceutical drugs
and the value of cross-disciplinary collaboration in the extraction of novel molecular functionalities
from natural product resources have been extensively investigated [5].

However, the ocean holds a broad reservoir of marine species full of natural pharmaceutical
components of potential significance. Marine bioprospecting is a recent phenomenon; thus, aquatic life
is a largely unexplored field of research [6–9]. Terrestrial life is the source of most pharmaceutically
effective natural products [10]. For centuries, marine flora has been exploited for their potential
medicinal applications throughout the world [11]. Among the marine organisms, bacteria, fungi,
actinobacteria, seaweeds, and sponges have been utilized for cancer treatment [12–16].The most
effective anti-cancer drugs are natural products. However, the natural product research and innovation
phases are expensive, tedious, and time-consuming [17,18].

Few marine pharmaceutical products for marketing have been licensed and some molecules are
being clinically trialed within Phases I and III, along with preclinical studies. It is notable that among
the scientifically developed marine compounds, four compounds are used in cancer treatment, such as
cytarabine (Cytosar), trabectedin (Yondelis), eribulin mesylate (Halaven) and the conjugated antibody
brentuximab vedotin (Acentris).

The dynamic and extremely sensitive global marine ecosystem covers about 70.8% of Earth [19].
This extreme biodiversity encompasses a heterogeneous array of micro- and macro-organisms. Among
them, microorganisms like marine bacteria, fungi, and micro-algae orchestrate a pivotal role in
restoring the balance within the aquatic environment by being both a producer and decomposer [20].
Marine microalgae are essential ecologically which are used as food and medicinal products from
ancient times. Marine microalgae are eukaryotic plants that contribute to drug discovery by their
metabolicplasticity, which can trigger the production of several compounds with possible applications
in combating various diseases, such as cancer [21]. Presently, these aquatic species have gained
increasing acclaim for their bioactive metabolites, which provides an unparalleled potential for a range
of pharmaceutical activity. The distribution of marine species differs depending on the type of open
sea ecosystem, such as pelagic environment, epipelagic environment, mesopelagic zone, bathypelagic
zone, abyssopelagic zone, and benthic environment. These diversified divisions of the aquatic world
harbors heterogeneous species of marine microflora and microalgae. Therefore, summing all the
types of microflora and microalgae, and their extracted bioactive chemical metabolites, would be
too tedious to elaborate in a single article. Thus, only certain specific microflora including bacteria,
fungus, and microalgae (cyanobacteria), along with their potent bioactive metabolites displaying
anticancer activity are emphasized. The most common bioactive compounds having anticancer activity
from these marine sources are alkaloids (staurosporine, ambigols, amycolactam, and marinoquinoline
A), polyketides (chromone, engyodontiumones H, pestalpolyol I, hytidchromone A, B, C, and E),
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terpenes (meroterpenes, diterpene, and scopararane I), peptides (beauvericin, polymyxin B and other
non-ribosomal peptides), nucleosides (cytarabine, gemcitabine and other nucleoside analogues) and
carbohydrates (laminaran, alginic acid, and other sulfated polysaccarides) [22–24].

Microflora and, up to certain extent, microalgae could be regarded as chief drivers of nutrient
transformations in a marine ecosystem. Shift in abiotic factors of marine ecosystem, such as temperature,
salinity, nutrients, oxygen, solar energy, water clarity, tides, waves, aerial exposure and current
has immensely influenced the production and secretion of marine metabolites/ bioactive chemical
compounds from these organisms. To survive under these harsh abiotic factors, the marine microflora
tends to form a symbiotic relationship with other marine microorganisms. These synergetic relationships
enable them to endure and secrete a number of exotic secondary metabolites/bioactive compounds which
they would not do under natural circumstances [25]. Over the last two decades, natural product research
has observed a paradigm shift from terrestrial areas to oceans. Approximately 15,000 marine-origin
metabolites, which have demonstrated cytotoxicity in cancer models, have been identified during the
past three decades and from these, 28 agents are under clinical trials for their anticancer properties [26].
There is myriad of structural motifs undiscovered from the marine ecosystem and these metabolites
can serve as new potent anticancer agents.

There are only a few previous reviews that present an in-depth overview of this important field
of research. Many of the preceding publications focus exclusively on the compilation of marine
secondary metabolites for study on natural products [27–31]. This review looks at the pharmacology
of marine species with respect to anticancer drug molecules which have shown significant bioactivity
to become drug or is in queue to enter clinical trials. The data procured covers published preclinical
study, research papers and review of marine molecules isolated from a diverse group of marine algae,
and cyanobacteria. This review evaluates the anticancer effects of numerous marine cyanobacterium
and microalgae secondary metabolites, emphasizing on their chemical structures and highlighting the
mechanisms of action that underlie their pharmacological activities.

2. Literature Search Methodology

In vitro, in vivo and clinical research investigating the anticancer potential of secondary secreted
metabolites of marine species by modulating various pathways were screened utilizing credible
repositories which include PubMed, ScienceDirect, Web of Science, SpringerLink, Scopus, and Google
Scholar. Comprehensive papers released in peer-reviewed publications up to April 2020 have been
included. There was no time restrainst on publication year. Only publications written in English
have been listed and used in this article. The exclusion criteria for not setecting articles included
non-English language publications, letters to editors, conference abstracts, and unpublisged reports. The
keywords included within the literature quest are cancer, tumor, proliferation, cytotoxicity, apoptosis,
marine, microbes, microalgae, cyanobacteria, prevention, therapy, In vitro, in vivo, and clinical trials.
The bibliography of selected primary literature was also searched for additional relevant papers.

3. Various Classes of Secondary Metabolites of Marine Cyanobacterium and Microalgae

3.1. Alkaloids

Alkaloids are naturally occurring/synthetic organic compounds collectively used to describe
the diverse groups of heterocyclic compounds having alkali-like properties and having at least
one single nitrogen atom within its structure [32,33]. Presently, these nitrogen atoms containing
heterocyclic compounds could be classified based on the basis of carbon skeleton resemblance
contained in biochemical precursors such as ornithine, lysine, tyrosine, and tryptophan, having either
indole and isoquinoline, or pyridine moieties [34]. Marine alkaloids could also be grouped into
indoles, halogenated indoles, and phenylethylamines [35]. Marinoquinoline A is an anticancer
alkaloid produced by Catalinimonas alkaloidigena, a marine bacterium [36] along with 13 other
alkaloid metabolites. Pseudoalteromonas tunicata and P. citrea are two marine bacteria that secrete a
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yellow-pigmented alkaloid that belongs to a group called tambjamines, and this showed anti-tumor
activity along with antimicrobial, antifungal, and antimalarial activity [37,38]. Calothrixins A and
B are alkaloids containing a phenanthridine moiety that are isolated from Calothrix sp. Both the
alkaloids showed significant cytotoxicity to human cervical carcinoma cells (HeLa) [39]. Demay et
al. [40] have comprehensively reviewed a variety of bioactive metabolites of cyanobacteria, such as
Hapalosiphon fontinalis, Fischerella musicola, F. ambigua, H. welwitschii, and Westiella intricate, as among
which hapalindole-like alkaloid, and ambigols, possess cytotoxic activity.

3.2. Polyketides

Polyketides are a broad group of compounds which are biosynthesized as analogs generated by a
sequence of modular enzymes act as biocatalysts from precursors which contain alternating carbonyl
and methylene groups(-CO-CH2-) [41]. Then the compound undergoes decarboxylative condensation
and modification of the acetate or the propionate chains primarily by reduction reaction, dehydration
reaction, cyclization reaction, and aromatization reactions. Streptomyces koyangensis, a marine bacterium
that produces two abyssomicins which have antitumor activity, but in-depth investigation is scanty [42].
Extracts of marine cyanobacteria like Nostoc spongiaeforme and N. linckia, contained a polyketide called
borophycin that showed the strong anticancerous effect against human colon carcinoma cell lines
(LoVo) [43].

3.3. Terpenes

Terpenes are the hydrocarbon compounds formed from 5-carbon isoprene units assembled to
generate a vast range of skeletons, which are used by various enzymes to conjugate functionality and
alter oxidation. These cyclic molecules can be categorized as monoterpenes, diterpenes, triterpenes
(steroids), tetraterpenes (carotenoids), sesquiterpenes, and sesterterpenes based on the isoprene units
it contains [44]. Presently it is acknowledged that marine microflora is an excellent source of these
terpenes, and among which few terpenes exhibited their anticancer activity apart from other biological
properties [22].

3.4. Peptides

Peptides are the definite protein fragments which provide optimistic impacts on human
health [41–45]. Peptides are usually inert within the parent protein chain and may exhibit several
physiological tasks upon proteolysis [46,47]. Enzymatic hydrolysis has played a significant role in
the synthesis of peptide compounds in marine species [48,49]. Numerous prospective reports were
documented about the utilization of marine peptides for pharmaceutical developments, including
antitumor properties [50,51]. Cyclic and linear peptides have been established as potentially effective
cytotoxic agents. These peptides possess cytotoxic, antimicrobial, specific ion channel-blocking,
and other pharmacological activities with innovative chemical structures correlated with the actual
mode of action [50].

A new peptide, polydiscamide A, and its analogs possess anti-tumor activity [50]. A certain
number of marine peptides were successfully evaluated through clinical research and have now been
available as formulated drugs in the market under various trade names.

A cyclic depsipeptide known as Apratoxin A exhibited effective cytotoxic potential against the
human cervical carcinoma cells (HeLa) by triggering cell cycle arrest [52]. Peptides extracted from
Lyngbya sp. and Nostoc sp., were reported to possess promising anticancer activity by the disruption of
microfilaments, inhibition of secretory pathways, and influencing other intracellular pathways [26].

3.5. Nucleosides

Nucleosides belong to a class of organic compounds and are commonly known as the nitrogen
glycosides of purines and pyrimidines; with their phosphate esters, they are called nucleotides [53,54].
These are the important constituents of all living cells and are associated with various fundamental
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physiological processes [53,54]. Marine microbes are skilled at manufacturing different nucleosides
forms with unfamiliar structures and associated biological properties [53–57]. A few of these nucleosides
with substantial pharmacological activities have been documented [56–58]. The potent biological
properties of marine-derived nucleosides have stimulated the production of some analogs [59–61].
Marine nucleosides themselves have exhibited numerous bioactive potentials including the anticancer,
antiviral, muscle relaxant, hypertensive and vasodilator activities [54].

3.6. Carbohydrates

Carbohydrates form the major component of aquatic organisms and are considered the significant
food source of these organisms, particularly algae [62]. These compounds vary extremely in their
molecular structure and resemble a pool of sulfated polysaccharides manufactured fixation of sulfur and
carbon by the photosynthetic organisms [62]. Carbohydrates are classified by source in three groups:
plant polysaccharides [63], animal polysaccharides [64], and microbial polysaccharides [65], which
include both neutral and negatively charged saccharides with varying size [24]. Examples include
either the nitrogen-linked or oxygen-linked oligosaccharides in glycoproteins, glycosaminoglycan in
proteoglycans, glycolipids, sulfated fucans, and sulfated galactans [24,66]. However, their chemical
compositions and arrangements are complex and heterogeneous in nature [67].

Marine carbohydrates are produced by a specific enzymatic hydrolysis process of
polysaccharides [67]. The enzymatic breakdown of the sulfated polysaccharides involves a set
of enzymes that can cleave the glycosidic bond and eliminate the sulfate groups from the carbohydrate
backbone [62]. These marine-derived carbohydrates, including alginic acid, agar, carrageenan,
chitin, cellulose, chitosan, fucan, glucan, glucosamine glycan, and laminaran; these possesses a
wide number of substantial bioactive properties which includes the anticancer potentials [11,67,68].
These carbohydrate-based compounds exhibited anticancer effects against a number of carcinoma cells
by modulating the innate immune system, which triggered the chemotactic response of macrophages
and natural killer cells to the target location and have them produce their tumoricidal cytokines [12].
Fucoidan is a sulfated polysaccharide present as a metabolite in the brown algae cell wall and has been
shown to inhibit atherosclerosis, angiogenesis, and metastasis [69] in the human lymphoma cell line
(HS-Sultan) by subsequent activation of caspase-3, and downregulating kinase activity [12,70].

4. Secondary Metabolites of Marine Cyanobacteria and Microalgae at Various Phases of Clinical
Research

Certain anticancer compounds from marine cyanobacteria and microalgae are currently
undergoing clinical trials [12,22]. These natural bioactive compounds exhibited anticancer activity
by regulating macromolecule expression induced in cancer cells via oncogenic signal transduction
pathways [71].

Fewer than 10% of marine pharmacologically active compounds have been tested against
diverse cancer types [60]. For example, the compounds dolastatin 10, ET-743, and bryostatin 1 are
tested and analyzed in clinical research [12]. A variety of dolastatins and associated molecules
were extracted from filamentous cyanobacteria of the genera Symploca and Lyngbya [72].These are
small oligopeptides containing four unique non-protein amino acids—dolaphenine, dolaproline,
dolaisoleucine, and dolavaline. Dolastatin 10 is a linear peptide while dolastatin 15 is a seven-unit
depsipeptide agent, and both are potent cytostatic peptides that arrest cell division [59]. This was
proven by studies that showed that dolastatins, especially dolastatin 10, attached to tubulin at the
guanosine triphosphate position, leading to the disruption of its normal function and triggering
metaphase cell cycle arrest [73]. Dolastatin 10 reached Phase I of clinical research in 1990s and has
advanced to Phase II of clinical research [74]. However, because it developed peripheral neuropathy in
over 40% of patients, it was discontinued [74]. Even so, it was the basis for more efficient derivatives to
come into existence. One of its derivatives, the monoclonal antibody-drug conjugate Brentuximab vedotin
(Adcetris) has been licensed for its anticancer activity against Hodgkin’s lymphoma [75].
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Various other derivatives as antibody-drug conjugates (Polatuzumab vedotin, Depatuxizumab vedotin)
are under Phase III of clinical research; Enfortumab vedotin, Glembatumumab vedotin, Tisotumab vedotin,
and others are under Phase II of clinical trials, whereas ABBV-085, ASG-15ME, and AGS-67E are under
Phase I of clinical research for different types of cancers (www.clinicaltrials.gov). Soblidotin (TZT-1027)
is a synthetic analog of dolastatin 10 that is more potent against cancer than its parent compound and
other established anticancer medications such as podophyllotoxin and vincristine [76]. In addition to
inhibiting tubulin function, TZT-1027, a vascular disrupting agent, causes a collapse in the vasculature
of the tumor, causing cell death [77]. After completing Phase I and II trials, TZT-1027 is in the Phase III
of clinical research under Aska Pharmaceuticals [78].

Synthadotin (ILX-651) is a synthetic pentapeptide derivative of dolastatin 15, is a potent antitumor
agent in patients having metastatic melanoma in advanced stage [75]. It has been shown to inhibit
microtubule nucleation [79]. Other dolastatins showed cardiovascular toxicity, but ILX-651 has not
exhibited such toxicity [79]. It has successfully completed both Phase I and Phase II of clinical research
and was found to be well tolerated and completely safe [80]. Another compound, bryostatin 1,
has successfully completed Phase II of clinical research for the treatment of melanoma, non-Hodgkin’s
lymphoma, renal cancer, and colorectal cancer [12]. The marine bioactive compounds play a
significant major role in the discovery of anticancer drugs, and these are classified as the antimigration,
antimetastatic, anti-invasion, antitubulin agents and growth inhibitors, apoptosis inducers, autophagy,
and antiangiogenic agents [22]. Also, because of their importance in signal transduction pathways,
an additional family that includes proliferation inhibitors of mitogen-activated protein kinases have
also been incorporated [22].

Salinosporamide Ais a cytotoxic bicyclic β-lactone-γ-lactam isolated from the Salinispora tropica,
amarine actinobacterium [81]. It is an inhibitor of proteasome where the halogenation in its side chain
containing ethyl functional group helps to irreversibly bind the 20S proteasome [81]. By binding to
this enzyme, salinosporamide A triggers apoptosis of cancer cells [82]. Phase I and Phase II clinical
research have been successfully completed for the treatment of solid tumors lymphoma and multiple
myeloma [83]. The finding of the Phase 1 trial demonstrated good anticancer activity among multiple
myeloma patients, with decent health and a non-cross-reactive toxicity profile [83]. Salinosporamide A
did not induce peripheral neuropathy, thrombocytopenia, or myelosuppression, which were observed
with other proteasome inhibitors [83]. Similarly, Phase II findings showed enhanced therapeutic
function and increased duration of the inhibition of the proteasome [75]. Both the United States Food
and Drug Administration (US-FDA) and European Medicines Agency (EMA) declared it to be an
orphan medicine targeting multiple myeloma [75]. At present salinosporamide is undergoing Phase
III studies for newly diagnosed cases of glioblastoma [75].

5. Marine Cyanobacteria Metabolites with Anticancer Property

Owing to their extraordinary abundance, marine cyanobacteria have drawn tremendous interest
within the marine ecosystem. Some of the anticancer agents from marine cyanobacteria as shown in
Table 1 are discussed below.

www.clinicaltrials.gov
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Table 1. Anticancer effects and mechanisms of action of various secondary metabolites of marine cyanobacteria.

Class Secondary
Metabolite Biological Source Cell Lines Used Effects and Mechanisms IC50 Values References

Anthracycline Komodoquinone A(1) Streptomyces sp. KS3 Neuro 2A neuroblastoma cell Neuritogenic activity, ↑cell
differentiation 1 µg/mL [84]

Phenoxazin-3-one Chandrananimycins
A, B, C (2,3,4) Actinomadura sp.

CCL HT29 (colon cancer);
MEXF 514L (melanoma);

LXFA 526L, LXFL 529L (lung
cancer); CNCL SF268, LCL

H460, MACL MCF-7 (breast
cancer); PRCL PC3M, RXF
631L (kidney tumor cells)

Anti-tumor activity ~1.4 µg/mL [85]

Glycosilated
polyketide Ankaraholide A (5) Geitlerinema sp.

NCI-H460; Neuro-2a;
MDAMB-

435 cell lines

⊥ Proliferation;
↑cytotoxicity

119; 262; 8.9 nM [86]

Polyketide Swinholide A (6) Symploca cf. sp. Several cancer cell lines

Antitumor activity;
⊥ proliferation;
↑cytotoxicity;

disruption of the actin
cytoskeleton

0.37 nM–1.0 µM [86]

Pentapeptide Symplostatin 1 (7) Symploca hydnoides

MDA-MB-435 (breast cancer
cell), SK-OV-3 (ovarian
cancer cell), NCI/ADR
(multidrug-resistance

ovarian cancer cell), A-10
(smooth muscle cells), and
HUVEC (Human umbilical

vein endothelial cells);
in vivo study (murine colon

38 and murine mammary
16/C carcinoma cells)

Antitumor activity;
↑phosphorylation of Bcl-2;
↑micronuclei formation,
↑caspase 3, ↑apoptosis, cell
cycle arrest at G2/M Phase,
⊥tubulin accumulation

0.15 ± 0.03 nM;
0.09 ± 0.02 nM;
2.90 ± 0.64 nM;
1.8 ± 0.43 nM;
0.16 ± 0.02 nM

[72,87]
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Table 1. Cont.

Class Secondary
Metabolite Biological Source Cell Lines Used Effects and Mechanisms IC50 Values References

Macrocyclic
depsipeptide

Grassypeptolide,
Grassypeptolide A, B

and C (8, 9, 10)
Lyngbya confervoides

human osteosarcoma (U2OS),
cervical carcinoma (HeLa),
colorectal adenocarcinoma
(HT29), and neuroblastoma

(IMR-32);

Anticancer activity;
⊥proliferation; Cell cycle

arrest at G1 or G2/M Phase

1–4.2 µM for
grassypeptolide in all

cell lines.
Grassypeptolide A:
1.22 &1.01 µM in
HT29 and Hela.

Grassypeptolide B:
4.07 and 2.93 µM in

HT29 and Hela.
Grassypeptolide C:
76.7 and 44.6 nM
HT29 and Hela.

[88,89]

ketopeptide Curacin A (11) Lyngbya majuscule Non-small cell lung cancer
cell line (A549)

Anticancer activity;
⊥proliferation; ↑apoptosis;

cell cycle arrest at G2/M
Phase; binds to tubulin at
colchicines binding site

0.72 ± 0.02 µM [90–95]

Linear peptide Tasiamide B (12) Symploca sp.
kB oral epidermoid cancer;

human colon carcinoma
(LoVo) cells

⊥Proliferation;
↑cytotoxicity

0.48; 3.47 µg/mL [96]

Cyclic depsipeptide

Apratoxin A (13) Lyngbya majuscula

U2OS osteosarcoma;
HeLa cervical carcinoma; in
LoVo colon carcinoma; kB

carcinoma cancer cells

⊥Secretory pathway; ⊥cell
cycle at G1 Phase;
↑cytotoxicity;

⊥translocation of protein
targeting Sec61α

50; 2.2; 0.36; 0.52 nM [97,98]

Apratoxin B (14) Lyngbya sp.
kB oral epidermoid cancer

and LoVo colon
cancer lines

↑Cytotoxicity 21.3; 10.8 nM [97]

Apratoxin C (15) Symploca cf. sp. Several cancer cell lines
↑Cytotoxicity 1.0; 0.73 nM [97]

Apratoxin D (16) Lyngbya majuscule;
Lyngbya sordida H-460 lung cancer 2.6 nM [98]
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Table 1. Cont.

Class Secondary
Metabolite Biological Source Cell Lines Used Effects and Mechanisms IC50 Values References

Apratoxin E (17) Lyngbya bouilloni

U2OS osteosarcoma, HT29
colon

adenocarcinoma and HeLa
epithelial carcinoma

↑Antiproliferative Activity 59; 21; 72 nM [99]

Apratoxin F (18) Lyngbya sp. H-460 lung cancer; HCT-116
colorectal cancer cells

↑Cytotoxicity 2; 36.7 nM [100]
Apratoxin G (19) 14 nM; Not specified

Aurilide B (20) Lyngbya majuscula

NCI-H460
human lung tumor and

neuro-2a mouse
neuroblastoma cells

↑Antiproliferative activity;
↑OPA1 synthesis,
↑apoptosis

0.04; 0.01 µM

[101,102]

Aurilide C (21) Lyngbya majuscula

U2OS osteosarcoma, HT29
colon

adenocarcinoma and HeLa
epithelial carcinoma

0.13; 0.05 µM

Coibamide A (22) Leptolyngbya sp.

MDA-MB-231, melanoma
LOX IMVI,

leukemia HL-60 and
astrocytoma SNB75

↑Cytotoxicity; ⊥cell cycle at
G1 Phase

2.8; 7.4; 7.4 and 7.6
nM [103]

glioblastoma cell lines
U87-MG and SF-295 ↑Cytotoxicity 20 nM

[104]Normal human umbilical
vein endothelial cells

(HUVECs)
⊥Proliferation; ↓VEGFR2 0.3–3 nM

Human U87-MG
glioblastoma cells and SF-295

glioblastoma cells
↑Cytotoxicity; ↑autophagy 28.8, 96.2 nM [105]
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Table 1. Cont.

Class Secondary
Metabolite Biological Source Cell Lines Used Effects and Mechanisms IC50 Values References

Hoiamide A (23) Lyngbya majuscule,
Phormidium gracile

H-460 lung cancer and
neuro-2a mouse
neuroblastoma

↑Cytotoxicity;
↑neurotoxicity

11.2; 2.1 µM [106]

Hoiamide B (24) 8.3 µM; no effect on
neuro-2a

Homodolastatin 16
(25) Lyngbya majuscule

WHCO1 and WHCO6
esophageal cancer;

ME180 cervical cancer

↑Apoptosis; ⊥cell cycle at
G2/M Phase; ↑cytotoxicity

4.3 and 10.1; 8.3
µg/mL [107]

Largazole (26) Symploca sp.

MDA-MB-23I breast cancer;
U2OS

osteosarcoma; colon HT29;
neuroblastoma IMR-32;

nontransformed
murine mammary epithelial

cells NMuMG; HCT-116
colorectal carcinoma

↑Cytotoxicity; ⊥tumor; cell
cycle arrest at G2/M Phase;

⊥HDAC

7.7; 55; 12; 16; 122 nM;
Not specified [108,109]

Lyngbyabellin A (27) Lyngbya majuscula kB nasopharyngeal
carcinoma and LoVo colon

adenocarcinoma

↑Cytotoxicity; ⊥tumor; cell
cycle arrest at G2/M Phase;
↑actin polymerization

0.03; 0.05 µg/mL [110]

Lyngbyabellin B (28) Lyngbya majuscula 0.10; 0.83 µg/mL [110]

Lyngbyabellin E (29) Lyngbya majuscula
Symploca sp.

NCI-H460 human lung
tumor and neuro-2a mouse

neuroblastoma cells

⊥Tumor growth; ⊥cell
microfibrils network

0.4; 1.2 µM
[111]

Lyngbyabellin F (30) Lyngbya majuscula

↑Cytotoxicity

1; 1.8 µM

Lyngbyabellin G (31) Lyngbya majuscula 2.2; 4.8 µM [111]

Lyngbyabellin H (32) 0.2; 1.4 µM [111]

Lyngbyabellin I (33) Lyngbya majuscula 1; 0.7 µM [111]

Lyngbyabellin N (34) Moorea bouillonii HCT116 (colon cancer cell
line)

Anticancer activity;
↑cytotoxicity 40.9 ± 3.3 nM [112]

Majusculamide C (35) Lyngbya majuscule

Ovarian carcinoma
OVCAR-3, kidney cancer

A498, lung cancer NCI-H460,
colorectal cancer KM20L2;

glioblastoma SF-295

Anticancer activity;
↑cytotoxicity

0.51; 0.058; 0.0032;
0.0013; 0.013 µg/mL [110,113]
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Table 1. Cont.

Class Secondary
Metabolite Biological Source Cell Lines Used Effects and Mechanisms IC50 Values References

Desmethoxymajusculamide
C (36) Lyngbya majuscule HCT-116 human colon

carcinoma cells Selective antitumor activity 20 nM [110]

Obyanamide (37) Lyngbya confervoides kB and LoVo cells Anticancer activity 0.58; 3.14 µg/mL [114]

Palau’amide (38) Lyngbya confervoides kB oral epidermoid cancer
cells Anticancer activity 13 nM [115]

Palmyramide A (39) Lyngbya majuscule Neuro2a cells and human
lung cell H-460

Anticancer activity;
↑cytotoxicity; blocking the
voltage regulated sodium

channel

17.2; 39.7 µM [116]

Pitipeptolide A (40) Lyngbya majuscule
HT29 colon adenocarcinoma
cancer cells, MCF-7 and LoVo

colon cancer

Anticancer activity;
↑cytotoxicity

13; 13 µM & 2.25
µg/mL [117,118]

Pitipeptolide B(41) Lyngbya majuscula
HT29 colon adenocarcinoma
cancer cells, MCF-7 and LoVo

colon cancer

Anticancer activity;
↑cytotoxicity 13; 11 µM; 1.95 µg/mL [117,118]

Pitiprolamide (42) Lyngbya majuscula
HCT116 colorectal carcinoma

and MCF7 breast
adenocarcinoma

Anticancer activity,
↑cytotoxicity 33; 33 µM [119]

Tasipeptins A (43) Symploca sp. kB oral epidermoid cancer Anticancer activity,
↑cytotoxicity 0.93 µM [120]

Tasipeptins B (44) Symploca sp. kB oral epidermoid Anticancer activity,
↑cytotoxicity 0.82 µM [120]

Ulongapeptin (45) Lyngbya sp. kB oral epidermoid cancer Anticancer activity;
↑cytotoxicity 0.63 µM [121]

Veraguamide A-G
(46–52)

Symploca cf. hydnoides,
Oscillatoria

margaritifera

HT29 colon adenocarcinoma;
HeLa cervical carcinoma

Anticancer activity;
↑cytotoxicity

26; 2 µM & 141 nM; 30
& 17 µM; 5.8 & 6.1
µM; 0.84 & 0.54 µM;

1.5 & 0.83 µM; 49 & 49
µM; 2.7 & 2.3 µM

[122,123]

Wewakpeptins A-D
(53–56) Lyngbya semiplena H-460 lung cancer Anticancer activity;

↑cytotoxicity 0.4 µM [124]
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Table 1. Cont.

Class Secondary
Metabolite Biological Source Cell Lines Used Effects and Mechanisms IC50 Values References

Cyclic heptapeptides Nostocyclopeptide A1
& A2 (57, 58) Nostoc sp.

kB oral epidermoid cancer
and LoVo colon carcinoma

cell line

Anticancer activity;
↑cytotoxicity 1 & 1 µM for both [125]

Cyclopeptide Symplocamide (59) Symploca sp.
Non-small cell lung cancer
cells H-460 and neuro-2a

neuroblastoma cells

Anticancer activity;
↑cytotoxicity 40; 29 nM [110]

Cyclicpeptide Tasiamide (60) Symploca sp.
Human nasopharyngeal

carcinoma (kB) and human
colon carcinoma (LoVo) cells

Anticancer activity;
↑cytotoxicity 0.48; 3.47 µg/mL [126]

Linear tetrapeptide Belamide A (61) Symploca sp. MCF7 breast cancer cell;
HCT-116 colon cancer cell

Anticancer activity;
↑cytotoxicity;

depolymerizing effect on
microtubule in A-10 cells;

antimitotic activity

1.6 µM; 0.74 µM [127]

Peptide Bisebromoamide (62) Lyngbya sp.

HeLa S3 cells; a panel of 39
human cancer cell lines of the

Japanese Foundation for
Cancer Research (JFCR39)

Cancer Research

↑Cytotoxicity;
⊥protein kinases;

⊥phosphorylation of ERK

0.04 µg/mL; average
40 nM [128,129]

Lipopeptides
Dragonamide,

Pseudodysidenin (63,
64)

Lyngbya majuscula

P-388; A-549 lung epithelial
adenocarcinoma, HT-29
colon adenocarcinoma;

MEL-28 melanoma

Anticancer activity;
↑cytotoxicity > 1 µg/mL [130]

Lipopeptide Kalkitoxin (65) Phormidium sp. HCT-116 colon cancer cell;
T47D breast tumor cells

Anticancer activity;
↑cytotoxicity;

⊥hypoxia-induced
activation of HIF-1;
↓mitochondrial oxygen
consumption at electron

transport chain (ETC)
complex I

(NADH-ubiquinone
oxidoreductase); blocking

of VEGF

2.7 nM; 5.6 nM [131]
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Metabolite Biological Source Cell Lines Used Effects and Mechanisms IC50 Values References

Lipopeptide Somocystinamide A
(66) Lyngbya majuscula

Jurkat, CEM (leukemia),
A549 (lung carcinoma), Molt4

(T cell leukemia), M21
melanoma, and U266

myeloma cell lines

↑Cytotoxicity; ↑apoptosis
via caspase 8

3; 14; 46; 60 nM; 1.3;
5.8 µM [132]

Lipopeptide, Lyngbic
acid derivative

Malyngamide 2 (67) Lyngbya sordida H-460 lung cancer ↑Cytotoxicity 27.3 µM [133]

Malyngamide C, J, &
K (68, 69, 70) Lyngbya majuscula NCI-H460, Neuro-2a, and

HCT-116 ↑Cytotoxicity
1.4; 3.1; 0.2 µg/mL
10.8, 4 µg/mL, nd

1.1; 0.49 µg/mL, nd
[134]

Peptide ester Malevamide D (71) Symploca hydnoides Kü
tzing ex Gomont

P388, Lung cancer A-549,
colon cancer HT-29
Melanoma MEL-28

↑Cytotoxicity 0.3–0.7 nM
0.7 nM [135]

Cyclodepside Malyngolide dimer
(72) Lyngbya majuscule NCI H-460 human lung

tumor cell line
Moderate cytotoxicity;

anticancer activity Not specified [136]

Macrolide
depsipeptide

Cryptophycin 1 (73) Nostoc sp.

L1210 murine leukemia cells
Anticancer activity;

↑disruption of microtubule
assembly

Not specified [137,138]

kB cells and LoVo cell ↑Apoptosis 4.58, 7.63 pM [139]

MDA-MB-435 mammary
adenocarcinoma; SKOV3

ovarian carcinoma cell lines

⊥Proliferation; ⊥cell cycle
at G2/M Phase

50 pM [140,141]

Cyclic depsipeptide Lagunamides A, B
(75, 76) Lyngbya majuscule P388 (a murine leukemia cell

line) ↑Cytotoxicity 6.4 and 20.5 nM [142]

Lagunamides C (77) P388, A549, PC3, HCT8, and
SK-OV3carcinoma cell lines 2.1 to 24.4 nM [143]
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Macrolide glycoside

Biselyngbyaside (78) Lyngbya sp.

HeLa S3 epithelial carcinoma;
SNB-78 central nervous

system cancer; NCI H522
lung cancer

⊥Proliferation of cancer
cell; induced cytotoxicity

0.1 µg/mL; 0.036;
0.067 µM [144]

Biselyngbyasid B (79) Symploca hydnoides HeLa S3 cells and HL60 cells
⊥Proliferation of cancer

cell; induced cytotoxicity
3.5 & 0.82 µM [145]

Biselyngbyasid E & F
(80, 81) Lyngbya sp. HeLa and HL60 cells

⊥Proliferation of cancer
cell; induced cytotoxicity

0.19 & 0.071 µM; 3.1 &
0.66 µM [146]

Glycomacrolide

Lyngbyaloside B (82) Lyngbya sp.
kB nasopharyngeal

carcinoma and LoVo colon
adenocarcinoma

↑Cytotoxicity;
anticancer activity 4.3; 15 µM [147]

2-epi-lyngbyalosid
(83) Lyngbya bouillonii

HT29 colorectal
adenocarcinoma and HeLa

cells

Anticancer activity;
⊥proliferation 38 and 33 µM [148]

18E-lyngbyaloside C;
18Z-lyngbyaloside C

(84, 85)
Lyngbya sp.

HT29 colorectal
adenocarcinoma and HeLa

cells

Anticancer activity;
⊥proliferation;

13 & 9.3 µM; >100 µM
& 53 µM [148]

Macrolide
Biselyngbyolide A;

Biselyngbyolide B (86,
87)

Lyngbya sp. HeLa S3 cells and HL60 cells Anticancer activity 0.22 & 0.027 µM; 0.028
& 0.0027 µM [149]

Macrolide

Koshikalide;
Acutiphycin and 20,

21-didehydroacutiphycin
(88, 89, 90)

Lyngbya sp.,
Oscillatoria acutissima

HeLa S3 cells;
KB and NIH/3T3 cells

Anticancer activity;
↑cytotoxicity

42 µg/mL,
Not specified for

Acutiphycin and 20,
21-didehydroacutiphycin

[150,151]

Glycosylated
macrolide Lyngbouilloside (91) Lyngbya bouillonii Neuro-2a neuroblastoma

cells
Anticancer activity;
↑cytotoxicity 17 µM [152]

Glycosylated
macrolide

Polycavernoside D
(92) Okeania sp. H-460 human lung cancer

cell line
⊥Proliferation EC50 = 2.5 µM [153]
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Macrocyclic lactone

Tolytoxin(93)
6-hydroxyscytophycin

B (95),
19-O-demethylscytophycin

C (96), and
6-hydroxy-7-O-methylscytophycin

E (98)

Seytonema ocellaturn
Lyngbye ex Bornet

and Flahault

L1210 (murine leukemia),
LoVo, kB, HEp-2 (human

epithelial type 2 cells), HL-60
(Human promyelocytic

leukemia), HBL-100 (breast
cancer cell), T47-D (human

ductal carcinoma), COLO-201
(colon adenocarcinom),

KATO-III (human gastric
carcinoma)

Nasopharynx cell (kB cells),
&LoVo cells

Anticancer activity;
↑cytotoxicity;

3.9, 8.4, 5.3, 2.3, 4.8,
2.4, 4.9, 0.52, and 0.78

nM
>5 ng/mL

[154,155]

Macrolactone Caylobolide A (99),
Caylobolide B (100)

Lyngbya majuscula
Phormidium sp.

HCT-116 colon tumor
HT29 colorectal

adenocarcinoma, and HeLa
cervical carcinoma

Anticancer activity;
↑cytotoxicity

9.9 µM (same for both
caylobolide A & B)

4.5; 12.2 µM
[156,157]

Fatty acid amines

Isomalyngamide A
(101), and

Isomalyngamide A-1
(102)

Lyngbya majuscula Breast cancer MCF-7 and
MDA-MB-231

⊥Proliferation; ⊥apoptosis;
⊥cell migration;

antimetastatic activity

4.6 & 2.8 µM;
12.7 µM & > 20 µM [158]

Jamaicamides A, B, &
C (103, 104, 105) Lyngbya majuscula

H-460 lung cancer and
Neuro-2a mouse neuro

blastoma cell lines
⊥proliferation LC50: 15 µM for all [159]

Pigment Scytonemin (106) Stigonema sp. Jurkat T cells

↑Apoptosis; ⊥formation of
mitotic spindle; ⊥protein
serine/threonine kinase

activity

7.8 µM [160,161]
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Boron containing
metabolite Borophycin (107) Nostoc spongiaeforme,

N. linckia

Human cancer cell lines kB
colorectal adenocarcinoma

and LoVo (human
epidermoid carcinoma)

⊥Cancer; ⊥cell cycle at
G2/M Phase

Not specified [48,162]

Phenanthridine
alkaloids

Calothrixins A and B
(108, 109)

Calothrix sp.

Human carcinoma cell line
(HeLa) ↑Cytotoxicity;⊥proliferation 40and 350 nM [163,164]

CEM leukemia cells
⊥Proliferation;⊥cell cycle
at G1 and G2/M Phases

0.20 to 5.13 µM [165]

Various symbols (↑, ↓ and ⊥) indicate increase, decrease and inhibition in the obtained variables, respectively.
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5.1. Anthracyclines

Komodoquinone A (1) (Figure 1), produced by Streptomyces sp. KS3. This is a new anthracycline
that caused neurotogenesis (process of forming new neurites) in the neuro 2A neuroblastoma cell
line [84].
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5.2. Phenoxazin-3-One Compounds

The novel anticancer antibiotics chandrananimycins A (2), B (3), and C (4) with phenoxazin-3-one
moiety have been isolated from the marine Actinomadura sp. [85]. These compounds exhibited
anticancer activity by inhibiting the proliferation of cancer cell lines such as, CCL HT29 (colon cancer
cell), MEXF 514L (melanoma cells), LXFA 526L, LXFL 529L (lung cancer cells), CNCL SF268, LCL H460,
MACL MCF-7 (breast cancer cells), and PRCL PC3M, RXF 631L (kidney tumor) [85].

5.3. Polyketides

Ankaraholide A (5) is a glycosylated swinholide compound, which is procured from
Geitlerinema sp. [86]. It inhibited the proliferation of NCI-H460, Neuro-2a, and MDAMB-435 cells [96].
Swinholide A (6) was initially obtained from the marine sponge Theonella swinhoei. Later, it was also
reported to be the metabolites of the marine cyanobacterium Symploca sp. It exhibited its antitumor
activity by disruption of actin [86].

5.4. Peptides

Symplostatin 1 (7) (Figure 1) is an analogue of dolastatin 10, isolated from Symploca hydnoides,
a marine bacterium. The antimitotic activity of symplostatin was shown against a panel of cancer cell
lines, such as MDA-MB-435, SK-OV-3, NCI/ADR, A-10, and HUVEC [87].It also showed profound
antitumor activity against murine colon 38 and murine mammary 16/C carcinoma cells. This metabolite
triggered the phosphorylation of Bcl-2, micronuclei formation, caspase-3 activation, and induced
apoptosis that led to cell cycle arrest at the G2/M Phase. It also prevented the accumulation of tubulin [87].
Grassypeptolideis a macrocyclic depsipeptide formed by the cynobacteria Lyngbya confervoides [88].
It showed cytotoxic antiproliferative activity against various cell lines, such as human osteosarcoma
(U2OS), cervical carcinoma (HeLa), colorectal adenocarcinoma (HT29), and neuroblastoma (IMR-32)
cell lines [88]. Grassypeptolide A (8) (Figure 1), B (9) and C (10) (Figure 2), significantly inhibited the
proliferation of colorectal adenocarcinoma (HT29) cell lines and cervical carcinoma (HeLa) cell lines
in a concentration-dependent manner by inducing cell cycle arrest at either G1 the Phase or G2/M
Phase [89].

Curacin A (11) (Figure 2), a linear and complex hybrideketopeptide, was the first curacin that
was isolated from extracts of the Caribbean cyanobacterium Lyngbya majuscule [90]. After curacin
A, other curacin compounds, namely curacin B, C, and D, were also identified as the constituents of
L. majuscule [91]. Amongst these, curacin A was the most active anticancer compound that inhibited the
proliferation of non-small cell lung cancer cells (A549) by triggering apoptosis and causing cell cycle
arrests in the G2-M Phase [92]. It acts by binding to tubulin at colchicine binding site and acting as a
competitive antagonist, and tubulin polymerization inhibitor [93]. Its structural activity relationship
(SAR) studies indicated that the existence of four double bonds, a conjugated diene, a readily oxidized
thiazoline heterocycle, and high lipophilicity are the factors that govern the pharmacological function
of curacin A [94]. Various analogues were prepared, but they exhibit activity, lower than that the parent
compound [95].
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Tasiamide B (12) (Figure 2), a linear peptide extracted from cyanobacteria Symploca sp.,
demonstrated potent toxicity against human nasopharyngeal carcinoma (kB) and LoVo cancer
cells, respectively [96]. Apratoxins (Figure 2) are cytotoxic cyclic depsipeptides that have a novel
polyketide and peptide fragmented structure [98]. Apratoxin A (13) (Figure 2) was found in an aquatic
cyanobacteria Lyngbya majuscula. It disrupted the secretory pathway of U2OS osteosarcoma cells and
even induced arrest at G1 Phase of the cell cycle in HeLa cervical carcinoma. It also demonstrated
significant cytotoxic behavior in human tumor cell lines, such as LoVo cells and epidermal kB carcinoma
cancer cells, respectively [97]. Apratoxin A inhibited the translocation of proteins by specifically
attacking a central subunit of the protein translocation receptor, Sec61α [99]. Apratoxin B (14) and C
(15) (Figure 2), extracted from Lyngbya sp., has high cytotoxicity against kB oral epidermoid cancer
cells and LoVo colon cancer cells [97]. Apratoxin D (16) (Figure 2), collected from Lyngbya majuscule
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and Lyngbya sordid, demonstrated significant cytotoxicity against the H-460 lung cancer cell line [98].
Apratoxin E (17) (Figure 3) extracted from Lyngbya bouilloni demonstrated strong antiproliferative
action against diverse cancer cell lines, such as U2OS osteosarcoma, HT29 colon adenocarcinoma,
and HeLa epithelial carcinoma [99].

Apratoxin F (18) and G (19) (Figure 3), containing N-methyl alanine in their composition,
has been reported to be isolated from Lyngbya bouilloni and have strong cytotoxicity against H-460
lung cancer and HCT-116 colorectal cell lines [100]. Cyclic depsipeptidesaurilide B (20) and C (21)
(Figure 3), isolated from Lyngbya majusculus, demonstrated cytotoxicity in human lung tumor cell
line NCIH460 and neuro-2a mouse neuroblastoma cells [101]. Aurilides binds prohibitin 1 (PHB1)
in the mitochondria, stimulates optic atrophy 1 (OPA1) proteolytic synthesis and contributes to
mitochondrial apoptosis [102].Coibamade A (22) (Figure 3) is a cyclic depsipeptide extracted from
marine cyanobacterium Leptolyngbya sp. It showed strong cytotoxic activity against a triple-negative
breast cancer cell line (MDA-MB-231) [103]. The antiproliferative activity of the active metabolite
is associated with the cell cycle arrest at the G1 Phase. Similar observations were reported, where
glioblastoma cell lines, such as U87-MG and SF-295, were treated with coibamide A. It also inhibited
the proliferation of HUVECs by inducing cell morphology change and reducing the expression level
of vascular endothelial growth factor receptor 2 (VEGFR2) [104]. Cobamide A induced autophagy
associated cell death of human U87-MG glioblastoma cells and SF-295 glioblastoma cells and mouse
embryonic fibroblasts [105].

The structurally distinct cyclic depsipeptideshoiamide A (23) and B (24) (Figure 4), isolatedfrom
Lyngbya majuscule and Phormidium gracile, exhibited strong cytotoxicity [106]. Hoiamide A displayed
moderate cytotoxicity against mouse neuroblastoma (neuro-2a) cells and human lung adenocarcinoma
(H460) cells, while hoiamide B exhibited weak cytotoxicity against H460 and no inhibition against
neuro-2a cells [106].Homodolastatin 16 (25) (Figure 4), a cyclic marine depsipeptide isolated from
Lyngbya majuscule, appears to have a modest cytotoxic effect against esophageal (WHCO1 and WHCO6)
cell lines and cervical cell line (ME180), respectively [107]. Largazole (26) (Figure 4), a cyclodepsipeptide
isolated from Symploca sp., has demonstrated a significant hindrance in the development of extremely
invasive transformed human mammary epithelial cells (MDA-MB-231) in a concentration-dependent
manner. The growth of HT29 colon and IMR-32 neuroblastoma cells has also been significantly inhibited.
Similar pharmacological activity was observed towards transformed fibroblastic osteosarcoma (U2OS)
cells [108]. It causes cell-cycle arrest colon cancer cell line HT29 at the G2/M Phase [110]. It is an
inhibitor of histone deacetylase (HDAC) in vivo in the tumor xenograft model of HCT116 [109].

Lyngbyabellin A (27) and B (28) (Figure 4) are cyclic depsipeptides extracted from
Lyngbya majusculus which possessed a strong actin polymerization mechanism with significant
cytotoxicity against kB and LoVo cells [110]. Lyngbyabellin E–I (29–33) (Figure 5) demonstrated
cytotoxicity to NCI-H460 human lung tumor and neuro-2a mouse neuroblastoma cells [110,111].
Lyngbyabellin N (34) (Figure 5) extracted from Moorea bouillonii demonstrated cytotoxicity in human
lung carcinoma (H-460) and colon cancer cell lines (HCT116) [112]. Majusculamide C (35) and
desmethoxymajusculamide C (36) (Figure 6) are cyclic depsipeptides derived from the Lyngbya
majuscule, a marine cyanobacterium. Majusculamide C was identified as cytotoxic and showed strong
activity against several cancer cell lines, such as ovarian carcinoma (OVCAR-3), kidney cancer (A498),
lung cancer (NCI-H460), colorectal cancer (KM20L2), and glioblastoma SF-295 cell lines [113]. Once
screened against HCT-116 human colon carcinoma cells, desmethoxymajusculamide C has a good and
a selective antitumor effect [110].
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Obyanamide (37) (Figure 6), a cyclic depsipeptide isolated from lyngbya confervoides,
has demonstrated significant cytotoxicity to the kB and LoVo cells [114]. Palau’amide (38) (Figure 6) is
a cyclical depsipeptide isolated from the same marine cyanobacteria Lyngbya sp., which has shown
significant cytotoxicity to kB cells [115]. Palmyramide A (39) contributes to cytotoxicity in neuro-2a cells
possibly through blocking the voltage regulated sodium channel. Palmyramide A has shown moderate
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cytotoxic effects on human lung cell line H-460 [116]. Pitipeptolides A (40), and B (41) (Figure 6),
cyclic depsipeptides isolated from a marine cyanobacterium Lyngbya majuscule, were reported to
possess cytotoxic action against HT29 colon adenocarcinoma cancer cells [117]. Apart from that
pitipeptolide A and B also exhibit cytotoxicity against LoVo cells [118].
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Pitiprolamide (42) (Figure 7) a cyclic depsipeptide obtained from Lyngbya majuscule, showed
cytotoxicity against MCF7 breast adenocarcinoma and HCT116 colorectal carcinoma cell lines [119].
Tasipeptins A (43) and B (44) (Figure 7), cyclic depsipeptides derived from Symploca sp.,
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exhibitedcytotoxicity against kB oral epidermoid cancer cells [120]. Ulongapeptin (45) (Figure 7),
a cyclic depsipeptide obtained from Lyngbya sp., possessed cytotoxicity against kB oral epidermoid
cancer cells [121]. Veraguamides A–G (46–52) (Figures 7 and 8) are cyclic hexadepsipeptide obtained
from Symploca cf. hydnoides [120]. These metabolites demonstrated cytotoxic property against HT29
colon adenocarcinoma and HeLa cervical carcinoma cells [122]. In addition, it also possessed potent
cytotoxicity against the H-460 human lung cancer cell line [123]. Wewakpeptins A–D (53–56) (Figures 8
and 9) are depsipeptides obtained from Lyngbya semiplena that have exhibited anticancer activity by
inhibiting the proliferation of H-460 lung cancer cells [124].

Mar. Drugs 2020, 18, x  30 of 63 

 

colon adenocarcinoma and HeLa cervical carcinoma cells [122]. In addition, it also possessed potent 

cytotoxicity against the H-460 human lung cancer cell line [123]. Wewakpeptins A–D (53–56) (Figures 

8 and 9) are depsipeptides obtained from Lyngbya semiplena that have exhibited anticancer activity by 

inhibiting the proliferation of H-460 lung cancer cells [124]. 

 

Figure 7.Isolated marine cyanobacteria-derived peptides (42–49). Figure 7. Isolated marine cyanobacteria-derived peptides (42–49).



Mar. Drugs 2020, 18, 476 26 of 59

Mar. Drugs 2020, 18, x  31 of 63 

 

 

Figure 8.Isolated marine cyanobacteria peptides (50–55). 

Nostocyclopeptide A1 (57) and A2 (58) (Figure 9), are cyclic heptapeptides isolated from Nostoc 

sp., displayed cytotoxicity against ĸB oral epidermoid cancer and LoVo colon cancer cells [125]. 

Symplocamide A (59), isolated from Symploca sp., is a cyclopeptide that showed potent cytotoxicity 

to H-460 non-small cell lung cancer cells and neuro-2a neuroblastoma cells [110]. Tasiamide (60) 

(Figure 9) is a cyclopeptide isolated from the cyanobacterium Symploca sp., which showed strong 

cytotoxicity against human nasopharyngeal carcinoma (ĸB) and LoVo cells [126]. Belamide A (61) 

Figure 8. Isolated marine cyanobacteria peptides (50–55).

Nostocyclopeptide A1 (57) and A2 (58) (Figure 9), are cyclic heptapeptides isolated from
Nostoc sp., displayed cytotoxicity against kB oral epidermoid cancer and LoVo colon cancer cells [125].
Symplocamide A (59), isolated from Symploca sp., is a cyclopeptide that showed potent cytotoxicity to
H-460 non-small cell lung cancer cells and neuro-2a neuroblastoma cells [110]. Tasiamide (60) (Figure 9)
is a cyclopeptide isolated from the cyanobacterium Symploca sp., which showed strong cytotoxicity
against human nasopharyngeal carcinoma (kB) and LoVo cells [126]. Belamide A (61) (Figure 9) is
categorized as a linear tetrapeptide with structural similarities to dolastatin 10 and dolastatin 15 that is
isolated from cyanobacteria Symploca sp. It exhibited good cytotoxicity against HCT-116 colon cancer



Mar. Drugs 2020, 18, 476 27 of 59

cell line [127]. This has been used to destabilize tubulin in vascular smooth muscle cells (A10) to induce
antimitotic action [127].
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Bisebromoamide (62) (Figure 10) a peptide that is a marine toxic substance isolated from
Lyngbya sp. [128,129]. It exhibited inhibition of the phosphorylation of extracellular signal-regulated
kinases (ERK) in normal rat kidney epithelial (NRK) cells stimulated by platelet-derived growth
factor [129]. Dragonamide (63) and pseudodysidenin (64) (Figure 10) are lipopeptides isolated
from Lyngbya majuscule, and both exhibited cytotoxicity against P-388, A-549, HT-29, and MEL-28
carcinoma cells [130]. Kalkitoxin (65) (Figure 10), another lipopeptide is isolated from Lyngbya majuscule,
was shown to decrease HCT116 colon cancer cell survival [131]. Somocystinamide A (66) (Figure 10),
a lipopeptide obtained from the same cyanobacterium, exhibited antiproliferative activity against
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Jurkat (T cell leukemia), CEM leukemia, A549 lung carcinoma, Molt4T leukemia, M21 melanoma and
U266 myeloma cells. It induced apoptosis via activation of caspase 8 [132].

Malyngamide 2 (67) (Figure 10), isolated from Lyngbya majuscule and Lyngbya sordid, displayed
cytotoxicity against H-460 human lung carcinoma cells [133]. Malyngamide C (68), J (69), and K (70)
(Figure 10) are documented to be the metabolites of Lyngbya majuscule, exhibited cytotoxicity against
some cancer cell lines [134]. Malyngamide C showed cytotoxicity against NCI-H460, neuro-2a, and
HCT-116 cancer cell lines [134]. Malyngamide J and K displayed cytotoxicity against NCI-H460 and
neuro-2a cell lines [134].
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Malevamide D (71) (Figure 11), a peptide ester isolated from Symploca hydnoides, exhibited
strong cytotoxicity against a panel of cancer cell line, such as P-388, human lung carcinoma (A-549),
and human colon carcinoma (HT-29), and human melanoma (MEL-28) cells [135].Malyngolide dimer
(72) (Figure 11) is a cyclodepsipeptide obtained from Lyngbya majuscule exhibited cytotoxicity when
evaluated against the H-460 human lung cell line [136].
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Cryptophycin 1 (73) and cryptophycin 52 (74) (Figure 11) are macrolide depsipeptides that are
potent cytotoxic molecules. These are microtubule inhibitors bearing similar mechanism of action as
that of Vinca alkaloids. Cryptophycin 1 is isolated from Nostoc sp., (blue green algae/cyanobacterium),
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showed anticancer activity against L1210 murine leukemia cells [137]. It binds with tubulin and triggers
the disruption of microtubule assembly [138]. It exhibited cytotoxic function against KB cells and LoVo
cell lines by inducing apoptosis [139]. It also displayed antiproliferative activity against MDA-MB-435
mammary adenocarcinoma and SKOV3 ovarian carcinoma cell lines by triggering cell cycle arrest
at the G2/M Phase [140]. Cryptophycin 52 is a synthetic derivative of cryptophycin. Interestingly,
even though it reached Phase II of the clinical trials, its development has been halted due to severe side
effects [141]. Lagunamide A (75) and B (76) (Figure 11) are cyclic depsipeptides extracted from the
marine cyanobacterium Lyngbya majuscule. Both the metabolites exhibited potent cytotoxicity against
P388 (a murine leukemia cell line) [142]. Lagunamide C (77) (Figure 11) showed its cytotoxicity against
carcinoma cell lines, such as P388, A549, PC3, HCT8, and SK-OV3 [143].

5.5. Macrolides

Biselyngbyaside (78) (Figure 12), obtained from the Lyngbya sp., is a secreted macrolide glycoside
that induced apoptosis by nuclear condensation of mature osteoclasts [144]. Cytotoxicity has been
demonstrated against HeLa S3, SNB-78 (central nervous system cancer) and NCI H522 (lung cancer)
cells [144]. Biselyngbyasid B (79) (Figure 12), obtained from Lyngbya sp., showed cytotoxicity against
HeLa S3 cells and HL60 cells [145]. Biselyngbyaside E (80) and F (81) (Figure 12) showed cytotoxic
activity against HeLa and HL60 cells [146]. Lyngbyaloside B (82) (Figure 12), a macrolide glycoside
isolated from Lyngbya sp., was shown to have a cytotoxic impact on kB cells and had a slightly reduced
effect on LoVo cells [147]. Further, 2-epi-lyngbyalosid (83) (Figure 12), a macrolide glycoside extracted
from Lyngbya bouillonii, demonstrated cytotoxic properties against HT29 colorectal adenocarcinoma
and HeLa cells [148].

In addition, 18E-lyngbyaloside C (84) and 18Z-lyngbyaloside C (85) (Figure 13) also
displayed potent cytotoxic property against HT29 colorectal adenocarcinoma and HeLa cells [148].
Biselyngbyolide A (86) and B (87) (Figure 13) are macrolide metabolites that have been isolated from
the marine cyanobacterium Lyngbya sp., and have shown strong cytotoxicity against HeLa S3 cells and
HL60 cells [149].Koshikalide (88) (Figure 13), a macrolide isolated from Lyngbya sp., displayed cytotoxic
activity against HeLa S3 cells [150]. Acutiphycin (89) and 20,21-didehydroacutiphycin (90) (Figure 13),
both macrolides isolated from Oscillatoria acutissima, demonstrated cytotoxic activity against kB cells and
NIH/3T3 cells [151]. Lyngbouilloside (91) (Figure 14), a macrolide glycoside isolated from cyanobacteria
Lyngbya bouillonii showed cytotoxic effect against neuroblastoma cells [152]. Polycavernoside D (92)
(Figure 14), another glycosidic macrolide isolated from cyanobacteria Okeania sp., exhibited cytotoxic
effect against human lung cancer cells (H-460) [153].
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5.6. Lactones

Tolytoxin (6-hydroxy-7-O-methyl-scytophycin B, 93) (Figure 14), a macrolide isolated from the
lyophilized cells of Seytonema ocellaturn, exhibited cell growth inhibition of a panel of mammalian
cells [154]. Scytophycin A–E (94–98) (Figures 14 and 15), were reported to be isolated from blue green
alga Seytonema pseudohofmanni, exhibited cytotoxic effect against human carcinoma of nasopharynx cell
(kB cells) [155]. Caylobolide A (99) (Figure 15) is a macrolactone obtained from cyanobacteria Lyngbya
majuscula that has exhibited In vitro cytotoxicity against human colon tumor cells HCT 116 [156].
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Caylobolide B (100) (Figure 15) is obtained from Phormidium sp., and this has exhibited cytotoxic
activity against HT29 colorectal adenocarcinoma and HeLa cervical carcinoma cells [157].
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5.7. Fatty Acid Amines

Isomalyngamide A (101) (Figure 16) belongs to the class of fatty acid amines, which is isolated
from the cyanobacteria Lyngbya majuscule and has inhibited the proliferation ofbreast cancer MCF-7
and MDA-MB-231 cells [158]. Isomalyngamide A-1 (102) (Figure 16) is extracted from cyanobacteria
Lyngbya majuscule and Lyngbya sordida and has been shown to inhibit the proliferation of MDA-MB-231
cells [158]. Jamaicamides A (103), B (104), and C (105) (Figure 16) are fatty acid amines containing
compound extracted from Lyngbya majuscule and Lyngbya sordida, showed cytotoxicity to both the
H-460 human lung and neuro-2a mouse neuroblastoma cell lines [159].
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5.8. Pigment

Scytonemin (106) (Figure 17) is a yellow-green pigment obtained from stigonema species of
blue-green algae (cyanobacteria). It showed antiproliferative activity against Jurkat T cells by inducing
apoptosis. The formation of mitotic spindle and the protein serine/threonine kinase activity was
inhibited by scytonemin [160,161].
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5.9. Boron Containing Metabolite

Borophycin (107) (Figure 17) is a boron-containing metabolite derived from marine blue-green
algae (cyanobacterium) Nostoc spongiaeforme and N. linckia. It effectively showed anticancer activity
against human cancer cell lines, namelyκB colorectal adenocarcinoma and LoVohuman epidermoid
carcinoma [48,162].

5.10. Phenanthridine Alkaloids

Calothrixins A (108) and B (109) (Figure 17) are phenanthridine alkaloids isolated from the marine
cyanobacterium Calothrix sp. They possessed significant cytotoxicity and inhibited the proliferation of
human carcinoma cell line (HeLa) [163,164]. It also inhibited the proliferation of CEM leukemia cells
(human T-cell leukemia cells) by inducing cell cycle arrest at G1 and G2/M Phases [165].

6. Microalgae Metabolites as Anticancer Drugs with Their Mechanisms of Action

The following compounds have been reported from the microalgal species that have shown
anticancer properties (Table 5).
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Table 2. Anticancer effects and mechanisms of action of various secondary metabolites of marine microalgae.

Class Secondary
Metabolite Biological Source Cell Lines Effects and Mechanisms IC50/Conc. References

Polyunsaturated
aldehydes

2-trans-4-trans-
decadienal (110) Thalassiosira rotula,

Skeletonema costatum,
Phaeocystis pouchetii
and Pseudonitzschia

delicatissima

Human colon
adenocarcinoma cancer

line Caco-2

⊥Proliferation;↑cytotoxicity 11–17 µg/mL [166]2-trans-4-cis-7-cis-
decatrienal (111)

2-trans-4-trans-7-cis-
decatrienal (112)

2-trans,4-trans-
heptadienal (113)

Skeletonema marinoi

Lung adenocarcinoma
cell line A549, and colon

COLO 205

↑Cytotoxicity; ⊥cell cycle at
either G1 or S Phase

10 µM
[167,168]

2-trans,4-trans–
octadienal (114)

Lung adenocarcinoma
cell line A549

⊥Cell cycle at either G1 or S
Phase

5 µM

Polysaccharide Chrysolaminaran
polysaccharide (115) Synedra acus Human colon cancer cell

lines HTC-116 and DLD-1
⊥Proliferation

54.5 and 47.7
µg/mL [169,170]

Sulfated
polysaccharide

Fucoidans (116)

Sargassum hornery,
Eclonia cava and
Costaria costata

Human skin melanoma
cell line (SK-MEL-28) and
human colon cancer cell

line (DLD-1)

⊥Cancer 100 µg/mL [171–173]

MDA-MB-231 cells ↑Apoptosis 820 µg/mL [174,175]

Human lung cancer cells
(A549)

⊥ERK1/2 pathway;⊥Metastatic
activity;⊥PI3K/Akt/mTOR

pathway
400 µg/mL [176]

Human
hepatocellularcarcinoma
cells (Huh7);HepG2 cells

⊥Proliferation
2.0 and 4.0

mg/mL [177–180]

Fucus evanescens C57Bl/6 mice ⊥Growth of tumor 10 mg/kg [174]

Anionic
polysaccharide Alginic acid (117) Sargassum wightii H22 tumor-bearing mice ⊥Growth of tumor

Not
specified [41]
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Table 3. Cont.

Class Secondary
Metabolite Biological Source Cell Lines Effects and Mechanisms IC50/Conc. References

Polysaccharide Laminarin (118) Eisenia bicyclis

ES2 (ovarian clear cell
carcinoma cells); OV90

(papillary serous
adenocarcinoma cells) cell

lines

⊥Proliferation;↑apoptosis;⊥cell
cycle at subG1 Phase

2 mg/mL [181,182]

JB6 Cl41 (normal mouse
epidermal cells);

SK-MEL-28 (human
malignant melanoma) cells

⊥Cancer
Not

specified [183,184]

Human colon cancer cell
lines, such as HCT-116,

HT-29, and DLD-1
↑Cytotoxicity 200 µg/mL [182,185–188]

Human colon carcinoma
cells (LoVo) ↑Apoptosis Not

specified [189]

Human colon cancer cell
line (HT-29)

↑Apoptosis, ⊥cell cycle at subG1
and G2-M Phase

5 mg/mL [190–192]

Carotenoids
Violaxanthin (119) Dunaliella tertiolecta

MCF-7 cancer cell line ↑Apoptosis;↑cytotoxicity 20 and 40
µg/mL [193–196]

L1210 (human MDR1
gene-transfected mouse

lymphoma cells);
MDA-MB-231 (human

breast cancer cells) ⊥P-glycoprotein (P-gp) and
MRP1

Not
specified

[197]

Human MDR1
gene-transfected mouse

lymphoma;
MCF-7 (human breast

cancer cell)

[198]

Neoxanthin (120) Tetraselmis suecica HeLa; A549 cancer cells ↑Cytotoxicity Not
specified [199]
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Table 4. Cont.

Class Secondary
Metabolite Biological Source Cell Lines Effects and Mechanisms IC50/Conc. References

Fucoxanthin (121) Undaria pinnatifida Human leukemia cell line
(HL-60)

⊥Proliferation;↑apoptosis;⊥cell
cycle at G0/G1 Phase or G2/M

Phase
22.6 µM [200–205]

Siphonaxanthin (122)
Codium fragile,

Caulerpa lentillifera
and Umbraulva

japonica

Human leukemia cell line
(HL-60)

↑Apoptosis; ↑chromatin
condensation;↓Bcl-2;

↑caspase-3;↑GADD5α;↑DR5
10 µM [206]

Human umbilical vein
endothelial cells (HUVECs)

⊥Angiogenic
effect;↓FGF-2;↓FGFR-1;↓EGR-1

2.5 µM [207–209]

Zeaxanthin (123)

Porphyridium
cruentum, Isochrysis

galbana, Phaeodactylum
tricornutum,

Tetraselmis suecica and
Nannochloropsis

gaditana

Human colon
adenocarcinoma cell line

(HT-29)
↑Cytotoxicity 10 µM [210,211]

Xanthophyll
carotenoids Lutein (124)

Porphyridium
cruentum, Isochrysis

galbana, Phaeodactylum
tricornutum,

Tetraselmis suecica and
Nannochloropsi

sgaditana

Human colon
adenocarcinoma cell line

(HT-29)
↑Cytotoxicity Not

specified [211]

Sterol Stigmasterol (125) Navicula incerta Human liver cancer cell
line (HepG2)

↑Cytotoxicity;⊥proliferation;
↑apoptosis;⊥cell cycle at G0/G1

and G2/M
Phase;↑caspase-8;↑caspase-9;↑Bax;

↑p53;↓Bcl-2;↓XIAP

20 µM [213,214]

Fatty alcohol ester
Nonyl 8-acetoxy-

6-methyloctanoate
(126)

Phaeodactylum
tricornutum

Human promyelocytic
leukemia cell line (HL-60),
a human lung carcinoma

cell line (A549) and a
mouse melanoma cell line

(B16F10).

↑Apoptosis;⊥cell cycle at the sub
G1 Phase

65.15 µM,
50µg/mL,

not specified
[215]
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Table 5. Cont.

Class Secondary
Metabolite Biological Source Cell Lines Effects and Mechanisms IC50/Conc. References

Epimeric carotenoids Dinochrome A and B
(127, 128) Peridinium bipes

GOTO (neuroblastoma
cells); OST (osteosarcoma

cells) and HeLa cells

⊥Proliferation;⊥TPA-stimulated
32P-incorporation into the
phosholipids of HeLa cells

5 µg/mL and
25 µg/mL [216]

Porphyrin
Phaeophytins

Porphyrinolactone
(129)

Cladophora fascicularis HeLa carcinoma cell line
⊥Proliferation;⊥activation of

NF-κB
50 µM [217]

20-chlorinated (132-S)-
hydroxyphaeophytin

A (130)

(132-S)-
hydroxyphaeophytin
A (131) and B (132)

(132-R)-
hydroxyphaeophytin
A (133) and B (134)

Glycolipid

Nigricanosides A
(135) and B (136) and

methyl esters of
nigricanosides A (137)

and B (138)

Avrainvillea nigricans
Human breast cancer

MCF-7 cells and human
colon cancer HCT-116 cells

⊥Proliferation, antimitotic
activity, ↑tubulin polymerization

within the cell

Not
specified [218]

Various symbols (↑, ↓ and ⊥) indicate increase, decrease and inhibition in the obtained variables, respectively.
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6.1. Polyunsaturated Aldehydes (PUAs)

Polyunsaturated aldehydes (PUAs) are derived from the marine diatoms Thalassiosira rotula,
Skeletonema costatum, Phaeocystis pouchetii, and Pseudo-nitzschia delicatissima [166]. The PUAs
isolated from these diatoms are 2-trans-4-trans-decadienal (110), 2-trans-4-cis-7-cis-decatrienal
(111), and 2-trans-4-trans-7-cis-decatrienal (112) (Figure 18) [167]. These compounds exhibited
potent antiproliferative and cytotoxic activity on human colon adenocarcinoma cancer line
Caco-2 [167]. Three more PUAs such as 2-trans-4-trans-heptadienal, 2-trans-4-trans–octadienal,
and 2-trans-4-trans-7-octatrienal (octatrienal) were reported to be extracted from marine diatom
Skeletonema marinoi, among which 2-trans-4-trans-octadienal (113), and 2-trans-4-trans-heptadienal (114)
were reported to possess significant cytotoxicity against lung adenocarcinoma cell line A549 and colon
(COLO 205) cancer cells [168]. These metabolites also induced apoptosis, which is evident from the
chromatin condensation, loss of membrane integrity, and nuclear fragmentation. These PUAs induced
cell cycle arrest of all the carcinoma cell lines at either the G1 or S Phase associated with upregulation
of caspase-3 and apoptosis-inducing factor 1 (AIFM1) [168]. None of the PUAs showed any toxicity on
the human non-tumorigenic lung epithelial cell line BEAS-2B [168].
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6.2. Polysaccharide

Microalgae polysaccharides have shown bio-stimulant activity that has been proven to be effective
for a number of industrial applications, although only a few studies have shown the potential to act as
an anticancer agent.The potentiality of the polysaccharides varied with changes in molecular weight
and sulfate content [169].

6.2.1. Chrysolaminaran Polysaccharide

Chrysolaminaran polysaccharide (115) (Figure 18) is a polysaccharide which is isolated from
diatom Synedra acus. It belongs to chrysolaminaran family. It showed antitumor activity on human
colon cancer cell lines HTC-116 and DLD-1 by inhibiting cancer cell proliferation [170].

6.2.2. Sulfated Polysaccharide

The sulfated polysaccharide was reported to be an important constituent of the brown seaweeds
of Undaria pinnatifida and Saccharina japonica [171]. This has an antitumor function [171] and prevented
the proliferation of human breast cancer (T-47D) and melanoma (SK-MEL-28) cell lines and prevents
the colony development [172].

Fucoidans (116) (Figure 18), are sulfated polysaccharides isolated from the brown seaweeds of
Sargassum hornery, Eclonia cava, and Costaria costata [173]. It showed antitumor activity against human
skin melanoma cell line (SK-MEL-28) and human colon cancer cell line (DLD-1) [173]. It also has been
documented that fucoidans are an active constituent of Fucus evanescens (a brown algae of the Okhotsk
sea), exhibited in vivo antitumor and antimetastatic activity in C57Bl/6 mice, a preclinical animal
model [174]. Low molecular weight fucoidan induced apoptosis through alteration of mitochondrial
membrane potential by the release of cytochrome c, and inhibitions of Bcl-2, Bcl-xl, Mcl-1 antiapoptotic
protein and also activated apoptosis-inducing factors, caspase-3, caspase-7, caspase-9, in MDA-MB-231
cells [175]. ERK1/2 pathway inhibition in human lung cancer cells (A549) led to antimetastatic
effect imposed by fucoidan. It also inhibited the phosphoinositide 3-kinases/protein kinase B/

mechanistic target of rapamycin (PI3K/Akt/mTOR) pathway, associated with the downregulation of
the expression levels of matrix metalloproteinase-2 (MMP-2) in the A549 human lung carcinoma cell
line [176]. Fucoidan inhibited the phosphorylation of EGF receptor. Additionally, it also inhibited the
phosphorylation of ERK, JNK, c-fos, and c-jun and activator protein-1 (AP-1) [177]. Over-sulfated
fucoidan blocked the angiogenesis process by suppressing mitogenic and chemotactic response of
the vascular endothelial growth factor (VEGF) [178]. In another reported study, fucoidan inhibited
the proliferation of human hepatocellular carcinoma cells (Huh7) by downregulating the expression
levels of chemotaxin CXCL12 and its receptor CXCR4 [179]. It also reduced the expression levels of
transforming growth factor (TGF) receptor I and transforming growth factor receptor II proteins and
controlled the associated signaling molecules of TGF and regulated the SMAD2, SMAD3, and SMAD4
protein phosphorylation. This could potentially be another type of novel revolutionary mechanism
by which the fucoidans exhibited antitumor activity in the breast carcinoma cells by the influence of
epithelial-mesenchymal transition [180].

6.2.3. Alginic Acid

Alginic acid (117) (Figure 18), commonly known as algin, is an anionic polysaccharide obtained
from the cell wall of brown algae or seaweeds Sargassum wightii. Nanoparticles containing alginic acid
provided stimulating antitumor effect on H22 tumor-bearing mice [41]. This polysaccharide also binds
with toxic substances and heavy metals that cause cancer present in the intestine and it exerted its
activity by converting these toxic substances into non-toxic ones [181].
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6.2.4. Laminarin

Laminarin (118) (Figure 18) is a polysaccharide obtained from brown algae Eisenia bicyclis [182].
It exhibited anticancer activity by inhibiting the proliferation and inducing apoptosis, and cell
cycle arrest at the subG1 Phase in ovarian clear cell carcinoma cells (ES2), and papillary serous
adenocarcinoma (OV90) cell lines. PI3K/MAPK intracellular signaling mechanism is inhibited in
ovarian cancer cells, as well as the increased release of cytochrome c associated with an increase in DNA
fragmentation and expression level of apoptosis linked proteins. It also induced MMP loss in both the
carcinoma cells, along with autophagy through the inactivation of ULK1 and P62 phosphorylation [183].
Similarly, laminarin and its sulfated analog displayed potential in vitro anticancer activity against JB6
Cl41 (normal mouse epidermal cells), and SK-MEL-28 (human malignant melanoma) cells. Inhibition
of proliferation and migration of these cancer cells is associated with inhibition of MMP-2 and MMP-9
proteinases and down-regulation of ERK1/2 signaling mechanism [184]. Similarly, it also inhibited the
colony formation of human colon cancer cell lines, such as HCT-116, HT-29, and DLD-1, and displayed
cytotoxicity against various carcinoma cell lines [182,185–188]. Ji and Ji [189] reported the anticancer
activity of laminarin and its sulfated analog against LoVo cells. It is often associated with induction
of apoptosis, upregulation of the expression levels of death receptor 4 (DR4) and DR5, TNF-related
apoptosis-inducing ligand (TRAIL), Fas-associated protein with death domain(FADD), Bid, tBid and
Bax, and downregulation of pro-caspase-8, pro-caspase-3, and Bcl-2 [190,191]. Additionally, activation
of casapse-8, casapse-3, casapse-6, casapse-7, and casapse-9 and increased release of cytochromec were
observed following the treatment with laminarin and its analogs [190,191]. The involvement of the
laminarin on the ErbB signaling mechanism indicatesanother mechanism of action behind its apoptosis
induction in human colon cancer cell line (HT-29) associated with cell cycle arrest at subG1 and G2-M
Phases [192].

6.3. Carotenoids

Carotenoids are tetraterpenoids, which are also classified as the pigments formed by plants,
algae, bacteria, and fungi [193]. There are more than 1100 carotenoids that have been identified so far.
The carotenoid’s general configuration is a polyene chain of 9–11 double bonds. This correlates with
numerous pharmacological features, including anticancer behavior. Various xanthophylls carotenoids
were identified, such as violaxanthin, siphonaxanthin, fucoxanthin, neoxanthin, zeaxanthin, lutein,
and lactucaxanthin, to be the major constituents in microalgae [193–195].

6.3.1. Violaxanthin

Violaxanthin (119) (Figure 19) is the active metabolite reported to be present in the dichloromethane
extract of the green algae Dunaliella tertiolecta [196]. It induced early apoptosis associated with
biochemical and morphological changes in MCF-7 cancer cell line, but it did not contribute to the
fragmentation of DNA. Additionally, it also reversed the multidrug resistance (MDR) by inhibiting
the P-glycoprotein (P-gp) and MRP1 in L1210 (human MDR1 gene-transfected mouse lymphoma
cells) and MDA-MB-231 (human breast cancer cells) [197]. Similar observations were recorded where
violaxanthin reversed the MDR in human MDR1 (gene-transfected mouse lymphoma) and MCF-7
(human breast cancer cell) [198].
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6.3.2. Neoxanthin

Neoxanthin (120) (Figure 19) is a xanthophyll carotenoid that possesses cytotoxic activity on HeLa
and A549 cancer cells. It is even more cytotoxic than violaxanthin [199].

6.3.3. Fucoxanthin

Fucoxanthin (121) (Figure 19) is a pigment belonging to the xanthophylls family and found in
brown algae Undaria pinnatifida as a major carotenoid. It shows antiproliferative activity against human
leukemia cell line (HL-60) by inducing apoptosis [200]. Various studies revealed the anticancer nature
in which it inhibited proliferation by inducing apoptosis and cell cycle arrest at the G0/G1 Phase
or G2/M Phase through various molecules and pathways involving Bcl-2 protein, MAPK, NF-κB,
caspase-3, caspase-8, caspase-9, and GADD45 in which their expression levels were regulated by
fucoxanthin [201]. Among various carotenoids, fucoxanthin has been thoroughly researched as an
anticancer agent and it has been established as having a significant anticancer activity [200,202–205].

6.3.4. Siphonaxanthin

Siphonoxanthin (122) (Figure 19) is a keto-carotenoid present as an active metabolite in green algae
Codium fragile, Caulerpa lentillifera, and Umbraulva japonica. Siphonaxanthin demonstrated the anticancer
effect on the human leukemia cell line (HL-60) by inducing apoptosis and an increase in chromatin
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condensation, in association with the decreased expression level of Bcl-2 and increased caspase 3
activation. The expression level of GADD5α and DR5 were also upregulated [206]. The antiangiogenic
effect was also displayed by siphonaxanthinin human umbilical vein endothelial (HUVEC) cells and
aortic rings of rats [207]. It reduced the mRNA expression level of fibroblast growth factor 2 (FGF-2),
fibroblast growth factor receptor (FGFR-1), and early growth response 1 (EGR-1) [208,209].

6.3.5. Zeaxanthin and Lutein

Zeaxanthin (123) (Figure 20) is a carotenoid alcohol present in many microalgae, such as
Porphyridium cruentum, Isochrysis galbana, Phaeodactylum tricornutum, Tetraselmis suecica and
Nannochloropsis gaditana [210]. It exhibited potent cytotoxicity against human colon adenocarcinoma
cell line (HT-29) but it did not induce any cytotoxicity against human normal colon epithelial cell line
(CCD 841 CoTr) [211]. Lutein (124) is a xanthophyll carotenoid, which exhibited similar anticancer
profile as zeaxanthin [211,212].
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6.4. Stigmasterol

Stigmasterol (125) (Figure 20) is a sterol extracted from a microalga benthic diatom Navicula incerta.
It showed significant anticancer activity by inhibiting the proliferation of the human liver cancer cell line
(HepG2) by inducing apoptosis through mitochondrial membrane potential and cause morphological
changes and damage of DNA [213,214]. The up-regulation of the expression of caspase-8, caspase-9,
Bax, and p53 was induced by stigmasterol whereas antiapoptotic proteins, such as Bcl-2, and X-linked
inhibitor of apoptosis protein (XIAP), was down-regulated. The result showed that the cell cycle arrest
takes place at G0/G1 and G2/M Phases due to cell component defects.

6.5. Nonyl 8-Acetoxy-6-Methyloctanoate

Nonyl 8-acetoxy-6-methyloctanoate (126) (Figure 20) is a fatty alcohol ester isolated from a marine
diatom Phaeodactylum tricornutum. The anticancer activity of the secondary metabolite was established
on the human promyelocytic leukemia cell line (HL-60), a human lung carcinoma cell line (A549),
and a mouse melanoma cell line (B16F10). It induced damage of DNA and increased the apoptotic
activity and triggered cell cycle arrest at the sub G1 Phase. It activated the pro-apoptotic protein
Bax, and suppress the antiapoptotic protein Bcl-xL, and also increases the expression levels of both
caspase-3 and p53 proteins [215].

6.6. Dinochrome A and B

Dinochrome A (127) and B (128) (Figure 20) are epimeric carotenoids isolated from marine red
tide Peridinium bipes. They possess strong anticarcinogenic activity by inhibiting the proliferation of
GOTO (neuroblastoma cells), OST (osteosarcoma cells) and HeLa cells [216].

6.7. Phaeophytins

Phaeophytins are porphyrin-containing organic heterocyclic molecules. Several phaeophytins,
such as porphyrinolactone (129), 20-chlorinated (132-S)-hydroxyphaeophytin A (130), (132-
S)-hydroxyphaeophytin A (131) and B (132), and (132-R)-hydroxyphaeophytin A (133) and B (134)
(Figure 21) were isolated from a marine green algae Cladophora fascicularis. The antiproliferative activity
was characterized by inhibition of the activation of NF-κB in the HeLa carcinoma cell line by inhibiting
the TNF-α-induced NF-κB translocation from the cytoplasm into the nucleus [217].
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6.8. Nigricanosides A (135) and B (136) and Methyl Esters of Nigricanosides A (137) and B (138)

These are glycolipids (Figure 21) extracted from a green algae Avrainvillea nigricans.
These metabolites inhibited the proliferation of human breast cancer MCF-7 cells and human colon
cancer HCT-116 cells and they also possess antimitotic activity which triggers tubulin polymerization
within the cells [218].

7. Conclusions, Current Challenges and Future Perspectives

This review describes the most recently extracted or generated molecules from marine organisms,
such as cyanobacteria and microalgae, with potential for cancer therapy. Marine resources certainly
have valuable and undiscovered biochemical versatility and demonstrate a greater opportunity for the
development of new anticancer agents. While a variety of compounds have been identified to suppress
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cell growth in a broad spectrum of cancer cell types, the mechanism of action still remains unclear.
A handful of marine molecules have demonstrated possible cytotoxic actions toward specific cancer by
inhibition of cell proliferation, its antimitotic behavior (antitubulin impacts), induced apoptosis and
inhibition of movement, invasion, or metastatic potential of cancer cells.

While these metabolites have shown potential for cancer treatment, there are several challenges
associated with the development of these drugs that need consideration. Oceans certainly provide a
large supply of valuable species, but the researchers still cannot access any of these regions. For years,
the selection of entities in readily accessible places was preferred. Therefore, the problem is that
marine research is not always easily accessible where researchers and the oceanographer need to
have strong working ties. Genetic engineering is undergoing development in order to enhance drug
production through the conversion of genetic data from the target compound into the host cells.
It is an important field for regulation of the isolation and expression of aquatic genes, helping us
produce lead compounds from the aquatic ecosystem in a more controlled way. Secondary metabolites
are hard to produce independently from cultures, since their development is directly or indirectly
dependent on host. Therefore, several of the main genes stay silent while these things are attempted to
evolve In vitro. Another big concern is that the development of a specific molecule requires sufficient
resources. There is still little research available on the toxicity studies of these marine metabolites in
normal cells; this has to be addressed.

Marine cyanobacteria and microalgae tend to be an effective source of anticancer drugs.
Nevertheless, more studies are required to understand the basic targets and pathways behind
the cytotoxicity of these compounds in cancer cells.
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