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Abstract: The previously described decapeptide AKVTMTCSAS (killer peptide, KP), derived from
the variable region of a recombinant yeast killer toxin-like anti-idiotypic antibody, proved to exert
a variety of antimicrobial, antiviral, and immunomodulatory activities. It also showed a peculiar
self-assembly ability, likely responsible for the therapeutic effect in animal models of systemic and
mucosal candidiasis. The present study analyzed the biological and structural properties of peptides
derived from KP by substitution or deletion of the first residue, leaving unchanged the remaining
amino acids. The investigated peptides proved to exert differential in vitro and/or in vivo anti-
Candida activity without showing toxic effects on mammalian cells. The change of the first residue in
KP amino acidic sequence affected the conformation of the resulting peptides in solution, as assessed
by circular dichroism spectroscopy. KP-derivatives, except one, were able to induce apoptosis in
yeast cells, like KP itself. ROS production and changes in mitochondrial transmembrane potential
were also observed. Confocal and transmission electron microscopy studies allowed to establish that
selected peptides could penetrate within C. albicans cells and cause gross morphological alterations.
Overall, the physical and chemical properties of the first residue were found to be important for
peptide conformation, candidacidal activity and possible mechanism of action. Small antimicrobial
peptides could be exploited for the development of a new generation of antifungal drugs, given their
relative low cost and ease of production as well as the possibility of devising novel delivery systems.

Keywords: antifungal peptides; Candida albicans; circular dichroism spectroscopy; confocal mi-
croscopy; electron microscopy; Galleria mellonella model; self-assembly peptides; structure-function re-
lationship

1. Introduction

In the last few decades, the attention of scientists, public health officials, govern-
ments, and general public has again focused on infectious diseases, due to emerging and
re-emerging etiological agents, including multidrug-resistant pathogens [1–4]. Unfortu-
nately, the spread of resistant microorganisms has not seen a simultaneous increase in the
availability of new antimicrobials [5]. In this scenario, a number of alternative anti-infective
strategies are being developed [6–10], including the exploitation of proteins and peptides
as possible substitutes of conventional anti-infective drugs [11,12].

Over time, hundreds of natural small proteins and peptides produced by bacteria,
fungi, plants, and animals (from the simplest sponges to mammals) have been character-
ized for their antimicrobial and/or antiviral activity. Semisynthetic, synthetic, and in silico
predicted antimicrobial/antiviral peptides have been also described [13–20]. Bioactive
peptides representing fragments of large parental proteins are called cryptides. Antimi-
crobial cryptides have been identified in common mammalian proteins, as hemoglobin,

J. Fungi 2021, 7, 129. https://doi.org/10.3390/jof7020129 https://www.mdpi.com/journal/jof

https://www.mdpi.com/journal/jof
https://www.mdpi.com
https://orcid.org/0000-0001-6499-2545
https://orcid.org/0000-0002-3065-6567
https://orcid.org/0000-0001-5446-3164
https://orcid.org/0000-0002-8252-489X
https://orcid.org/0000-0001-9973-8352
https://orcid.org/0000-0001-7514-1789
https://doi.org/10.3390/jof7020129
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jof7020129
https://www.mdpi.com/journal/jof
https://www.mdpi.com/2309-608X/7/2/129?type=check_update&version=3


J. Fungi 2021, 7, 129 2 of 18

albumin, immunoglobulins, lactoferrin and salivary proteins, as well as in plant ribosome
inactivating protein [21–23]. Our research group focused, in particular, on the anti-infective
properties of synthetic peptides whose sequence represents fragments of variable and
constant regions of antibodies (Ab) [24]. Several years ago, the work started from the
decapeptide AKVTMTCSAS (A10S, killer peptide KP). KP, derived from the variable region
of a recombinant anti-idiotypic antibody that functionally mimicked a yeast killer toxin,
demonstrated a remarkable candidacidal activity in vitro and a therapeutic effect in murine
models of mucosal and systemic candidiasis [25]. In further studies, KP proved to exert
a significant activity against other important microbial and viral pathogens and showed
immunomodulatory properties against dendritic cells (reviewed in [26]). Moreover, a pecu-
liar self-assembly ability was demonstrated for KP, likely responsible for its therapeutic
activity in vivo, that characterizes this peptide as a prototype of auto-delivering drugs [27].

The purpose of this work was to study the biological properties of KP-derivatives
obtained by deleting the first residue (alanine) or replacing it with amino acids with
different chemical-physical features. All the investigated KP-derivatives proved to be
fungicidal in vitro against Candida albicans, chosen as reference microorganism, without
showing toxic effects against mammalian cells. Some of them, however, unlike the parental
peptide, did not exhibit a therapeutic effect in vivo in the experimental model of systemic
candidiasis in Galleria mellonella.

Overall, the physical and chemical properties of the amino acid that occupies the
N-terminal position in KP sequence influence the peptide conformation, candidacidal
activity, and its possible mechanism of action. These findings provide valuable hints to
enhance the biological activity and to optimize the stability of a recognized antimicrobial
peptide.

2. Materials and Methods
2.1. Selection, Synthesis and Evaluation of the Hemolytic and Cytotoxic Activity of KP-Derivatives

The peptides investigated in this study derived from KP (AKVTMTCSAS) by dele-
tion of the first non-polar amino acid alanine, or its replacement with histidine, lysine,
leucine, proline, serine and tyrosine (two basic polar, two non-polar, and two polar amino
acids, respectively) (Table 1). KP and its derivatives were synthesized as previously de-
scribed [28], purified by HPLC, and their experimental molecular masses have been verified
by mass spectrometry, at CRIBI-Peptide Facility (University of Padua, Padua, Italy). A
stock solution of peptides (20 mg/mL) was prepared in dimethyl sulfoxide (DMSO), then
proper dilutions were made for evaluation of biological activities. DMSO at proper con-
centration was present in controls (without peptides). All the peptides were evaluated for
their hemolytic activity against freshly collected human red blood cells, while cytotoxicity
against monkey kidney epithelial cells LLC-MK2 was determined by resazurin assay, as
previously described [29].

2.2. Evaluation of the In Vitro Candidacidal Activity of KP-Derivatives

The candidacidal activity of KP-derivatives, in comparison to KP, was evaluated by
a previously described colony forming unit (CFU) assay against the reference C. albicans
strain SC5314 [25]. Briefly, approximately 500 yeast cells were incubated at 37 ◦C for 6 h
in 100 µL of distilled water in the presence or absence (control growth) of the synthetic
peptides at serial dilutions. After spreading on Sabouraud Dextrose agar (SDA) plates
and incubation for 48–72 h at 30 ◦C, CFUs were counted. Peptide fungicidal activity was
determined as percentage of CFU inhibition, according to the formula 100-(CFUs peptide
treated/CFUs control growth) × 100. Each assay was carried out in triplicate and at least
two independent experiments were performed for each condition. Half maximal effective
concentration (EC50) was calculated by nonlinear regression analysis using GraphPad
Prism 5 software (San Diego, CA, USA). CFU assays were also performed in order to verify
if laminarin (100 or 200 µg/mL), a soluble β-1,3-glucan, could neutralize the candidacidal
activity of KP-derivatives at their minimum fungicidal concentration [25]. Moreover,
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the kinetics of KP-derivatives killing activity at 2× the EC50 value was determined by
CFU assays at 30, 60, 120, and 360 min. Based on the obtained EC50 values, the proper
concentration of peptides to be used in subsequent biological assays was chosen taking
into account the amount of yeast cells treated and the time of incubation. The candidacidal
activity of the peptides (about 50% inhibition) under the adopted conditions was always
confirmed by CFU assays.

2.3. Circular Dichroism (CD) Spectroscopy

CD measurements were performed on KP-derivatives on a Jasco 715 spectropolarime-
ter (JASCO International Co., Ltd, Tokyo, Japan) coupled to a Peltier PTC-348WI system for
temperature control, according to previously adopted procedures [28]. Peptides (100 µM)
were analyzed immediately after preparation of the starting aqueous solution (1 mM)
and subsequently at different time points (3 and 24 months). The spectra of KP and its
derivatives were also analyzed in presence of 500 µM laminarin.

2.4. Evaluation of In Vivo Toxicity and Therapeutic Activity of KP-Derivatives in G. mellonella

The G. mellonella model was adopted to evaluate in vivo toxicity and potential ther-
apeutic effects of KP and its derivatives, as previously described [28]. Groups of sixteen
larvae (400± 30 mg) at their final instar stage were used in all experiments. For preliminary
evaluation of peptide toxicity larvae were inoculated with peptides (11 µmol/kg in 10 µL
of saline) and scored daily for survival up to nine days. Groups of larvae untouched or
inoculated with 10 µL of saline served as controls. For therapeutic evaluation, larvae were
challenged with 5 × 105 C. albicans cells/larva (in 10 µL saline) and injected after 30 min
with the selected peptides (11 µmol/kg) or saline (control). After nine days monitoring,
survival curves were compared through the Mantel–Cox log-rank test by Graph Pad Prism
software. A value of p < 0.05 was considered significant.

2.5. Evaluation of Apoptosis Induction and Reactive Oxygen Species (ROS) Production in C.
albicans after Treatment with KP-Derivatives

Induction of apoptosis in C. albicans SC5314 cells (5 × 105 cells/mL) by treatment for
30 min with KP and its derivatives, at twice their EC50, was evaluated by the Muse Cell
Analyzer (Merck Millipore, Darmstadt, Germany) using the Muse Annexin V & Dead Cell
Assay kit, as previously described [28]. Data, acquired according to the manufacturer’s
instructions, were reported as % of apoptotic cells (mean ± standard deviation from
multiple experiments). Differences between peptide-treated groups and control (yeast
cells in the absence of peptides) were assessed by Student’s t test. A value of p < 0.05 was
considered significant.

Peptide-induced production of reactive oxygen species (ROS) in C. albicans SC5314 cells
was evaluated by the 2′,7′-dichlorofluorescin diacetate (DCFH-DA) assay, according to a
protocol previously described, with some modifications [30]. DCFH-DA is a cell-permeable
non-fluorescent probe that turns to highly fluorescent DCFH upon oxidation. Yeast cells
(2 × 107 cells/mL) from a colony grown on SDA for 24 h at 37 ◦C were re-suspended in
water (110 µL) in the presence or absence of 25 mM ascorbic acid and incubated for 30 min
at room temperature (RT). Then KP and selected KP-derivatives were added at 20× the
EC50 value in a final volume of 220 µL. As positive control, yeast cells were incubated in
presence of caspofungin (20 µg/mL), an antifungal drug known for its ability to induce
ROS production in C. albicans cells [31]. After incubation for 30 min at 37 ◦C, cells were
centrifuged at 15,000× g for 10 min and pellets were re-suspended in PBS pH 7.4 with
DCFH-DA (10 µg/mL) and incubated for 4 h at 37 ◦C in 96-well microplates (100 µL/well).
Each assay was carried out in duplicate and at least two independent assays were per-
formed for each condition. Fluorescence was measured every 60 min up to 4 h on a plate
reader (EnSpire, PerkinElmer, Waltham, MA, USA) at excitation and emission wavelength
of 485 and 540 nm, respectively.
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2.6. Confocal Microscopy and Transmission Electron Microscopy (TEM) Studies

Confocal microscopy studies were performed by a LSM 510 Meta scan head inte-
grated with the Axiovert 200 M inverted microscope (Carl Zeiss, Oberkochen, Germany)
using selected peptides conjugated with fluorescein isothiocyanate (FITC), as previously
described [28]. The interaction between labeled peptides and living C. albicans SC5314 cells
were studied in time-lapse experiments. Yeast cells (2 × 107/mL) were seeded (20 µL)
on coverslips mounted in a special flow chamber and, after 30 min, the labeled peptide
was added (final concentration 200 µM). Images were taken at 30 min intervals up to
6 h. Propidium iodide (PI) was added (1.5 µM) after 30 min. To evaluate changes in
mitochondrial transmembrane potential (∆ψm), yeast cells in fresh YPD (yeast extract,
peptone, dextrose) broth were loaded with 200 nM tetramethylrhodamine methyl ester
(TMRM) for 1 h at RT in the dark. After centrifugation, yeast cells (20 µL) resuspended in
4% glucose with 200 nM TMRM, were seeded on coverslips and the baseline fluorescence
was acquired. After 30 min, the labeled peptides were added (final concentration 200 µM),
images were taken at different times and TMRM fluorescence intensity vs time calculated
for the semi-quantitative analysis of ∆ψm variation. Each assay was carried out in triplicate.

TEM studies were performed on budding and germinating C. albicans SC5314 cells
(7.5 × 108 cells/mL), as previously described [32]. After 1 h incubation without (control) or
with selected peptides (250 µM) yeast cells (50 µL volume) were pre-fixed for 5 min with
5% glutaraldehyde in 0.1 M PBS, pH 6.8. The suspensions were centrifuged at 5000× g for
5 min and cellular pellets were packed in 1% agarose and fixed with 2.5% glutaraldehyde
in PBS for 3 h at RT, then left at 4 ◦C overnight. The agarose blocks were post-fixed
for 30 min in 1% osmium tetroxide, then dehydration was performed by immersion in
acetone gradient (25–100%). Infiltration in epoxy resin (DurcupanTM ACM) was performed
according to a standardized protocol [32]. Ultra-thin sections (80 nm) were contrasted with
uranyl acetate (15 min) and lead citrate (5 min) then observed in a Philips EM 208S (Fei
Europe, Eindhoven, The Netherlands) transmission electron microscope, operating at an
accelerating voltage of 80 kV.

3. Results
3.1. In Vitro Fungicidal Activity, Hemolytic, and Cytotoxic Effects of KP-Derivatives
3.1.1. Candidacidal Activity

The in vitro candidacidal activity of the investigated KP-derivatives, in comparison to
the activity of KP, was evaluated against the reference C. albicans SC5314 strain by CFU
assays. The obtained EC50 values are reported in Table 1. These values ranged between
0.28 and 1.34 µM. When compared to the parental KP peptide, H10S and K10S exhibited
the highest activity, while L10S proved to be the less active.

Table 1. In vitro fungicidal activity of KP and its derivatives against Candida albicans SC5314.

Peptide Sequence MM 1 (Da) EC50
2 (95 % Confidence

Intervals) [mol/liter] × 10−6 EC50 Derivatives/EC50 KP

A10S (KP) AKVTMTCSAS 998.17 0.673 (0.633–0.716) -
H10S HKVTMTCSAS 1064.21 0.343 (0.331–0.357) 0.51
K10S KKVTMTCSAS 1055.26 0.277 (0.274–0.279) 0.41
L10S LKVTMTCSAS 1040.25 1.344 (1.246–1.450) 2.00
P10S PKVTMTCSAS 1024.21 0.676 (0.615–0.742) 1.00
S10S SKVTMTCSAS 1014.17 0.761 (0.587–0.986) 1.13
Y10S YKVTMTCSAS 1090.26 0.847 (0.766–0.936) 1.26
K9S KVTMTCSAS 927.09 0.863 (0.653–1.141) 1.28

1 MM, molecular mass (dalton) calculated by the ExPASy tool ProtParam; 2 EC50, half maximal effective concentration, expressed in
mol/liter × 10−6. In parentheses, 95% confidence intervals.

The neutralization by laminarin, previously reported, suggested that the binding
to β-glucans present in the yeast cell wall constitutes a critical step for KP candidacidal
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activity [25]. The results of CFU assays carried out, in the presence of laminarin, with KP-
derivatives at their minimal fungicidal concentration are shown in Table 2. Candidacidal
activity of H10S, K10S, L10S, and Y10S was almost or completely neutralized in the presence
of laminarin at 100 µg/mL. A double concentration of laminarin (200 µg/mL) was needed
for neutralization of KP, P10S, and K9S activity. In the latter condition, S10S retained a
significant (>60%) candidacidal effect.

Table 2. Neutralization of in vitro candidacidal activity of KP and KP-derivatives by laminarin.

C. albicans Growth Inhibition (%) in the Presence of

Peptide µg/mL 1 Laminarin 100 µg/mL Laminarin 200 µg/mL

A10S (KP) 5.00 96.39 ± 1.68 1.80 ± 0.49
H10S 2.00 6.20 ± 3.71 n.d.
K10S 1.25 1.07 ± 0.39 n.d.
L10S 5.00 0 n.d.
P10S 5.00 97.71 ± 0.46 3.10 ± 4.38
S10S 5.00 99.12 ± 0.50 60.73 ± 13.13
Y10S 5.00 5.57 ± 4.84 n.d.
K9S 5.00 31.09 ± 1.71 0.68 ± 0.97

1 Each peptide was tested at its minimal candidacidal concentration, i.e., the concentration yielding no colonies
(100% inhibition) in the CFU assay performed as described in Material and Methods section. n.d. = not
determined.

The rates of killing of C. albicans cells over time by KP and its derivatives were
determined with peptides at twice their EC50 value (Figure 1). The two most active
derivatives, K10S and H10S, showed a different initial behavior. K10S demonstrated a more
rapid candidacidal effect, achieving 36.93% killing at 30 min, a value similar to the one
obtained with the parental KP peptide (36.38%), while H10S attained only 6.85% killing.
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3.1.2. Hemolytic and Cytotoxic Activity

In comparison to negative and positive controls (0% hemolysis, PBS, and 100% hemol-
ysis, Triton 1%, respectively), KP and its derivatives showed a negligible hemolytic activity
at the tested concentrations (10, 25, and 50 µM). In fact, after 30 min incubation in the
presence of the investigated peptides, lysed erythrocytes were always <1%, with the only
exception of KP 25 µM (hemolysis 1.13%). After 120 min incubation, hemolysis was always
<2%, with the only exception of K10S 25 µM (hemolysis 2.42%). Moreover, none of the
investigated peptides showed a significant cytotoxicity against LLC-MK2 cells as assessed
by the resazurin assay (Table S1). After 24 h incubation with peptides 10 µM, cell viability
ranged between 93.25 and 100%, while with peptides 25 µM ranged between 90.20 and
100% (only exception for KP, viability 88.20%), and with peptides 50 µM ranged between
89.71 and 98.07%.

3.2. KP-Derivatives Conformational State

Previous CD studies have revealed the ability of KP to acquire a β-sheet structure and
spontaneously form large aggregates in aqueous solution over time, being this process
strongly accelerated in the presence of laminarin or C. albicans cells [27]. To evaluate
the possible contribution of each N-terminal residue to the conformational state of the
investigated peptides, CD spectra of KP-derivatives were acquired soon after the solution
in water (time 0) and after several months. At time 0 all the investigated peptides presented
a typical random coil conformation, with a negative peak around 198 nm and a weak
negative band at longer wavelengths (Figure 2). In the presence of laminarin, a change of
the dichroic spectrum was observed for all peptides (Figure 3). After laminarin addition, the
CD profile of K10S, the most active peptide, was characterized by a considerable decrease
of the negative band at 198 nm and the appearance of a negative band at approximately
217 nm, as was for the parental peptide KP and S10S. The CD spectrum of H10S and L10S
was characterized by a positive peak at 198 nm and a negative one at 217 nm, typical of
β-sheet organized structures (Figure 3). Similar changes, although with some differences
in band positions and intensities were recorded for Y10S, P10S, and K9S.
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Over time, in aqueous solution the peptides showed a differential behavior. Peptides
KP, L10S, Y10S, and K9S acquired a CD profile with a negative band centered around
218 nm and a positive one in the range 198–205 nm, that suggests the acquisition of
elements of β-sheet secondary structure mixed with a disordered component. On the other
hand, H10S, K10S, P10S, and S10S were not able to spontaneously undergo any transition
toward some sort of recognizable organized structure (Figure 4). Overall, the analysis of
the CD spectra did not allow to extract any criteria that may correlate the presence of a
specific amino acid in N-terminus with a particular conformational behavior of the peptide.
It is clear, however, that each amino acid affects in its own way the spatial organization of
the peptide in solution.
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3.3. In Vivo Toxicity and Therapeutic Activity of KP-Derivatives in G. mellonella

Toxicity to G. mellonella larvae and therapeutic activity against experimental C. albicans
infection were evaluated for all KP-derivatives in comparison with KP, whose therapeutic
activity in consolidated models of murine systemic and mucosal candidiasis has been
already described [25]. Under the adopted conditions, no significant difference in survival
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was observed between larvae inoculated with saline (control group), or with the peptides
(11 µmol/kg), thus assessing their lack of toxicity in this experimental model (data not
shown). After infection with a lethal inoculum of C. albicans SC5314 cells, a single injection
(11 µmol/kg) of KP, K10S, P10S and K9S led to a significant increase in survival of larvae
in comparison to infected animals inoculated with saline (Figure 5). Instead, H10S, L10S,
S10S and Y10S did not show a therapeutic effect. Median survival time was 48, 60, and
72 h for larvae treated with P10S, K9S, and K10S, respectively, in comparison to 24 h
for control group and groups treated with H10S, L10S, S10S, and Y10S. Median survival
time of larvae treated with KP was 24 h, as for untreated controls. Nevertheless, 100% of
untreated animals were dead 24 h post-infection, while survival of five KP-treated larvae
was prolonged and 1/16 was still alive at day 9.
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Figure 5. Therapeutic activity of KP-derivatives against experimental candidiasis in Galleria mellonella.
Larvae were infected with 5 × 105 cells of C. albicans SC5314 and treated with peptides (11 µmol/kg;
single injection of 10 µL) or saline solution (control group). The survival curves of larvae treated with
KP, K10S, P10S, and K9S were significantly different from that of the control group, as assessed by
Mantel-Cox log rank test (** p < 0.01, *** p < 0.001).

3.4. Apoptosis Induction and ROS Production in C. albicans Cells after Treatment with
KP-Derivatives

Flow cytometry was used to assess, through determination of phosphatidylserine ex-
ternalization by reactivity with annexin V, if apoptosis is induced in C. albicans SC5314 whole
cells after treatment with KP and its derivatives, at 2× their EC50 values. All investi-
gated peptides were able to induce apoptosis, although to a different extent, except K10S
(Figure 6). In fact, there was no statistically significant difference between the percentage
of apoptotic cells induced by treatment with K10S and the one of the control (untreated
cells). In comparison to the parental peptide KP, its derivatives showed a statistically
significant improved (S10S and Y10S), decreased (H10S and L10S) or unchanged (P10S and
K9S) ability to induce apoptosis in C. albicans cells. In particular, the in vitro most active
peptides, H10S and K10S, showed a different behavior. While H10S maintained, although
reduced, the apoptotic effect, K10S lost it completely. As an example, the apoptotic profile
from a single assay performed on C. albicans cells treated with KP, H10S, and K10S is shown
in Figure S1.
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Figure 6. Apoptotic effects of treatment with KP and its derivatives in Candida albicans SC5314 cells.
Yeast cells were treated for 30 min with peptides at 2× their EC50 values. Data, expressed as
percentage of apoptotic cells on the total gated cells, represent the mean ± standard deviation from
at least two independent experiments (* p < 0.05, *** p < 0.001 vs. KP-treated cells).

ROS production was evaluated in C. albicans cells after treatment with KP and its most
active derivatives, H10S and K10S. The presence of ROS, revealed by a green fluorescence
resulting from the oxidation of DCFH-DA into DCFH, was seen after treatment with all the
tested peptides, in comparison to untreated control cells (Figure 7). Fluorescence intensity
values were significantly lower in samples pre-incubated with ascorbic acid, a well-known
antioxidant, for all time points, with the exception of KP-treatment at 60 and 240 min and
K10S-treatment at 60 and 120 min.
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Figure 7. Intracellular ROS production induced by treatment with KP and selected KP-derivatives. After incubation with (+)
or without (−) ascorbic acid (AA), Candida albicans SC5314 cells were treated for 30 min with caspofungin (CAS, 20 µg/mL,
positive control) and peptides KP, H10S, and K10S (20× EC50), then DCFH-DA was added and fluorescence intensity was
monitored at different times. Data represent the mean ± standard deviation from at least two independent experiments.
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3.5. Confocal Microscopy and Transmission Electron Microscopy (TEM) Studies on C. albicans
Cells Treated with Selected KP-Derivatives

Time-lapse confocal microscopy allowed to investigate the dynamic interaction be-
tween selected KP-derivatives and living C. albicans cells. FITC-labeled A10S (KP), H10S
and K10S proved to initially bind to yeast cell wall and enter living cells over time. This
process, leading to cell death, as shown by PI internalization, took place at different times
for the three peptides. As shown in Figure 8, FITC-labeled KP was detected mainly on the
yeast cell wall up to 150 min (Figure 8B,C). After 240 min the peptide was detectable inside
some yeast cells (Figure 8D) and an increase of the intracellular signal was observed over
time (Figure 8G). After 360 min the first dead cells were seen (Figure 8H).
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Following treatment with FITC-labeled H10S (Figure 9), the peptide was already ob-
served inside yeast cells after 10 min (Figure 9B). The intracellular signal progressively 
increased over time in still viable cells (Figure 9C, 180 min, Figure 9D, 240 min). After 360 
min, some cells were completely fluorescent and no longer viable, as demonstrated by PI 
internalization. 

Figure 8. Interaction between living Candida albicans cells and FITC-labeled KP. Confocal microscopy images of yeast cells
incubated for 10 min and 150 min with the labeled peptide are shown in (B,C), respectively. KP bound to yeast cell wall. In
(A), the same field is shown in light transmission. Peptide internalization was observed after 240 min: (D) FITC; (E) PI; (F)
merge of (D,E) and increased over time leading to cell death, as demonstrated by PI internalization after 360 min: (G) FITC;
(H) PI; (I) merge of (G,H). Bar, 5 µm.

Following treatment with FITC-labeled H10S (Figure 9), the peptide was already
observed inside yeast cells after 10 min (Figure 9B). The intracellular signal progressively
increased over time in still viable cells (Figure 9C, 180 min, Figure 9D, 240 min). After
360 min, some cells were completely fluorescent and no longer viable, as demonstrated by
PI internalization.
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Figure 9. Interaction between living Candida albicans cells and FITC-labeled H10S. Confocal microscopy images of yeast
cells incubated for 10 min and 180 min with the labeled peptide are shown in (B,C), respectively. H10S was internalized
in most yeast cells. In (A), the same field is shown in light transmission. Peptide internalization increased in viable cells
after 240 min: (D) FITC; (E) PI; (F) merge of (D,E), eventually leading to cell death, as demonstrated by PI internalization at
360 min: (G) FITC; (H) PI; (I) merge of (G,H). Bar, 5 µm.

Interaction of FITC-labeled K10S with yeast cells was similar to the one of the parental
KP peptide, but with a faster kinetics. In fact, after initial binding to yeast cell walls,
labeled peptide was detectable in most still viable yeast cells at 150 min, and after 180 min
PI-positive dead cells were already detectable (Figure 10).
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Figure 10. Interaction between living Candida albicans cells and FITC-labeled K10S. Confocal microscopy images of yeast
cells incubated with the labeled peptide for 15 and 100 min are shown in (B,C), respectively. K10S was mainly bound
to yeast cell wall. In (A), the same field is shown in light transmission. After 150 min, K10S entered viable yeast cells:
(D) FITC; (E) PI; (F) merge of (D,E). Intensely fluorescent dead cells were observed after 180 min, as demonstrated by PI
internalization: (G) FITC; (H) PI; (I) merge of (G,H). Bar, 5 µm.

At last, confocal microscopy allowed a real-time visualization of changes in ∆ψm using
TMRM as mitochondrial probe. TMRM was rapidly accumulated into mitochondria of
living yeast cells. After addition of the FITC-labeled peptides, A10S (KP), H10S and K10S, a
rapid decrease of TMRM signal was observed, starting from 5 min up to 60 min (Figure 11).
Confocal images showed the general decrease of mitochondrial signal following peptide
treatment. As an example, C. albicans cells loaded with TMRM and treated with FITC-
labeled H10S are shown in Figure 12. In addition, confocal images allowed to observe the
lack of co-localization between TMRM and FITC intracellular signals.
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Figure 11. Change in TMRM fluorescence intensity in Candida albicans SC5314 cells after peptide
treatment. Data represent the mean ± standard deviation from three independent experiments.

J. Fungi 2021, 7, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 12. Confocal images of living Candida albicans SC5314 cells pre-loaded with TMRM then treated for 30 min with 
FITC-labeled H10S: (B) TMRM; (C) FITC; (D) merge of (B,C), in comparison with untreated (control) cells: (A) TMRM. 
Bar, 5 µm. 

TEM observation revealed morphological alterations in C. albicans cells treated with 
H10S and K10S peptides, similar to those previously observed for the parental peptide 
[33]. While untreated control cells showed a compact structure and a regular profile (Fig-
ure 13A,B), peptide-treated cells presented gross morphological alterations of intracellular 
structures, a cell wall swelling and a detachment of plasma membrane with numerous 
invaginations (Figure 13C, H10S-treated, and F, K10S-treated cells). In some yeast cells 
were present variable sized, dark round microbodies (Figure 13D, H10S-treated and G, 
K10S-treated cells). Moreover, peptide aggregates were observed on the surface of the 
treated cells (Figure 13C–E, H10S-treated cells; Figure 13F–H, K10S-treated cells). 

Figure 12. Confocal images of living Candida albicans SC5314 cells pre-loaded with TMRM then treated for 30 min with
FITC-labeled H10S: (B) TMRM; (C) FITC; (D) merge of (B,C), in comparison with untreated (control) cells: (A) TMRM. Bar,
5 µm.
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TEM observation revealed morphological alterations in C. albicans cells treated with
H10S and K10S peptides, similar to those previously observed for the parental pep-
tide [33]. While untreated control cells showed a compact structure and a regular profile
(Figure 13A,B), peptide-treated cells presented gross morphological alterations of intracel-
lular structures, a cell wall swelling and a detachment of plasma membrane with numerous
invaginations (Figure 13C, H10S-treated, and F, K10S-treated cells). In some yeast cells
were present variable sized, dark round microbodies (Figure 13D, H10S-treated and G,
K10S-treated cells). Moreover, peptide aggregates were observed on the surface of the
treated cells (Figure 13C–E, H10S-treated cells; Figure 13F–H, K10S-treated cells).
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Figure 13. Transmission electron microscopy images of Candida albicans cells treated for 60 min with
selected KP-derivatives. (A,B): untreated (control) cells. (C–E): H10S-treated cells. (F–H): K10S-
treated cells. Yeast cells treated with H10S and K10S (250 µM) revealed structural and morphological
alterations. Bars = 500 nm (A,C,D,F,G), 1000 nm (H), 200 nm (B,E).
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4. Discussion

The need to develop new antimicrobial compounds with good pharmacokinetic and
pharmacodynamic properties, devoid of toxic effects, and able to overcome resistance to
conventional drugs is ever increasing. Among the potential candidate molecules, a great
number of antimicrobial peptides from various sources has been described to date. In
particular, KP has proven to possess extraordinary anti-infective and immunomodulatory
activities, related to its structural properties. In fact, the peptide appears to be very stable
and presents the ability to reversibly self-assemble in structures similar to hydrogels [26,27].

In order to better analyze and possibly optimize KP biological properties, some
derivatives obtained by deletion or substitution of the N-terminal amino acid have been
studied. None of the examined peptides proved to be significantly toxic in the adopted
experimental conditions, even at high concentrations. All KP-derivatives proved to be
candidacidal in vitro, showing EC50 values increased, decreased, or comparable to the one
of the parental peptide.

In particular, the replacement of the first residue with polar amino acids positively
charged at physiological pH, such as histidine (H10S) and lysine (K10S), greatly increased
the fungicidal activity in vitro. These findings emphasize the role of the positive net
charge of peptides in the interaction with the target microbial cells, critical to sustain the
activity of antimicrobial peptides. However, this condition was not sufficient to ensure a
therapeutic effect in vivo, since only the K10S peptide, in addition to P10S and K9S, was
found protective in the experimental systemic candidiasis model in G. mellonella. It could
be hypothesized that the lack of therapeutic activity in vivo of H10S relies on the initial
slower kinetics of its candidacidal activity, as assessed in vitro (Figure 1) and/or on some
sort of reduced stability of the peptide governed by the N-terminus residue.

The substitution of alanine with residues characterized by greater steric hindrance
determined a decrease in candidacidal activity, as was the case with leucine (L10S) and, to
a lesser extent, with tyrosine (Y10S). Possibly, this bulkiness impaired the organization in
ordered β structures, as already inferred by the study of structure-function relationships
of other antimicrobial antibody-derived peptides [28]. Instead, the structural rigidity of
proline pyrrolidine ring at the N-terminal (P10S) did not change the candidacidal activity
either in vitro or in vivo in comparison to the parental peptide.

It was not possible to establish a common rule linking all involved amino acid prop-
erties, such as hydrophobicity, charge, polarity, steric arrangement. The polarity of the
first residue, calculated according to amino acid scale values proposed by Grantham [34],
seemed to be a good indicator of peptide candidacidal activity in vitro. In fact, for all
considered peptides, EC50 values decreased with increasing polarity of the N-terminal
amino acid (Figure 14).
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It is known that the chemical and physical properties of a molecule are the result of a
fine balance among various factors that encompass bond nature, stereo-chemical features,
structural and dynamical properties. In the case of KP, the presence of a Cys residue and
the alternation of hydrophobic and hydrophilic residues favor the possibility to acquire a
β-sheet organization. All KP-derivatives studied in this work present a cysteine residue
and a sequence with alternating hydrophobic and hydrophilic residues, nonetheless they
show differences in the ability, or eventually inability, to acquire a β-sheet structure or any
other well defined structural organization, thus rendering difficult to correlate the structure
of the peptides with their biological function.

As already described for KP, the interaction with fungal cell wall structures, i.e.,
β-glucans, is an essential step for KP-derivatives action, as demonstrated through the
neutralization of candidacidal activity by laminarin. Confocal microscopy involving H10S
and K10S, the KP-derivatives characterized by the lower EC50 values, confirmed the initial
binding on the yeast cell wall, while TEM images showed clearly visible peptide aggregates
on yeast cell surface.

The kinetics of Candida killing suggested a non-membranolytic mechanism of action
for KP and its derivatives. Most investigated peptides were capable of inducing apoptosis
in yeast cells, as KP itself. On the contrary, K10S, the derivative characterized by the
higher activity in vitro and a good therapeutic activity in vivo, did not induce apoptosis.
K10S, as KP and H10S, induced the production of intracellular ROS and caused a rapid
decrease in mitochondrial transmembrane potential. An increase of intracellular ROS
without induction of apoptotic processes was already described after treatment of fungal
cells with the salivary peptide histatin 5 and its derivative KM29 [35–37]. Further studies
are needed to deepen knowledge on the exact mechanism of the candidacidal activity of
the described peptides.

It is worth underlining that the only difference between KP and its derivatives is
the N-terminus residue and that the major functional differences are observed in vivo.
These observations remind the “N-terminus rule” [38] that attributes to the nature of the
amino acid in N-terminus the capability to modulate the protein stability and therefore its
functionality. Although this was referred to intracellular half-life of proteins, something
similar could also apply to small peptides.

In conclusion, the peculiar properties of KP and its derivatives described in this study
could establish them as interesting candidates to develop novel antifungal drugs, either for
topical applications against mucosal candidiasis or even for systemic administration if a
sufficient stability under physiological conditions could be verified.
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