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Abstract

Species identification through DNA barcoding is a tool to be added to taxonomic procedures, once it has been
validated. Applying barcoding techniques in public health would aid in the identification and correct delimitation of the
distribution of rodents from the subfamily Sigmodontinae. These rodents are reservoirs of etiological agents of
zoonoses including arenaviruses, hantaviruses, Chagas disease and leishmaniasis. In this study we compared
distance-based and probabilistic phylogenetic inference methods to evaluate the performance of cytochrome c
oxidase subunit I (COI) in sigmodontine identification. A total of 130 sequences from 21 field-trapped species (13
genera), mainly from southern Brazil, were generated and analyzed, together with 58 GenBank sequences (24
species; 10 genera). Preliminary analysis revealed a 9.5% rate of misidentifications in the field, mainly of juveniles,
which were reclassified after examination of external morphological characters and chromosome numbers. Distance
and model-based methods of tree reconstruction retrieved similar topologies and monophyly for most species. Kernel
density estimation of the distance distribution showed a clear barcoding gap with overlapping of intraspecific and
interspecific densities < 1% and 21 species with mean intraspecific distance < 2%. Five species that are reservoirs of
hantaviruses could be identified through DNA barcodes. Additionally, we provide information for the description of a
putative new species, as well as the first COI sequence of the recently described genus Drymoreomys. The data also
indicated an expansion of the distribution of Calomys tener. We emphasize that DNA barcoding should be used in
combination with other taxonomic and systematic procedures in an integrative framework and based on properly
identified museum collections, to improve identification procedures, especially in epidemiological surveillance and
ecological assessments.
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Introduction

Molecular identification of pathogens, their vectors, and their
reservoirs is one of the expected applications of the DNA
barcoding initiative. Knowledge of the exact species that is
(are) carrying harmful pathogens is essential to studies of the
factors leading to occurrences [1,2], pathogen proliferation [3],
and transmission between animal vectors [4–6], as well as for
epidemiological inferences as a whole.

Worldwide initiatives such as the International Barcode of
Life (iBOL) project, taxon-specific projects, and national funding
programs have fostered the accumulation of massive
standardized sequence data for the cytochrome oxidase c
gene (COI), which has contributed significantly to species
identification [7-12]. Both taxonomy and systematics have
benefited from the Barcode of Life Database (BOLD), which
integrates worldwide and species-wide sampling. This
information source enables reliable identification of doubtful
specimens only if the specimens in this database are correctly
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identified and named. Even though BOLD includes many
species of metazoans, the identification process constitutes a
taxonomic bottleneck [13]. In biodiversity hotspots where DNA
barcoding would be most beneficial, there is a lack of scientific
collections, taxonomists, and funding, particularly in the Atlantic
Forest, Cerrado, Caatinga and Pampas biomes in Brazil. Thus,
our major goal in this study was to investigate whether the DNA
barcoding approach (hereafter barcoding) is a reliable tool for
species identification of members of the speciose rodent
subfamily Sigmodontinae, particularly in Brazil, where these
rodents are hosts or form part of the reservoir system of
several zoonotic diseases [2,5,6,14]. The success of barcoding
as a species identification tool, as originally envisioned, rests
primarily upon the performance of distance-based methods
which depend on the existence of a disjunction between intra-
and interspecific pairwise distance distributions, also known as
the ‘barcoding gap’ [15] (but see 10,16,17 for alternative
methods and [18] for an automated distance-based method). If
a barcoding gap exists, empirical criteria, distance threshold
values, or cutoff values could be used to define species limits
[8], or at least, more empirically to sort specimens that merit
detailed analysis [19] or as Primary Species Hypothesis to be
tested [20] in large-scale inventories or epidemiological
surveys. Although this approach is by no means a substitute for
accurate taxonomic identifications [21], ecological studies or
investigations of disease outbreaks must often evaluate both
dominant species, which are abundant, and rare species that
require careful taxonomic analysis and that will appear as
outliers in distance-based analyses or related methods [22].
However, the extent to which this approach is useful in specific
taxonomic groups is a matter for empirical evaluation.

Sigmodontinae is the most diverse family-level mammalian
clade in the Neotropical region [23,24] with up to 377 species
[25]. These rodents are also important reservoirs of human
diseases such as hemorrhagic fevers caused by arenaviruses
[26] or hantaviruses [27], the etiological agents of hantavirus
pulmonary syndrome (HPS) in the Americas. Hantaviruses are
often associated with a single species [28] (but see [14,29]). At
least 23 species (Sigmodontinae) are known to be hosts of
hantaviruses, and six of these species were included in this
study: Oligoryzomys nigripes, O. flavescens, Necromys
lasiurus, Akodon montensis, A. paranaensis and A. azarae

Taxonomic studies in sigmodontine rodents are particularly
dynamic, with new species constantly being described [30-36].
Also, recent large-scale taxonomic revisions have reshaped
our understanding of the systematics of this group [23,37].
Molecular markers allow us to test taxonomic hypotheses,
using mostly selectively neutral characters [23,38–41].

In this study, we examined the sequence variability of COI in
sigmodontine species, particularly from southern Brazil, where
most of the HPS cases have been reported [28,42]. We also
evaluated the existence of a barcoding gap between intra- and
interspecific distances, and tested the monophyly of putative
species. This information was used to infer the utility of
barcoding in species identification by comparing the results
with field identifications and information from external
morphology and karyotypes. We combined this dataset with
sequences deposited in GenBank. We list taxa that can be

accurately identified through the DNA barcoding approach. We
also evaluate the reasons that other taxa might not be correctly
classified using COI, and appraise field misidentifications.

Materials and Methods

Sampling
Rodents were caught and handled according to the

recommendations of the American Society of Mammalogists for
the use of wild mammals in research [43]. Permission for
fieldwork was granted by the Brazilian Ministry of Environment
- IBAMA/ICMBio permanent collection permits 14690-1;
15224-2; 11375-1; 168/2004-CGFAU/LIC; 237/2005-
CGFAU/LIC and by the Fauna Department of the Ministry of
Livestock, Agriculture and Fishing of Uruguay, res. 176/2012.
Rodents were trapped using Tomahawk® (Tomahawk Live
Traps, Tomahawk, WI, USA) and Sherman (Sherman® - H.B.
Sherman Traps, Tallahassee, FL, USA) live traps placed on the
ground along linear transects and baited with a mixture of
peanut butter, bananas, oatmeal and sardines. Traps were
visited daily, early in the morning to minimize the time that the
rodents remained within them. Animals were anesthetized with
an intramuscular injection of ketamine (10-30 mg/kg) combined
with acepromazine (5-10 mg/kg) (proportion 9:1), and
euthanized with an intracardiac injection of KCl. Field
procedures with rodents were approved by the Ethics
Committee on Animal Use of the Oswaldo Cruz Foundation,
Rio de Janeiro (P033607).

A total of 130 sigmodontine specimens, including 13 genera
and 21 species, were collected in 21 localities across the
Cerrado, Caatinga, Pampas and Atlantic Forest biomes in
Brazil (Figure 1, Table S1). Most samples (64%) have
additional information, such as diploid number and vouchers
deposited in collections. The species surveyed represent the
major tribes: Oryzomyini, Akodontini, Thomasomyini and
Phyllotini. Species with controversial allocation at the tribal
level, including Juliomys pictipes, Rhagomys rufescens,
Delomys dorsalis and D. sublineatus, were also analyzed. All
sequences have been deposited in GenBank (accession
numbers GU938873-GU939002) and BOLD under the project
Rodents from Southern Brazil-ROSBR; Table S1).
Sigmodontine sequences available in GenBank were also
added in our analysis (N=58, 24 species): EU095420,
EU095443-75, EU095488-93, EU096809-25, EU096953. This
study is part of BrBOL (Brazilian Barcode of Life; http://
www.brbol.org/), under the project Tetrapoda.

DNA extraction, PCR amplification and sequencing
Total genomic DNA was extracted from tissue samples using

CTAB [44] and phenol chloroform [45] protocols. The target
region of 648-bp COI was amplified through polymerase chain
reaction (PCR) using the universal primer pair LCO1490 (5'-
GGTCAACAAATCATAAAGATATTGG-3') and HCO2198 (5'-
TAAACTTCAGGGTGACCAAAAAATCA-3') [46]. The PCR
reaction included 1 U of Taq polymerase (Invitrogen) and 1.2
mM MgCl2, at 50°C of annealing temperature in a 20-µl
reaction volume. PCR products were cleaned through the
ExoSap (GE Healthcare) enzymatic method, sequenced with
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Figure 1.  Biomes and localities sampled in South America.  Different shades of gray correspond to different biomes, as
indicated in the legend. 1. Reserva de Santa Teresa, Rocha, UY (-34.36; -53.46); 2. Alegrete, RS, BR (-55.71; -29.57); 3. Margarida
do Sul, RS, BR (-54.07; -30.37); 4. Rondinha, RS, BR (-53.75; -27.75); 5. Ronda Alta, RS, BR (-52.82; -27.79); 6. Passo Fundo, RS,
BR (-52.48; -28.29); 7. Terra de Areia, RS, BR(-50.48; -29.39); 8. Derrubadas, RS, BR (-53.83; -27.17); 9. Erechim, RS, BR (-52.28;
-27.60); 10. Barracão, RS, BR (-51.46; -27.67); 11. São Domingos, SC, BR (-52.54; -26.56) 12. São Francisco de Paula, RS, BR
(-50.37; -29.40); 13. Blumenau, SC, BR (-49.07; -26.96) 14. São José dos Pinhais, PR, BR (-49.17; -25.58); 15. Capão Bonito, SP,
BR (-24.06; -48.32); 16. Capitão Andrade, MG, BR (-19.06; -41.81) 17. Itinga, MG, BR (-41.82; -16.61) 18. Mimoso de Goiás, GO,
BR (-15.06; -48.19); 19. Correntina, BA, BR (-44.16; -13.34); 20. Caetité, BA, BR (-42.50;-14.07); 21. Mucugê, BA, BR (-41.39; -13).
BR: Brazil. UY: Uruguay. Brazilian States: RS-Rio Grande do Sul, SC-Santa Catarina, PR-Paraná, SP- São Paulo, MG-Minas
Gerais, GO-Goiás, BA-Bahia. Coordinates in parentheses are given in decimal degrees.
doi: 10.1371/journal.pone.0080282.g001
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BigDye chemistry, and analyzed on an ABI3730XL (Applied
Biosystems) at Macrogen® (Republic of Korea).

Data analysis
Chromatograms were edited in Chromas 2.4 (Technelysium

Pty Ltd., South Brisbane, Australia) and the sequences were
automatically aligned using Clustal X implemented in the
software MEGA 5 [47]. We tested for substitution saturation in
the dataset with the program DAMBE 5.2.61 [48] using Kimura
1980 (K80) and General Time-Reversible (GTR) models.
Sequence divergence was calculated using the Kimura two-
parameter (K2P) base substitution model [49]. We calculated
divergence averages (mean and variance) at different
taxonomic levels (intraspecific, interspecific, intrageneric and
intertribal) from the pairwise distance matrix. Distance
distributions were evaluated through histograms. The
barcoding gap was evaluated by comparing the intraspecific
and interspecific distance distribution assessed by kernel
density estimation. The area of overlap of the density curves
was calculated. Neighbor-joining (NJ) trees based on K2P
distances were inferred to represent patterns of divergence
among taxa, using the ape library [50] in R software [51].

Model selection of sequence evolution was estimated using
MrAIC [52] with the BIC criterion. Phylogenetic reconstruction
was carried out using Maximum likelihood (ML) and Bayesian
inference (BI) because mitochondrial genes have been shown
to have a phylogenetic signal in sigmodontines [39]. ML trees
were obtained with PHYML 2.4.4 [53] and BI using MrBayes
3.1 [54] with 2 independent runs of 4 chains for 5,000,000
generations. Monophyly-confidence limits were assessed with
the bootstrap method [55] at 50% cut-off after 1000 bootstrap
iterations for ML, and posterior probabilities (pp) for the BI
analysis. Distance-based and probabilistic trees were
compared to evaluate the congruence of monophyletic groups.
The neotomine species Peromyscus maniculatus (GenBank:
EF568630) was used to root the tree in all analyses. Trees
were plotted and edited using the software FigTree 1.2 [56].

Specimen reclassification
Discrepancies between taxonomic identifications made in the

field and phylogenetic placement in our analysis were solved
using different lines of evidence considering the information
available for each specimen, supported by previous taxonomic
knowledge. First, we rechecked morphological characters,
following an identification key for genera based on external
characters [57] and examined skulls of specimens deposited in
collections. Second, we paid particular attention to juvenile
specimens since they are often misidentified, e.g., young
specimens of Delomys are frequently misidentified as an adult
of Euryoryzomys. Third, we examined the diploid number of
specimens that were previously karyotyped, particularly for
species of the genus Akodon, which have few or no clear-cut
external discriminant characters, depending on the species pair
(see [58] for a synthesis). Fourth, for samples with unavailable
vouchers, we analyzed the external measurements taken
during field work and evaluated the nestedness of specimens
relative to specimens with available vouchers.

Results

Barcode divergences between species
COI sequences surveyed did not show saturation for either

transitions or transversions (Figure S1). First, we performed a
distance-based analysis of intraspecific and intrageneric
genetic distances. A few discrepant values, i.e., intraspecific
differences higher than expected (>10%), were observed.
Second, we compared NJ distance-based trees to ML and BI
phylogenies obtained from the same data set. All distance
clusters were congruent with clades from ML and BI except for
the topology among three genera. In the BI and ML inferences,
Calomys and Delomys (pp = 1) were monophyletic, whereas in
the NJ tree, Calomys grouped with Rhagomys (albeit with
bootstrap < 50).

Misidentified specimens are marked with an asterisk in
Figure 2 (see below for discussion). They were reclassified
either as a known species if the sequence was nested within a
clade, or as monophyletic after rechecking external
morphological characters (using an identification key for the
genus level, Bonvicino et al. [2008] and karyotype data when
available) or as an unknown taxon if it was not closely related
to any other clade (K2P distance > 2%), which occurred for a
single sequence.

Descriptive statistics are given as a benchmark for
subsequent studies using COI, since the characteristics of
evolutionary distance distributions have been described only
seldom. Pairwise K2P distances among all specimens ranged
from 0 to 29.3% (mean = 14.7%, variance [σ2] = 0.002) with a
bimodal frequency distribution, one mode centered near 0%
and the other around 15% (data not shown). Intraspecific
variation ranged from 0 to 16.7% (mean = 2.4%; σ2 = 0.001).
Intrageneric mean distance values varied between 11.2% and
19.7% (mean = 15.2%, σ2 = 0.0007). Intrageneric distances of
Deltamys, Handleyomys, Juliomys, Necromys, Nectomys,
Nephlomys, Oxymycterus, Rhagomys, Scapteromys,
Sooretamys, and Thaptomys were not calculated since each
was represented by only a single species in our sample.

Oligoryzomys vegetus (EU095457) and O. fulvescens
(EU095455-56) were removed from the data set for these
calculations, because they were paraphyletic to other
Oligoryzomys spp. and showed a mean distance of 14.9% from
other Oligoryzomys. We also removed Necromys urichi
(EU095420) due to a highly discrepant phylogenetic position
with regard to other members of the tribe Akodontini (mean =
15.4 %, σ2 =0.0001). The decision to remove these taxa was
based on (i) their erratic phylogenetic position, (ii) large
distances from other congeneric species, and (iii) our purpose
of providing benchmark distances, which could be
compromised by those specimens belonging to genera that are
hantavirus reservoirs. Intertribal distances calculated among
Akodontini, Oryzomyini, and the incertae sedis groups ranged
from 9.6 to 14.6% (mean = 12.3%, σ2 = 0.0006). Histograms of
each taxon showed a bimodal distribution; all of them showed
one small mode centered at 0% and another mode around the
mean (data not shown).

The overlap between the areas of curves of the distribution
of pairwise intraspecific (mean = 0.9%, σ2 = 0.0002) and
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Figure 2.  Bayesian phylogeny of Sigmodontine rodents inferred from 648 bp of COI.  Species are depicted with branches of
different colors. Triangle width is proportional to sample size (see Table S1), and depth to branching depth. Species
misidentifications are marked with an asterisk. Tribal membership is indicated by the colored background. Posterior probability
values are indicated on nodes.
doi: 10.1371/journal.pone.0080282.g002
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interspecific (mean = 15.4%, σ2 = 0.001) distances was < 0.01,
which numerically shows the existence of a clear barcoding
gap (Figure 3). A total of 22 of 45 species showed mean
intraspecific genetic distances < 2% (Figure 4).

Phylogenetic analysis.   The results of the estimation of the
proportion of invariant sites, transition/transversion ratios,
nucleotide frequencies, gamma shape parameter and
likelihood of ML and BI inferences are compared in Table S2.
Likelihood scores stabilized after 1,000,000 generations in the
Bayesian Inference. The Potential Scale Reduction Factor
reached 1, indicating convergence between runs. A total of
490,000 samples were kept for summary statistics.

Barcode recovery.  Similar topologies from NJ, BI and ML
trees were retrieved, varying mainly in branch support values.
Monophyletic groups were recovered for at least 41 of the 45
species analyzed and for 20 of the 25 genera. Most of the
species were correctly recovered, with high branch support
(Figure 2). Eight of 126 specimens clustered within unrelated
clades (Calomys sp. 1787 and 1788, Delomys dorsalis
FURB9954, D. sublineatus FURB9994, Euryoryzomys russatus
JR458 and JR459, Oligoryzomys nigripes DG15 and sample
1007), indicating a conflict between the phylogenetic position
and the field identifications (Figure 5). These samples were
reclassified according to their phylogenetic placement. Two
specimens of Juliomys pictipes did not cluster together;
FURB9667 was identified by BLAST as Mus musculus and is
likely a mislabeled sample. Akodon sp. PCE24 was
monophyletic with other Akodon montensis sequences and
showed a low K2P distance (< 2%) with other A. montensis

 (Table S1) Sample FURB9629 probably belongs to the genus
Oligoryzomys. Although it clustered with other Oligoryzomys
sequences, it was not nested within any of the species
sampled. This example highlights the need for large individual
taxon sampling for correct identification.

Oecomys, Transandinomys, and Neacomys were
monophyletic, whereas Akodon, Oligoryzomys, Euryoryzomys,
Oryzomys, and Hylaeamys were paraphyletic. All these
paraphylies involved sequences from GenBank. The incertae
sedis species Delomys dorsalis and D. sublineatus were
monophyletic with Calomys (pp = 1). Rhagomys rufescens was
monophyletic with Delomys and Calomys (pp = 0.93). The
species of Akodontini were split into three monophyletic
groups, one containing species of Akodon and Deltamys,
another including Necromys lasiurus and Thaptomys nigrita,
and a third group including Necromys urichi, which was the
sister-group of all other sigmodontines. A group of sequences
that we named Deltamys sp. n. was monophyletic and
appeared as the sister-group of D. kempi (Figure 2).
Interspecific pairwise distance comparisons suggest that this
group likely represents an undescribed species of Deltamys
(Figure 6).

Discussion

Identification of hantavirus reservoirs through
barcoding

Most of the species and genera surveyed in this study,
particularly those that are hantavirus reservoirs, were

Figure 3.  Intra- (solid line) and interspecific (dotted line) pairwise genetic distance (K2P) distribution.  Area overlap between
distributions (< 0.01) is shaded. The 2% threshold is indicated as a vertical line. Distributions are estimated by kernel density
estimation.
doi: 10.1371/journal.pone.0080282.g003
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Figure 4.  Mean intraspecific K2P pairwise distance after reclassification.  First line indicates the 2% threshold of intraspecific
variation. Twenty-three species are below this limit and nine are above. The second line indicates 5% genetic divergence.
doi: 10.1371/journal.pone.0080282.g004

Figure 5.  Detail of misidentified specimens.  Subtrees shown in Figure 2 from the Bayesian phylogeny inferred based on 648 bp
of COI for sigmodontine rodents (posterior probability values on nodes) are shown in detail. Misidentified specimens are indicated
with a light background. A: subtree for Oligoryzomys nigripes and O. flavescens; B: subtree for Euryoryzomys russatus; C: subtree
for Akodon species.
doi: 10.1371/journal.pone.0080282.g005
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successfully identified through DNA barcodes. These taxa also
included misidentified specimens. Identifying the taxa and
sources of misidentifications is a critical step toward improving
barcoding or identification practices. At least with respect to
sigmodontine rodents and hantaviruses, instead of applying
wide-ranging automated methods, taxon-specific discussions
could improve our understanding of the potential pitfalls in
identification procedures. This understanding should be applied
toward improvements in identification procedures that would
dramatically enhance the presently incomplete distribution
maps, which is a major drawback to understanding the
evolutionary history of hantaviruses [59] or the ecological
determinants of transmission risk [60].

Correct assignment of Oligoryzomys species, for example, is
critical because at least eight species within this genus are
hantavirus reservoirs [2,27,59]. The genus includes around 18
species [2,25] and its taxonomy is very dynamic [2,61,62]. The
complexity of the taxonomy, the lack of a clear phylogenetic
framework, and the sympatry of several species make it difficult
to determine the factors affecting the transmission of
hantavirus [60]. Oligoryzomys nigripes is associated with the
Juquitiba virus (JUQV) [28], and O. flavescens with the
Lechiguanas virus. Two specimens initially identified by
external morphology as Euryoryzomys russatus (JR458 and

JR459) were monophyletic, together with 24 specimens of
Oligoryzomys nigripes. Although the DNA of these samples
was extracted from ear tissues gathered during ecological
assessments and not from museum vouchers, we assigned
them to O. nigripes, based on the overall appearance of the
rodents recorded in field notes (i.e., long hind feet, higher tail/
body length ratio, very small body size). Juveniles of E.
russatus are quite similar to O. nigripes. Specimen DG15,
previously identified as O. nigripes, clustered together with O.
flavescens, clearly indicating a field misidentification, which
was undoubtedly due to the close similarity of external
diagnostic characters [57].

Species of Akodon are also of particular interest; Akodon
montensis is associated with the Ape Aime-Itapúa virus (AAAI)
in Paraguay (see [29,63]); the Jabora virus (JABV) has been
identified in A. montensis, A. paranaensis, and A. serrensis
[14,28,42]; and the Araucaria virus (JUQ-like virus) is found in
A. montensis and A. paranaensis [42,64]. The high node
support within Akodon strongly suggests that barcoding can be
successfully used to identify species in this group.

Misidentifications and the taxonomic bottleneck
A few studies have investigated COI sequence divergence in

Neotropical rodents. Borisenko et al. [65] investigated small

Figure 6.  Box-and-whisker plot of evolutionary divergence among Deltamys kempi, Deltamys sp. n. and Akodon
species.  The box represents the median, first and third quartile, whiskers represent 1.5 times the interquantile range. Dots
represent outliers. Distances were calculated based on Kimura 2-parameter model.
doi: 10.1371/journal.pone.0080282.g006
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mammals (opossums, bats and rodents) from Guiana and
Suriname and suggested the effectiveness of this target region
in species identification. Our data substantially increased the
taxonomic and geographical sampling, and showed that
interspecific and intraspecific variations have isolated
distributions to such an extent that a gap exists, which enables
unidentified individuals to be assigned to their species with a
negligible error rate (< 1% based on the overlap of inter- and
intraspecific-distance distributions). This gap was not
congruent with a previously proposed 2% species limit [8];
instead, a 5% threshold would be more appropriate for this
rodent subfamily. The analysis of distance distributions as
estimated by kernel density estimators is an alternative method
to sliding-windows methods [18]. The relative performance of
these methods still needs to be tested.

Most of the specimen identifications based on external
characters were correct; these were mainly carried out by
mammalogists with several years of field experience but
without a strict taxonomic background. Additionally, some
specimens were identified by undergraduate students during
student projects. Misidentified specimens comprised 9.5% of
the sample. Despite the large number of specimens of
Sigmodontinae collected either for epidemiological studies or
for ecological assessments, we are not aware of another
estimate of misidentification percentages. This information
could be valuable in both contexts, since epidemiological
surveillance and construction permits are based on species
lists. Here, we have shown that the presence of juveniles might
increase misidentification percentages. As previously stated,
juveniles of E. russatus were misidentified as O. nigripes. Yet
another example of misidentification of juveniles in the field
could be detected in 10 samples of E. russatus that were
monophyletic with samples FURB 9954 and FURB 9994,
identified in the field as D. dorsalis and D. sublineatus. These
two specimens are more related to three specimens of E.
russatus collected in the same locality. However, analysis of
museum specimens FURB 9994 and FURB 9954 showed that
they are juveniles, reinforcing our hypothesis of field
misidentification.

Misidentifications were initially detected from the barcodes,
through discrepancies in intraspecific distance ranges and/or
phylogenetic position. When specimens clustered within
unrelated taxonomic groups and their genetic distance from
conspecifics was higher than expected based on other
intraspecific values, we considered these specimens to be
misidentified. We suggest that these are misidentifications
rather than cases of incomplete lineage sorting, introgression,
or current gene flow, particularly because the statuses of these
species have been reasonably well established through
previous taxonomic studies using integrative approaches such
as cytogenetics, morphology, morphometrics, and geographical
distribution [2,58,62].

However, taxonomic expertise is necessary to check
possible misidentifications. For example, one specific specimen
(FURB9792) fell within the tribe Oryzomyni, but with low
support. Further examination of morphological characters of
the voucher confirmed that this specimen is Drymoreomys
albimaculatus, a recently described species from mid-altitude

Atlantic Forest of São Paulo and Santa Catarina states [35].
Interestingly, the closest genus to Drymoreomys is
Eremoryzomys polius, which occurs in the Peruvian Andes.
Although a few taxa have shown similar patterns [35,66], this
point highlights the need for intense efforts to build DNA
barcoding libraries for the identification of rare, endemic taxa
with deep phylogenetic divergences. Furthermore, this example
clearly shows that redoubled attention should be paid to those
lineages that reveal unique taxa.

Monitoring species ranges and species discovery
Calomys tener occurs in the Cerrado biome [38,57].

Surprisingly, one specimen sampled in our study was captured
in Alegrete Municipality (Figure 1), a grassland area which is
isolated from other collection localities in the Cerrado by a belt
of Atlantic Forest. This finding indicates either an introduction
of C. tener into the southern grasslands, or a past connection
between the southern grasslands known as the Pampas biome
and the Cerrado savanna-like grasslands. This latter
hypothesis is reinforced by the finding of another specimen on
the coastal plain of Rio Grande do Sul state, in Quintão
Municipality [29°40’S, 50°12’W] [67]. Other researchers have
found evidence of an introduction or range expansion of a
second Calomys species in this region (C. laucha) [68]. These
results highlight the potential use of barcoding to monitor
species ranges. This issue is particularly sensitive as trade
flows intensifies and agroecosystems expand rapidly in Brazil.
A congeneric species, C. musculinus, which occurs in
Argentina and is a known reservoir of Junin arenavirus, has
shown substantial range expansion driven by agricultural
expansion [69,70].

The barcoding results also support the recognition of a new
akodontine species. Previously assigned as Akodon sp. (E.
Pedó, Personal communication), it was strongly recovered as
the sister-group of Deltamys kempi, while all other Akodon
species were monophyletic (Figure 2). Furthermore, the
genetic distances among Akodon taxa are less than 8%;
between Deltamys kempi and Deltamys sp. n. the genetic
distance ranges from 10 to 11%; and between Deltamys sp. n.
and the other Akodon species it ranges from from 12-16%. The
diploid number of this putatively new species is 2n=34,
whereas D. kempi has a multiple sex chromosome system with
2n= 35, 36, 37, 38 [71–73]. Recently, a new allopatric lineage
of Deltamys was proposed [74], with a diploid number of
2n=40. Akodon and Deltamys belong to the same tribe
(Akodontini), and are sister genera according to nuclear and
mitochondrial genes [39]; they can be distinguished by a single
small chromosome pair that is present only in Akodon.

These examples illustrate the potential of barcoding efforts to
provide additional characters for the recognition of new
species. Nevertheless, the formal description of species
depends on the evidence of additional characters for taxa
delimitation, evaluation of available names, and most
importantly, analysis of type specimens. This taxonomic
bottleneck could be partly overcome if initiatives were
undertaken to barcode type specimens, which are the name
bearers. These examples show two important points to be
addressed.
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First, there is a large amount of material collected either by
inexpert mammalogists or in projects not focused on taxonomy.
This situation is often overlooked and/or understated in the
literature, and has profound implications for epidemiological
surveillance and biodiversity assessments. We emphasize that
the limited number of taxonomists and proper infrastructure for
natural history collections will be an important bottleneck for the
success of barcoding as an identification tool. Identifying
misclassifications requires background knowledge about the
taxa distribution, phylogenetic position, and range of variation.
Likewise, building solid sequence databases for identification,
as iBOL is proposing, will require not only that these be
developed with the close collaboration of taxonomists, but that
they also include either holotype or topotype specimens that
will establish valid names for the monophyletic groups or
clusters analyzed.
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