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ABSTRACT: Controlling the properties of PuO2 through processing is of vital
importance to environmental transport and fate, production of nuclear fuels,
nuclear forensic analyses, stockpile stewardship, and storage of nuclear wastes
applications. A number of processing conditions have been identified to control
final product properties, including specific surface area (SSA), residual carbon
content, adsorption of volatile species, morphology, and particle size. In this
paper, a novel approach is developed for the prediction of PuO2 SSA via the
synthetic route of Pu(IV) oxalate precipitation followed by calcination. The
proposed model utilizes multivariate regression methodology and leave one out
formalism to link Savannah River Site (SRS) precipitation and calcination
production data to the SSA of the final product. A comparison among the models
provides insight into the accuracy and ability to identify variations amongst the
processing data. Additionally, the models may also be used to fit new data outside
of the parameters explored in a production facility. Finally, the trained model was
compared to a similarly trained conventional model form to illustrate the influence of precipitation parameters on the prediction of
the final SSA. The models presented here attempt to provide new methods for more accurate prediction of the PuO2 product
properties in a production scale environment for key environmental and nuclear applications.

■ INTRODUCTION
For decades, plutonium(IV) oxide has been studied in both
laboratory and industrial scale settings to understand how the
physical characteristics and chemical stability are controlled by
changes in process parameters of the production process.1−7

Several dependencies have been linked to the different
chemical preparation routes, for example, peroxide, oxalate,
hydroxide precipitation, or metal oxidation. However, the most
commonly studied synthetic route via Pu(III/IV) oxalate
intermediate precipitation produces diverse final oxide
characteristics depending on the processing conditions.8 In
general, the mean particle size, shape, and morphology are
controlled by the precipitation process parameters, whereas the
specific surface area (SSA), tap density, residual moisture
content, and carbon content are functions of the calcination
process.1,9 While these are the dominant processing conditions
affecting the final oxide product, insights into the interplay
between the two remain incomplete due to the wide parameter
space among the processing units. For example, a variance in
the SSA of 5−15 m2/g is seen at a calcination temperature of
650 °C, with wider window occurring at lower calcination
temperatures. Indeed, when analyzing processing conditions
outside of comparing calcination temperature to the SSA
specifically, it appears that no dependency exists in either the
literature or using known data.2,3,8−10

Recent work which explored process dependencies between
the PuO2 product characteristics and the preparation method

has analyzed the effect of adding calcination time to known
temperature data to produce a complex correlation using the
two variables.1,2 The data were curve fit using a non-linear
regression function over a wide temperature range and
suggested a time dependency with the SSA around 2.5−3 h.
A subset of the data was further analyzed using a narrower
temperature range more in-line with industrial-scale processing
parameters and showed minimal dependence on the time to
predict the SSA. Orr et al. then developed an exponential
function to fit known experimental SSA data based on
temperature alone with 95% predictive accuracy.1 However,
the SSA distribution is still wide especially at temperatures
below 650 °C, suggesting that additional process-dependent
conditions could exist and be traced to the final PuO2 product.
In other words, perhaps there are unidentified interdependen-
cies that can be extracted beyond evaluating processing
conditions associated with one unit operation (such as
calcination).
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Since our basic premise is that other processing parameters
may account for variability in the SSA within a small
calcination temperature window, we turned to data-driven
regression modeling as a starting point for analysis. Although
less accurate compared to machine learning models, data-
driven regression models provide an interpretability not
available with some machine learning algorithms.11 Further-
more, data-driven regression models utilize some amount of
domain knowledge in their creation because the parameters
tend to be defined in physical terms versus machine learning
models.12,13 Due to this interpretability, it is possible to use
data-driven models to see the influence of individual
parameters by comparing their associated weighting values.
The largest difference between the two model types exists in
the amount of training data required to obtain an accurate
prediction. For good machine learning algorithms, the
minimum amount of training data required can vary from
hundreds to thousands of data points while for more simple
regression models only require tens of data.14 It can be easily
stated that the required minimum amount of training data will
change based on application, scope, and/or modeling
algorithm. Ultimately though, the trend that more data lead
to a more accurate model exists for both model types.
Herein, we develop a data-driven model capable of utilizing

PuO2 processing parameters to predict the SSA. Our particular
interest is to evaluate industrial-scale processing data during
the precipitation and calcination of Pu(IV) oxalate, since the
correlation may be more complex than at the laboratory scale.
Results suggest that while the PuO2 SSA is strongly correlated
to the calcination processing conditions, other parameters can
cause variations in the SSA from the value predicted using the
conventional quasi-exponential temperature model. These
variations can provide insights into the large variability of
SSA at a small calcination temperature window, thus increasing
the predictive capability of calcination models.

■ MOTIVATION AND METHODOLOGY

From 2014 to 2018, a mission at SRS was to process
plutonium metal to produce PuO2 for feed to the MOX Fuel
Fabrication Facility (MFFF) with a targeted production rate of
1 metric ton per yr.15,16 The flowsheet proceeded as follows:
After dissolution of the Pu metal in 8 M nitric acid, the
solution was then purified via anion exchange, precipitated as
Pu(IV) oxalate, and calcined at ∼650 °C for at least 4.5 h to
form PuO2. The Pu(IV) oxalate was precipitated using the
direct strike batch method or adding 0.9 M oxalic acid to a
Pu(IV) nitrate solution at 55 °C. An excess of 0.1 M oxalic acid
and target nitric acid concentration between 1.5 and 3 M was
necessary to minimize Pu losses and to produce a more dense
PuO2 product.15,16 In addition to tracking trace element
impurities throughout the process, the physical characteristics
of the oxide powders, such as bulk and tap density, SSA,
particle size, and moisture content were also measured. Table 1

shows the range of each processing parameter explored in this
study, specifically the target nitric acid and Pu(IV) nitrate
concentrations during precipitation, and the calcination
temperature and time. The SSA range during the PuO2
production campaign was 4−11 m2/g. It is important to
note that other processing variables were also analyzed (e.g.,
agitation time, cake mass, and air flow), but these four
parameters were found to be the most relevant when
correlating the SSA to the processing conditions (see below).
Also, several parameters remained constant during the process
and while they could have an effect (e.g. oxalic acid
concentration, agitation rate), there was not enough variability
in the data to draw conclusions at this time.
Several studies have analyzed the SSA of the final PuO2

product with respect to the calcination temperature because of
its importance in understanding radiolytic decomposition of
water on the PuO2 surface.

1−4,17−26 Since the 1960s, the quasi-
exponential decrease in the SSA as a function of increasing
calcination temperature is thought to be the result of
crystalline rearrangement occurring at high temperatures,
leading to the disappearance of pores and irregularities on
the surface.1−4 A plot of the SRS SSA versus calcination
temperature data (Figure 1) illustrates that an exponential
relationship does not describe the trend over a narrow
temperature range. Another interesting observation is that
higher calcining temperatures in general led to higher SSA in
the data set, which is counterintuitive to higher temperatures
leading to decreasing surface areas. During production runs,
two furnaces were used, one calcining at ∼665 °C and the
other at ∼690 °C. In many cases, the time required to heat the
oxalate product in the lower temperature furnace to the set
temperature exceeded the facility threshold requirements,
thereby necessitating an additional ∼4.5 h of calcination time.
Preliminary investigation of the SRS data showed an

interesting relationship between the nitric acid molarity and
SSA not previously identified in the literature. This subset
represents data where variation occurred only in the nitric acid
concentration; the Pu concentration, calcination temperature,
calcination time, and cake size remained near constant. Figure
2 shows that the effect of the nitric acid molarity on the SSA
can be characterized by a negative linear correlation. This
newfound result acted as the basis for analyzing several
different process parameters for potential correlations to the
PuO2 physical characteristics, which were ultimately narrowed
down to the nitric acid molarity, Pu(IV) nitrate concentration,
and calcination temperature and time.
Of the 39 batch runs, our analysis only considered 27 as the

others were identified as outliers falling outside normal
processing conditions; SSA range for those data is 6−11 m2/
g. The resultant SRS data set was further divided into training
and testing sets using an iterative leave-one-out (LOO)
approach27 to provide an unbiased identification of a model’s
performance. Figure 3 describes a flowchart of the iterative
LOO approach utilized here.
In this paper, 26 data points acted as the training data and 1

data point for the testing data set, wherein the model was
iterated resulting in total 27 different models. After each
training and testing stage, the testing data point was changed
and the model was reanalyzed utilizing the new data sets. This
was repeated until each data point was utilized as a testing data
point. This methodology provides an avenue for identifying the
true capabilities of the model without bias as some data points
would result in a high error being very different from the

Table 1. Range of Processing Parameters at SRS during the
PuO2 Production Campaign Used in This Study

parameter minimum value maximum value

nitric acid concentration (M) 1.7 2.7
Pu(IV) nitrate concentration(g/L) 25 45
calcination temperature (°C) 655 695
calcination time (min) 275 655
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training data set while other data points would result in a low
error being very similar to the training data set. The training
data set was used to train a linear multi-variable model to
predict the SSA after calcination. Equation 1 shows the
generalized form of the where the variables, An, correspond to
the weighting values which will be calculated using the training
data set.

* + * + * + * =A T A t A M A C SSA1 2 3 4 (1)

Equation 1 was fit for three independent model forms each
utilizing different processing input parameters. The first form
analyzes the calcination temperature (T) and time (t) as the
variable of interest (i.e., A3 = A4 = 0). The second form
examines relationship between the nitric acid (M) and Pu(IV)

nitrate (C) concentrations only as a model variable (i.e., A1 =
A2 = 0). The final model form utilizes all four process
parameters of interest to illustrate if remnant precipitation
conditions have bearing on the material properties after
calcination. Comparison of the four process parameters and
the yield confirms that the process parameters are not
intercorrelated, and thus, multicollinearity is avoided (Figure
S1 in Supporting Information). This final model form attempts
to provide information on processing history to more
accurately model product characteristics. Finally, statistical
analyses were performed on each of the model forms to
illustrate the predictability of each form.

Figure 1. Comparison of SSA vs calcination temperature for all SRS data.

Figure 2. Effect of nitric acid molarity on SSA based on a subset of the SRS PuO2 data. The trend line corresponds to the equation y = −1.8796x +
11.58 and had a R2 value of 0.7503.
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■ RESULTS AND DISCUSSION
Initial evaluation of the PuO2 SSA with the processing data
considered only calcination temperature, and those results are
described in the Supporting Information. Using a linear
relationship, the average SSA among all the runs is 8.292 m2/g
with an average error of 14%. Because the temperature-only
prediction to the experiment is fairly vertical, and the data
range between 6 and 11 m2/g over a small temperature
window, our next consideration added calcination time to the
model since roughly half of the process runs included an
extended calcination period. Equation 2 describes the
simplified forms of equation 1 for the prediction of SSA
using this new model form with the coefficients of A1 and A2
being 0.0142 and −0.00235, respectively.

* − * =T t0.0142 0.00235 SSA (2)

For each simulation, the error in predicting the training data
set and the test data point was calculated and plotted (Figure

6). The data points lying above (below) the line indicate that
the linear regression predictive model has overpredicted
(underpredicted) the SSA. The best line fit for the data points
is generated, and the R2 is calculated which indicates the
goodness of fit of the predictive model on the training data.
When incorporating time to the model, the average error
lowers to 12.9% and the R2 coefficient is 0.34 (Table 2). This is
a marked improvement from using temperature data alone, and
the results better describe the SSA variation occurring over a
temperature difference of 50 °C. However, the model is not
accurate over all data points even though the average error is
low, as shown in Figure 6. In other words, the model is
accurate for some but not all the data. This discrepancy can be
quantified using the R2 value, indicating the amount of data
variability in the model, with roughly a 3× increase from the
temperature-only model which had a value of 0.12.
Our next model follows the same LOO methodology but

evaluates how the nitric acid and plutonium concentrations
affected the SSA without inclusion of calcination conditions.
Equation 3 shows the form with the average coefficients across
the simulation runs which are 0.03231 and 0.2332 for A3 and

Figure 3. Flowchart of the iterative LOO methodology. The loop is
repeated until i is equal to the number of data points in the data array.

Figure 4. Comparison of SSA and calcination temperature across the SRS data set.

Figure 5. Plot of residuals for each data point using equation 4 to fit
the data.
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A4, respectively. Of the two coefficients, there is larger
variability with A3 suggesting the data are not representative
of the nitric acid concentration effect. However, the model
performed better than evaluating calcination temperature alone
and had a lower average prediction error and R2 value of 10%
and 0.32, respectively (Table 2).

* + * =M C0.03231 0.2332 SSA (3)

These results were unexpected since precipitation parame-
ters alone have not been attributed to affecting the PuO2 SSA.
From Figure 6 and Table 2, equation 3 results in lower values
for the average error and statistically the same R2 coefficient
when compared to equation 2. Comparison of the

Figure 6. Comparison of the predicted vs experimentally measured SSA (left) and the corresponding calculated errors (right) for all simulations
showing lines of 5 and 10% error for simulation #15. Top results illustrate the model evaluating calcination parameters only, middle for
precipitation parameters only, and bottom for both calcination and precipitation parameters.
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experimental and predicted SSA (Figure 6) shows two distinct
clustering of values at ∼7 m2/g and again ∼9.5 m2/g. During
the middle of the campaign, an effort was made to increase the
Pu concentration from ∼30 to ∼45 g/L, and in general, higher
SSAs were seen with higher Pu concentration. Although there
was some variation in the nitric acid concentration early on
(Figure 2), the concentration remained steady at 2.6 M, well
within industrial-scale processing parameters. While the results
are interesting, the model is only capturing about 32% of the
data variability and therefore very limited in its predictive
capabilities.
The last model defined in equation 4 describes the specific

form of this four-parameter model for the prediction of SSA.
An important note is that the value of the A3 coefficient, which
corresponds to the nitric acid molarity parameter, has a similar
value to the linear regression in Figure 2, corroborating the
preliminary hypothesis of a negative correlation between the
nitric acid molarity and SSA. Also, the coefficient is stabilized
with respect to the average value and sign. The average error
and R2 value in the prediction of SSA were found to be 8.41%
and 0.74, respectively. Interestingly, results from simulation 15
show that most of the data now reside to ∼10% error
compared to the experiment (Figure 6). Also, while the model
improves the predictability overall, simulation 21 is a
significant outlier. When the process parameters of the test
data point associated with simulation 21 were compared to the
training data set, the nitric acid molarity was outside the
training model range and hence the predicted value must be
extrapolated rather than interpolated. The error associated
with simulation 21 shows that the regression model developed
here is highly accurate for simulations involving interpolation
of data while it is less accurate for simulations involving
extrapolation. Therefore, our analysis is highly accurate for the
given processing parameter range and can be extended to
encompass the full range of processing parameters with more
experimental data.

* − * − * + * =T t M C0.01162 0.0013 1.7299 0.15604 SSA
(4)

While a direct comparison of the parameter coefficients
across all three models would be desired, it is often not
possible due to the nature of regression modeling, wherein the
coefficient values are defined by the data that is chosen as the
training data set. However, an indirect comparison of the
coefficient signs can provide insights into the trends of the
data. For example, in equations 2 and 4, the calcination
temperature coefficient is positive while the calcination time
coefficient is negative. Therefore, the trend shows that SSA
tends to increase with an increase in temperature but decrease
with an increase in time. This is a counter description to the
known correlations of increasing calcination temperature

leading to decreases in the SSA, but instead is reflective of
the data set used to generate the model. Figure 4 compares the
calcination temperature with the SSA for all data points used
from the SRS data set and shows a positive trend with
increasing temperature corresponding to an increase in SSA.
This trend is believed to be artificial as the data points were

obtained from samples calcined in two different furnaces. The
first furnace at low temperature was calcined for almost twice
the time that the high temperature furnace was held at
temperature. Therefore, this positive trend in the temperature
can actually be associated with the hold time parameter. As
such it is expected that with a larger data set, the accepted
decreasing trend with increasing temperature will be identified
by the model. Furthermore, in both equations 3 and 4, the
Pu(IV) nitrate concentration coefficient is positive, while the
nitric acid concentration coefficient fluctuates between positive
to negative values, predicting the SSA tends to increase with
increasing Pu(IV) nitrate concentration. However, the same
conclusion cannot be gathered from the nitric acid
concentration. This could be due to the lack of data available
as the nitric acid concentration values were obtained for only a
relatively small range. The scatter of the residuals from
equation 4 versus the predicted SSA (Figure 5) illustrates that
a simple model achieves moderately high accuracy in terms of
R. The scatter of the residuals is random, indicating no ties in
the data. Moreover, the random underprediction and over-
prediction, that is, data points lying randomly under and over
the identity line, indicate that the model is not biased in a
certain direction. Comparison of the R2 for the three predictive
models reveals that including precipitation parameters and
calcination time to the general correlations of temperature has
the best estimation power. Thus, inclusion of the precipitation
parameters may be preferred for the predictive modeling of the
PuO2 SSA. This is a significant revelation for industrial-scale
PuO2 process optimization to reduce the SSA within tight
controls defined by the facility requirements.

■ CONCLUSIONS
Multiple linear regression models based on precipitation and
calcination parameters were developed to predict the SSA from
the PuO2 production data, specifically the target nitric acid and
Pu(IV) nitrate concentrations during precipitation, and the
calcination temperature and time. Our analysis showed that
individual unit operations (e.g., only calcination or precip-
itation parameters) have an average error similar to the
conventional temperature-only model but a nearly three-times
increase in the description of the variability of the data.
However, the final model which utilized both precipitation
parameters and calcination parameters to predict PuO2 SSA
was not only more accurate than the conventional model with
a decrease in average error from 13.90 to 8.41% but also
showed an increase in the R2 coefficient from 0.1202 to 0.7376,
thereby showing that both precipitation and calcination
provides the best predictive capability out of the models
shown here. Therefore, inclusion of precipitation parameters to
a calcination time−temperature model could allow for more
accurate prediction of the PuO2 SSA, which has not been
identified by previous studies. Furthermore, although data are
limited, an exhaustive analysis of all possible process parameter
combinations may be needed to identify further parameters of
interest, for example, oxalate concentration, impurity concen-
tration and carbon content. This justifies the need for
advanced machine learning algorithms to provide model

Table 2. Comparison of Model Statistics Across All
Reported SSA Models

percent error R2 coefficient

parameters of interest
average
(%)

standard
deviation average

standard
deviation

calcination parameters only (T
and t)

12.90 9.3002 0.3437 0.0356

precipitation parameters only
(M and C)

10.65 7.8573 0.3236 0.0491

precipitation and calcination
parameters (T, t, M, and C)

8.41 5.0744 0.7376 0.0151
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comparisons to quantify the model predictive capabilities as a
function of process parameters.
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