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ABSTRACT Bronchopulmonary dysplasia (BPD) is a common chronic lung condition
in preterm infants that results in abnormal lung development and leads to consider-
able morbidity and mortality, making BPD one of the most common complications
of preterm birth. We employed RNA sequencing and 16S rRNA gene sequencing to
profile gene expression in blood and the composition of the fecal microbiota in in-
fants born at <29 weeks gestational age and diagnosed with BPD in comparison to
those of preterm infants that were not diagnosed with BPD. 16S rRNA gene se-
quencing, performed longitudinally on 255 fecal samples collected from 50 infants
in the first months of life, identified significant differences in the relative levels of
abundance of Klebsiella, Salmonella, Escherichia/Shigella, and Bifidobacterium in the
BPD infants in a manner that was birth mode dependent. Transcriptome sequencing
(RNA-Seq) analysis revealed that more than 400 genes were upregulated in infants
with BPD. Genes upregulated in BPD infants were significantly enriched for functions
related to red blood cell development and oxygen transport, while several immune-
related pathways were downregulated. We also identified a gene expression signa-
ture consistent with an enrichment of immunosuppressive CD71* early erythroid
cells in infants with BPD. Intriguingly, genes that were correlated in their expression
with the relative abundances of specific taxa in the microbiota were significantly en-
riched for roles in the immune system, suggesting that changes in the microbiota
might influence immune gene expression systemically.

IMPORTANCE Bronchopulmonary dysplasia (BPD) is a serious inflammatory condi-
tion of the lung and is the most common complication associated with preterm
birth. A large body of evidence now suggests that the gut microbiota can influence
immunity and inflammation systemically; however, the role of the gut microbiota in
BPD has not been evaluated to date. Here, we report that there are significant dif-
ferences in the gut microbiota of infants born at <29 weeks gestation and subse-
quently diagnosed with BPD, which are particularly pronounced when infants are
stratified by birth mode. We also show that erythroid and immune gene expression
levels are significantly altered in BPD infants. Interestingly, we identified an associa-
tion between the composition of the microbiota and immune gene expression in
blood in early life. Together, these findings suggest that the composition of the mi-
crobiota may influence the risk of developing BPD and, more generally, may shape
systemic immune gene expression.
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ronchopulmonary dysplasia (BPD) is a chronic lung condition affecting approxi-

mately two-thirds of extremely preterm (born at <28 weeks gestational age)
infants (1-3). BPD results in abnormal lung development and considerable morbidity,
with complications continuing into adulthood (1). BPD was first described in 1967, but
its clinical definition has since undergone several refinements. BPD as described now
reflects an interruption to lung development (1, 4). BPD diagnosis and assessment of
severity are based on the requirement for supplemental oxygen at 36 weeks postmen-
strual age (gestational age plus postnatal age) (3).

The pathogenesis of BPD is recognized to be multifactorial, with potential impacts
of both pre- and postnatal conditions on its development and severity (3, 5). Currently,
gestational age and birth weight remain the best described risk factors for BPD (3, 6),
and therefore, there is significant clinical interest in identifying other factors that can
more accurately predict which infants are at risk of developing BPD. Several studies
have identified a large contribution of genetic factors to BPD susceptibility, with 53 to
82% of the variance explained by genetics in twin cohort studies in North America (7,
8). Genome-wide association studies (GWAS) of BPD, however, have produced incon-
clusive results, with one study finding an association with the SPOCK2 gene and
another with the C-reactive protein (CRP) gene but others finding no significant
associations (9-12). The association of rare variants with BPD has been evaluated
through multiple exome sequencing studies, which have suggested a role for kinase A-
and mitogen-activated protein (MAP) kinase-related pathways in BPD (13-15). To date,
microarray-based gene expression studies of BPD have been performed on both blood
and lung tissue samples collected from infants and from animal models and have
identified several thousand genes as potentially being differentially expressed in BPD
(16-19). These studies reported that pathways involved in the inflammatory response
are downregulated in BPD infants, while pathways related to the cell cycle are upregu-
lated (18). These signatures were, however, dependent on the timing of sample
collection for gene expression analysis.

The gut microbiota in very low birth-weight (VLBW; born weighing <1,500 g)
preterm infants has been shown to follow a markedly different pattern of colonization
than that of healthy term-born infants (20-22), leading us to hypothesize that the gut
microbiota could influence BPD susceptibility and/or severity. Consistent with this
hypothesis, prolonged antibiotic use in VLBW preterm infants is associated with an
increased risk of developing BPD (23, 24). Recent studies have identified differences in
the lung microbiota in infants who develop BPD (25); however, to date, only one small
(n = 13) PCR-based study has investigated whether the composition of the gut micro-
biota was altered in infants with BPD (26). Increasing evidence from preclinical and
clinical studies strongly suggests that the gut microbiota plays a key role in healthy
immune development, particularly in early life (27, 28). Importantly, several studies
have demonstrated the potential of the gut microbiota to influence immune responses
in the lung (28, 29), suggesting that the gut microbiota could influence the severity of
BPD by modulating inflammatory responses systemically and in the lung.

To investigate whether changes in the gut microbiota are associated with BPD, we
used 16S rRNA gene sequencing to perform longitudinal profiling of the microbiota in
>250 fecal samples collected from a cohort of 50 infants born at <29 weeks gestation.
We identified significant differences in the relative abundances (RAs) of several taxa in
the fecal microbiota of vaginally born infants that were subsequently diagnosed with
BPD. Interestingly, these differences were not evident in infants born by cesarean
section. Blood samples were also collected from a subset of the infants at baseline and
at approximately the time that BPD diagnosis was made. Gene expression in venous
blood collected from BPD infants was not significantly different at baseline compared
to the gene expression in venous blood from non-BPD infants, but >400 genes were
significantly differentially expressed at the time of BPD diagnosis. We identified a gene
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FIG 1 16S rRNA gene sequencing was used to longitudinally profile the composition of the fecal microbiota in 50 preterm infants subsequently diagnosed
with or without BPD. (A) Filled circles represent time points at which fecal samples were collected from each infant (mean of 5 per infant, total of 255). (B to
D) The relative abundances of the major classes of bacteria identified in the preterm infants in this study. (E to G) The mean relative abundances (line graph)
of the top three most abundant bacterial classes over time in preterm infants that were born vaginally or by cesarean section. Shaded areas represent the 95%
confidence intervals. (H) Chao1 alpha diversity. A generalized linear mixed-effects model was used to assess changes in relative abundance or alpha diversity
over time (Time FDR) or by birth mode (Birth mode FDR).

expression signature in BPD infants that suggests an enrichment of immunosuppres-
sive CD71+ early erythroid cells. Finally, we also uncovered a potential association
between the composition of the microbiota and peripheral blood immune gene
expression.

RESULTS

Two hundred fifty-five fecal samples (mean of 5 per infant) were collected from 50
preterm infants (mean gestational age, 26.4 = 1.7 weeks [mean = standard deviation];
mean birth weight, 869.9 = 240.1 g), recruited from the Women’s and Children’s
Hospital, Adelaide, Australia. Samples were collected longitudinally from recruitment
(shortly after birth) to discharge home or 40 weeks postmenstrual age, whichever
occurred first (Fig. 1A). These infants were recruited as a subset of infants enrolled in the
larger, multisite n-3 Fatty Acids for Improvement in Respiratory Outcomes (N3RO)
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TABLE 1 Infant clinical data according to BPD diagnosis

mSystems’

Characteristic BPD (n = 20) Non-BPD (n = 28) Unadjusted P value
Mean gestational age = SD (wks) 257 +1.8 268+ 14 0.0187

Mean birth wt = SD (g) 746.8 = 1874 967.9 * 233.5 0.000954

Female (%) 45 46.4 10

Vaginally born (%) 40 28.5 0.537°

Sepsis (% yes) 35 17.9 0.19¢

Necrotizing enterocolitis (% yes) 10 3.6 0.57°

Mean no. of fecal samples per subject = SD 50=*2.1 59+24 0.29¢

Postnatal steroid treatment (% yes) 60 10.7 0.0004°

apP value was generated by Wilcoxon test for continuous variables.
bP value was generated by Fisher’s exact test for categorical variables.

clinical trial, which investigated the impact of enteral docosahexaenoic acid (DHA)
supplementation on the risk of developing BPD (30). BPD was defined as the require-
ment for supplemental oxygen and/or respiratory support at 36 weeks’ postmenstrual
age or discharge home, whichever occurred first, using modified criteria (see Materials
and Methods) from Walsh et al. (31). A subset of infants in this study also had venous
blood collected for gene expression profiling via RNA-Seq at recruitment/baseline
(n = 10; mean day of life, day 4.6) and again at the time of BPD diagnosis (n = 21; mean
day of life, day 64.4) (Fig. 1A; see Table S1 in the supplemental material).

Of the 50 infants recruited, hereinafter referred to as BPD/non-BPD infants, 20 were
subsequently diagnosed with BPD at 36 weeks postmenstrual age. One infant died prior
to 36 weeks postmenstrual age and did not receive a BPD diagnosis. Another infant
could not be diagnosed with/without BPD as the physiological challenge was not
performed (although the infant was receiving respiratory support at 36 weeks post-
menstrual age). Fecal microbiota data from these two infants were excluded when
testing for associations with BPD diagnosis. Ten of the 20 BPD infants and 15/28
non-BPD infants received DHA supplementation. As is common for this population, all
but two received antibiotics over the course of the study, both of whom were non-BPD
cesarean section-born infants. Similarly, all but two infants (one BPD and one non-BPD,
both cesarean section born) received the probiotic Infloran (Berna, Switzerland), a
mixture of Bifidobacterium and Lactobacillus species. Probiotics are commonly admin-
istered to preterm infants in Australia to reduce necrotizing enterocolitis (32, 33). There
was no significant difference in the number of days of probiotic supplementation
between the BPD diagnosis groups (data not shown). Lower gestational age is a
well-documented risk factor for BPD. While all infants in this cohort were born very
premature, BPD infants were on average 1.2 weeks more preterm than non-BPD infants
(mean of 25.6 versus 26.8 weeks, P = 0.017). Further cohort demographics are shown in
Table 1.

Composition of the fecal microbiota in VLBW preterm infants. The fecal micro-
biota of the preterm infants in this study were assessed by 16S rRNA gene sequencing.
Samples were sequenced to an average of 31,464 (2 X 300 bp) reads on an lllumina
MiSeq (interquartile range [IQR], 11,779). The DADA2 algorithm (34), as implemented in
QIIME2 (35), was used to denoise sequences, resulting in a total of 676 unique
ribosomal sequence variants that were detected in at least 1 sample (hereinafter
referred to as exact sequence variants [ESVs]). Six samples that had <1,000 denoised
reads were excluded from further analysis. Multiple fecal samples were collected per
infant, allowing a longitudinal assessment of changes in the composition of the
microbiota during the first months of life (Fig. 1B to D; Fig. S1).

In the first month of life, three bacterial classes dominated the fecal microbiota:
Bacilli (mean relative abundance [RA], 38.14%; IQR, 43.94%), Gammaproteobacteria
(mean RA, 35.19%; IQR, 57.42%), and Actinobacteria (mean RA, 20.23%; IQR, 32.95%).
After the first month of life, the Bacilli RA decreased sharply, while the RAs of both the
Gammaproteobacteria and Actinobacteria increased (Fig. 1E to G). Actinobacteria were
observed to be highly abundant, which may be a result of the Infloran probiotic that
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was administered to all but 2 of the infants. The increased RA of Actinobacteria
observed in this study was consistent with previous reports demonstrating significant
increases in the RAs of Bifidobacterium in the microbiota of infants receiving
Bifidobacterium-based probiotics (36). Clostridia have previously been reported to be
highly abundant in the VLBW preterm infant fecal microbiota, at levels comparable to
the levels of Gammaproteobacteria and Bacilli (20, 37). In our study, only a small subset
of infants had a high RA of Clostridia, while in most infants, they were either not
detected or were present at a low RA (mean RA, 3.55%; IQR, 1.35%) (Fig. 1B to D;
Fig. S1). Alpha diversity (Chao1 index) increased with age (Fig. 1H), as has been
previously reported (37).

Due to the limitations of species-level taxonomic classification with the V4 region of
the 16S rRNA gene (38), we examined subgenus-level variation by defining coabundant
groups (CAGs) of ESVs based on their Spearman correlations (39). Correlation analysis,
limited to ESVs present in at least 20 samples, indicated that ESV-level abundance could
largely be attributed to 16 highly correlated CAGs of ESVs (Fig. S2A). While certain
genera were spread over multiple CAGs (Bifidobacterium, Streptococcus, and Lactoba-
cillus), the majority of CAGs were made up of ESVs which could be classified as either
a single bacterial genus or a family. This is in contrast to the complex coabundance
relationships commonly observed in the adult microbiota (40). The intra-CAG taxo-
nomic homogeneity and high intra-CAG correlation observed may indicate that CAGs
represent individual species (or groups of species not discernible with the taxonomic
resolution of 16S rRNA gene sequencing). Sequences classified as part of the family
Enterobacteriaceae were also spread across multiple CAGs that showed little to no
correlation with each other (Fig. S2A). Examination of CAG RAs over time indicated that
CAGs largely capture the same variation as shown at the genus level of classification
(Fig. S2B), with the exception of those taxa mentioned above.

Differences in the compositions of the fecal microbiota in preterm infants
diagnosed with BPD. To identify taxa in the fecal microbiota that were significantly
altered in BPD infants over time, we implemented a generalized linear mixed-effects
model (GLMM) using the Ime4 R package (41). The longitudinal RAs of taxa at the class
and genus levels, as well as CAG RAs, were analyzed for an association with BPD
diagnosis while controlling for day of life, birth mode, DHA treatment, and subject.
Three genera (Escherichia/Shigella, Klebsiella, and Salmonella) from the Enterobacteri-
aceae (class Gammaproteobacteria) were significantly associated (false discovery rate
[FDR] = 0.01) with BPD diagnosis (Fig. 2A, C, and E to G). Interestingly, these associa-
tions were only evident in vaginally born BPD infants. Escherichia/Shigella were signif-
icantly increased in vaginally born BPD infants but were not significantly altered in
cesarean section-born infants, while Klebsiella and Salmonella were significantly less
abundant in vaginally born (but not cesarean section-born) BPD infants. Additionally,
the RA of one of the two Bifidobacterium CAGs (CAG 5) was significantly associated with
BPD diagnosis in cesarean section-born infants (FDR = 0.0028) (Fig. 2D and H; Table S2).
The GLMM approach did not identify any significant association between BPD diagnosis
and any taxon at the higher taxonomic levels or with alpha diversity (Table S2).

As antibiotics are among the most frequently prescribed medications in neonatal
intensive care units (42), we sought to establish whether a relationship existed between
antibiotic treatment and the relative abundances of BPD-associated taxa. All but two
infants in this cohort received antibiotics; however, vaginally born infants in this cohort
had a significantly higher number of days of antibiotic exposure than those born by
cesarean section, both in the first week of life and over the entire study period (Fig. S3A
and C). There were no significant differences in numbers of days of antibiotic exposure
by BPD diagnosis, either in the first week of life or over the entire study period (Fig. S3B
and D). Importantly, there was no significant difference in numbers of days of antibiotic
exposure in vaginally born BPD infants compared to the exposure of vaginally born
non-BPD infants, suggesting that antibiotic exposure cannot explain the association
between the composition of the fecal microbiota and BPD diagnosis observed in these
infants. Furthermore, we examined the correlation between the numbers of days of
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FIG 2 Bacterial genera and CAGs that were identified as being significantly associated (FDR = 0.01) with BPD diagnosis using a generalized linear mixed-effects
model. The model was implemented using the Ime4 package in R and incorporated day of life, birth mode, BPD diagnosis, DHA treatment, and subject (as a
random effect). Three genera were found to be significantly associated with BPD, Escherichia/Shigella (FDR = 5.27e—08), Klebsiella (FDR = 0.0059), and
Salmonella (FDR = 0.014), as well as a single Bifidobacterium CAG (FDR = 0.0039). (A to D) Log relative abundances of genera associated with BPD in fecal
samples collected from BPD and non-BPD vaginally born infants. (E to H) Log relative abundances of genera associated with BPD in fecal samples collected from
BPD and non-BPD cesarean section-born infants. Smoothed mean values (line graph) and 95% confidence intervals (shaded areas) are shown.

antibiotic exposure and the RAs over time (summarized by the area under the curve
[AUC] for each taxon) of each genus and CAG that we found to be associated with BPD
in the vaginally born infants. No significant correlation between the number of days of
antibiotic exposure and the RA of any of the taxa associated with BPD was found
(Fig. S3E to H).

Impact of DHA supplementation on the fecal microbiota. Infants in the N3RO
study were randomized to receive a daily enteral soy-based placebo or supplementa-
tion with 60 mg of DHA per kg of body weight within 3 days of commencing enteral
feeding, finishing at 36 weeks postmenstrual age (mean of 60 days of DHA supplemen-
tation). In the larger N3RO trial, supplementation with DHA did not decrease and may
have increased the risk of developing BPD (30). Interestingly, using the GLMM approach
described above, we found a significant association between DHA treatment and the
RA of Escherichia/Shigella that was independent of BPD diagnosis (FDR = 4.32e—8)
(Fig. S4). These data suggest that the RA of Escherichia/Shigella is associated with both
BPD diagnosis and DHA treatment. We detected no significant association between
DHA treatment and alpha or beta diversity (Fig. S4C and D).

Differential gene expression in preterm infants diagnosed with BPD. Gene
expression in peripheral venous blood samples collected from a subset of infants at
baseline (n = 10; mean day of life, day 4.6) and again at BPD diagnosis (n = 21; mean
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day of life, day 64.4), was profiled using RNA-Seq. More than 1.2 billion reads were
sequenced (mean, 56 million single-end, 100-bp reads per sample; IQR, 11.3 million
reads). Reads were aligned to the human genome (GRCh38) using HISAT2, with a mean
alignment rate of 95.6% (Table S1). Infant gene expression profiles clustered primarily
by age at time of blood collection, indicating that large-scale differences in blood gene
expression occur between the first week of life and time of BPD diagnosis (Fig. 3A). One
non-BPD infant was a notable outlier in gene expression compared to the other
non-BPD infants (Fig. 3A). While this infant did not meet either the physiological or the
clinical definition of BPD used in the N3RO clinical trial (30), this infant received 61 days
of supplemental oxygen, which put this infant in the 92nd percentile of supplemental
oxygen among all non-BPD infants in the study. We excluded this infant from further
analysis to avoid confounding results. More than 2,000 genes were identified as
differentially expressed at 36 weeks postmenstrual age compared to baseline (Ta-
ble S3). No genes differentially expressed between BPD and non-BPD infants were
identified in samples collected at baseline (FDR < 0.05). In contrast, 431 genes were
identified as being significantly differentially expressed in BPD infants compared to
their expression levels in non-BPD infants at time of diagnosis (FDR < 0.05) (Fig. 3B;
Table S3). Pathway and Gene Ontology (GO) analyses revealed that BPD infants had
increased expression of genes involved in red blood cell development and oxygen
transport, whereas immune-related pathways were downregulated (Fig. 3C; Table S3).
Postnatal steroids may be administered to preterm infants as a treatment for chronic
lung disease (43), and as expected, BPD infants received significantly more steroids
than non-BPD infants (Table 1). While increased steroid administration could contribute
to the observed downregulation of immune-related genes in BPD infants (44), we
observed a similar pattern of expression in BPD infants regardless of postnatal steroid
treatment (Fig. S5A). Changes in whole blood gene expression could reflect changes in
the frequencies of immune or erythroid cell populations. The small volume of the blood
samples collected from the VLBW preterm infants precluded analysis by flow cytometry.
To computationally assess whether specific cell populations were enriched among
genes upregulated in BPD infants, cell type enrichment analysis was performed using
the CTen (Cell Type ENrichment) platform (45). This analysis revealed that genes
upregulated in BPD were significantly enriched for genes expressed in CD717 early
erythroid cells (Fig. 3D; Fig. S5B). Transcription factor binding site analysis identified a
single motif enriched among the promoters of genes upregulated in BPD (FDR < 0.05).
The motif GATA:SCL was found in 4.53% of those upregulated genes but only 0.89% of
background sequences. GATA motifs have been found to regulate hematopoietic
development (46), which is consistent with the upregulation of genes involved in red
blood cell development.

Specific taxa in the preterm infant gut microbiota are correlated with gene
expression in blood. Given the increasingly well-recognized influence of the gut
microbiota on immune responses in the periphery (29), particularly in early life (28), we
speculated that the composition of the gut microbiota in preterm infants might be
associated with changes in (immune) gene expression in blood at the time of BPD
diagnosis. A partial Spearman correlation analysis, which controlled for birth mode, sex,
and gestational age, was used to assess the association between CAG relative abun-
dance and normalized blood gene expression. This analysis was not limited to only
immune gene expression but considered all genes that were at least modestly ex-
pressed in blood (count per million [cpm] of >10 in 15 samples). The approach used
was similar to that used in a publication from the Human Microbiome Project (47). Due
to the relatively small sample size, all infants (i.e,, both BPD and non-BPD) with 16S
rRNA gene sequencing and RNA sequencing data were included in the analysis. Our
analysis was not sufficiently powered to identify statistically significant individual
gene-CAG correlations after correction for multiple testing. Instead, we assessed
whether genes identified as being correlated with CAG relative abundance at a P value
of <0.05 were enriched for specific biological pathways or processes. This approach is
analogous to methods that have been successfully adopted to detect statistical signa-
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FIG 3 RNA-Seq was used to profile gene expression in peripheral blood samples collected from BPD and non-BPD infants at recruitment (baseline) and at the
time of BPD diagnosis. (A) Multidimensional scaling (MDS) analysis of RNA-Seq data in BPD and non-BPD infants at baseline (mean day of life, day 4.6) and at
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tures in genome-wide association (GWA) data when individual associations do not
reach genome-wide significance (48-51). Additionally, the statistical significance of
enriched terms was further assessed using a permutation-based approach, whereby we
randomized the gene labels and repeated the enrichment analysis 1,000 times. Any
pathways/GO terms found to be significantly enriched (FDR < 0.01) in any permutation
with randomized gene labels were not considered to be significantly associated with
CAG relative abundance.

Given the multiple samples collected longitudinally per infant, the highly variable
nature of the composition of the microbiota in early life, and reports of time-dependent
microbiota-immune interactions (52), we performed these analyses independently for
each month of life (selecting the last sample collected per month for each infant). First,
we investigated which pathways or GO terms were statistically enriched among genes
correlated with the RA of at least one CAG (Table S4). We found that genes correlated
with CAG RAs were significantly enriched for multiple immune response pathways and
GO terms (Table S4). Next, we assessed genes correlated with the relative abundances
of specific CAGs and found that genes correlated with 7 of the 16 CAGs were enriched
for a range of immune processes (Fig. 4; Fig. S6A and B; Table S4). For example, genes
negatively correlated with the RA of Bifidobacterium in the first month of life were
enriched for inflammatory response genes (FDR = 5.1e—09) (Table S4), suggesting
that a higher relative abundance of Bifidobacterium might be associated with lower
inflammatory gene expression in blood. Consistent with these data, the potential
anti-inflammatory effects of Bifidobacterium have been demonstrated in a number
of studies (53).

Genes correlated with the RA of Lactobacillus in the second month of life of life also
showed a strong enrichment for immune-related genes, including genes involved in
interferon signaling (Fig. 4A) and the innate immune response (Fig. 4B). Different
Lactobacillus strains have been shown to induce type | and Il interferons in multiple
previous human and mouse studies (54-57). The strong correlation between type |
interferon-inducible gene expression and the RA of Lactobacillus was also evident at the
per-gene level (Fig. S6C). We also identified an association between the RA of Staph-
ylococcus in the third month of life and other immune-related processes implicated in
the pathogenesis of BPD, such as the inflammatory response and MAP kinase activation
(Fig. S6B; Table S4). Finally, we evaluated whether any of the correlated gene sets were
also enriched for CD71+ early erythroid cell-associated genes. This cell type has been
shown to regulate inflammation induced by the microbiota in neonates (58). Genes
correlated with the RAs of 5 of the CAGs were found to be significantly enriched for
CD71*-associated genes. Multiple members of the Bacilli showed particularly strong
enrichments for CD71"-associated genes across multiple months (Table S4), which is
consistent with previous reports that members of this bacterial class can induce the
expression of CD71"-associated genes (59).

While this analysis does not prove a causative link between the composition of the
microbiota and gene expression in blood, our approach has identified a relatively small
set of host-microbe associations, some of which are supported by the literature, that
may help in understanding the role the microbiota plays in shaping the immune system
in preterm infants. Further work is now needed to validate these associations in animal
models and better-powered clinical studies.

DISCUSSION

Bronchopulmonary dysplasia (BPD) is a chronic inflammatory condition of the lung
that is one of the most common complications associated with early preterm birth. A
large body of evidence now suggests that the gut microbiota can influence immunity
and inflammation systemically, including in the lung (28, 29). The composition of the
gut microbiota in early life has also been associated with the risk of necrotizing
enterocolitis and sepsis (60-62). However, whether the gut microbiota influences
susceptibility to BPD is currently unknown. To investigate whether changes in the gut
microbiota are associated with BPD, we used 16S rRNA gene sequencing to longitudi-
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FIG 4 Correlation analysis between microbiota relative abundances and gene expression levels at time of BPD diagnosis. (A) Network showing genes expressed
in blood at 36 weeks postmenstrual age that were correlated (P < 0.05) in their expression with the relative abundance of at least one fecal microbiota
coabundant group (CAG) in postnatal month 2 (larger colored nodes). Gene nodes are colored according to whether they are immune associated (i.e., in GO
terms GO:0002376, GO:0045087, or GO:0006955) or associated with CD71+ early erythroid cells. The size of each CAG node is proportional to its relative
abundance. Pathways and GO terms that were significantly enriched (FDR < 0.01) among genes correlated with the relative abundances of specific CAG nodes
are shown. See Table S4 in the supplemental material for further details. IFN, interferon. (B) Heatmap of the Spearman correlation coefficients between innate
immune genes (GO:0045087) and CAG relative abundances in postnatal month 2. Only genes that were correlated (P < 0.05) with at least one CAG are shown.

nally profile the composition of the microbiota in >250 fecal samples collected from a
cohort of 50 preterm infants born at <29 weeks gestation. Adjusting for several
potentially confounding factors, we identified three genera (Escherichia/Shigella, Kleb-
siella, and Salmonella) from the Enterobacteriaceae (class Gammaproteobacteria) that
were significantly associated with BPD diagnosis, but interestingly, these differences
were only evident in vaginally born BPD infants. Members of the Gammaproteobacteria
have previously been identified to be associated with vaginal birth in VLBW infants (37).
The relative abundance of one of the Bifidobacterium CAGs was also significantly
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associated with BPD diagnosis. All four of the genera that showed significant associa-
tion with BPD diagnosis have previously been identified as colonizers of the VLBW
infant gut microbiota (20-22, 37), with Escherichia coli in particular being implicated in
both necrotizing enterocolitis (62) and late-onset sepsis (63) in preterm infants. Differ-
ences in antibiotic exposures, which were higher in vaginally born infants, could also
potentially explain why different associations were detected in vaginally and cesarean
section-born infants. Importantly, however, there was no significant difference in
antibiotic or probiotic exposure between vaginally born BPD and non-BPD infants,
indicating that these factors cannot fully explain associations between taxa in the fecal
microbiota and BPD diagnosis. Previous studies of the VLBW infant gut microbiota have
primarily focused on investigating changes in the gut microbiota at the phylum or class
level (20, 21, 37), but these data show that important intrafamily and intragenus
variation may be present, suggesting that methods allowing higher taxonomic resolu-
tion should be implemented where possible.

Aside from the differences between BPD- and non-BPD-diagnosed infants, the
preterm infants in our study displayed a pattern of colonization over time broadly
similar to that described previously, with Gammaproteobacteria increasing with age as
Bacilli sharply decreased (20-22, 37). Interestingly, Clostridia were absent from the
majority of infants in our cohort, whereas Clostridia have been reported to be a major
constituent of the VLBW preterm infant fecal microbiota in other studies (20-22, 37). We
also observed much higher levels of Actinobacteria than have previously been reported
(20-22, 37). These differences in the relative abundances of Actinobacteria and Clostridia
may in part be due to the administration of the probiotic Infloran, a mixture of
Bifidobacterium bifidum, Bifidobacterium infantis, and Lactobacillus acidophilus (36).
Probiotic supplementation has routinely been given to very preterm infants in Sweden,
Japan, and other nations for over a decade (33) and, as of 2015, has been widely
adopted in Australia for this population (33). Importantly, Infloran was administered to
almost all infants in our study and, therefore, does not confound comparisons of the
different infant groups.

In addition to profiling the composition of the microbiota, we also profiled gene
expression in peripheral blood samples collected from a subset of infants at baseline
and again at the time of BPD diagnosis. Gene expression profiles differed significantly
between time points, in agreement with previous reports of changes in cell populations
in neonatal blood during this developmental period (64). While there was no significant
difference in gene expression between BPD and non-BPD infants at baseline, more than
400 genes were identified as differentially expressed at the time of BPD diagnosis.
Using microarray analysis, Pietrzyk et al. reported that there were between 324 and
3,498 genes differentially expressed in BPD infant blood samples, depending on day of
life (18). We identified considerably fewer alterations in gene expression; however, this
may be in part due to different technologies used to profile gene expression (microar-
ray versus RNA-Seq) or differences in the time points. Pathway overrepresentation
analysis found a significant enrichment for processes associated with oxygen transport
and red blood cell development among genes upregulated in BPD infants in our study.
Consistent with these results, we also found an enrichment of a GATA motif, which has
been associated with hematopoietic development, in the promoters of genes upregu-
lated in BPD (46). Cell type enrichment analysis also revealed enrichment for CD71+
early erythroid cells among genes that were upregulated in BPD infants. CD717 cells
have been shown to prevent excessive inflammation induced by commensal microbes
colonizing following birth (58). Future studies should assess changes in circulating cell
populations in BPD infants using flow cytometry. Intriguingly, we also uncovered
associations between the relative abundances of certain taxa in the microbiota and
host gene expression levels in blood, including an association between Lactobacillus
and interferon signaling, which is supported by multiple human and mouse studies
showing that a number of different Lactobacillus strains can regulate interferon gene
expression (54-57). This analysis also pointed to a number of associations between the
microbiota and several pathways relevant to BPD pathogenesis and the expression of
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CD71*-associated genes. These data suggest that changes in the gut microbiota might
influence immune gene expression systemically; however, these associations need to
be replicated in further studies or in animal models before a causative link can be
supported.

Our study is not without its limitations. As the gut microbiota at this stage of life is
volatile, we focused on a modest number of infants (n = 50) with many repeated
samples to assess whether changes in the gut microbiota are associated with BPD
diagnosis. The sample size limits our statistical power to detect weaker associations,
and further studies with larger sample sizes are now warranted to confirm our findings.
BPD was diagnosed based on the requirement for supplemental oxygen at 36 weeks
postmenstrual age based on an assessment of oxygen saturation in infants meeting
prespecified criteria (65). Due to our relatively limited sample size, we did not assess the
relationship between the microbiota and BPD subtypes. Furthermore, all infants were
recruited from the neonatal intensive care unit (NICU) in a single hospital, which may
have been the source of some commonly detected microbes. Replication of our
findings in larger multicenter studies is a key next step. Preterm infants are routinely
exposed to medication other than antibiotics, including corticosteroids, which may
impact the composition of the microbiota (66). Assessing what role, if any, current
treatment regimens play in shaping the BPD gut microbiota will be a crucial, albeit
challenging task. Finally, 16S rRNA sequencing has limited species- and strain-level
resolution (67), multiple copies of the 16S rRNA gene per genome may inflate diversity
estimates (68), and the choice of primer set may impact taxon detection. Future studies
should investigate the use of shotgun metagenomics approaches to profile the com-
position of the microbiota.

MATERIALS AND METHODS

Study design and sample collection. The infants in this study were recruited as part of the n-3 Fatty
Acids for Improvement in Respiratory Outcomes (N3RO) trial (30). In N3RO, infants born before 29 weeks
gestation who had commenced enteral feeding in the previous 3 days were eligible to participate. Infants
were randomized to receive an enteral emulsion of DHA (60 mg/kg of body weight/day) or a control
emulsion (soy) from randomization to 36 weeks postmenstrual age. The primary outcome in N3RO was
BPD, defined as the requirement for supplemental oxygen and/or respiratory support at 36 weeks
postmenstrual age or discharge home, whichever occurred first, using modified criteria from Walsh et al.
(31) involving a physiological challenge. For a complete description of how this was performed, see the
supplementary appendix in Collins et al. (30). A subset of 50 infants enrolled in the N3RO trial at the
Women’s and Children’s Hospital, Adelaide, Australia, consented to participate in this study. Ethics
approval for the additional sample collection was obtained from the Human Research Ethics Committee
of the Women's and Children’s Health Network (HREC 2434/12/16). Fecal samples for microbiota profiling
were collected from the nappies of each infant between baseline and time of BPD diagnosis (Table 1;
Fig. 1). Fecal samples were aseptically transferred to cryotubes and frozen immediately at —80°C for later
DNA extraction. A capillary blood sample (0.5 ml) was obtained from infants via heel prick at baseline
(induction in the trial) and at 36 weeks postmenstrual age. Blood was collected in anticoagulant tubes
containing potassium and sodium EDTA; 0.1 ml was separated into RNase-free microcentrifuge tubes,
mixed with 0.3 ml RNAlater (Ambion, Inc.), and stored at —80°C until processing.

Fecal DNA extraction and 16S rRNA library preparation. Approximately 0.2 g of stool sample was
extracted using the PowerLyzer PowerSoil DNA isolation kit (Mo Bio Laboratories, CA, USA) according to
the manufacturer’s instructions, with minor modifications. Samples were eluted in 50 ul of distilled water
rather than solution C6. A FastPrep-24 instrument (MP Biomedicals, Santa Ana, USA) was used for sample
homogenization, and samples were homogenized with two pulses at 6.5m/s for 60s. Total DNA
concentrations of all samples were calculated on a Qubit 2.0 fluorometer (Thermo Fisher Scientific, MA,
USA) with a high-sensitivity double-stranded DNA (dsDNA) assay kit (Life Technologies Corp., Carlsbad,
CA) using 2 ul of extract. Sequence libraries were prepared as previously described by Choo et al. (69).
Briefly, the V4 hypervariable region of the 16S rRNA gene was amplified from DNA using the universal
bacterial primer pair 515F (5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAGCMGCCGCGG
TAA-3") and 806R (5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGACTACHVGGGTWTCTAAT-3').
Amplicons were then generated, cleaned, indexed, and sequenced according to the lllumina MiSeq 16S
metagenomic sequencing library preparation protocol (lllumina, Inc., San Diego, CA, USA). The resulting
libraries were then sequenced (2 X 300 bp) on an lllumina MiSeq instrument.

16S rRNA gene sequence data analysis. 165 rRNA gene sequences were demultiplexed and
imported into QIIME2 (release 2018.8) for processing (70). Sequences were error corrected, and counts
of error-corrected reads per sample, which we refer to herein as exact sequence variants (ESVs), were
generated with DADA2 version 1.8 (34). A phylogenetic tree of error-corrected sequences was con-
structed with FastTree (71). Taxonomy was assigned to sequences with the RDP Naive Bayesian Classifier
algorithm (72) as implemented in the assignTaxonomy function in QIIME2 (version 1.8.0). All statistical
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analysis was carried out in R version 3.6.0, with graphing performed using ggplot2 (73). Alpha diversity
and Bray-Curtis distances were generated using PhyloSeq version 1.24.2 (74). Principle-coordinate
analysis was conducted using the R package Ape version 5.1 (75). Differences in the relative abundances
of microbial taxa were assessed using a generalized linear mixed-effects model (GLMM) implemented in
the Ime4 R package (41). The subject was modelled as a random effect, whereas BPD status, day of life,
and DHA treatment were fixed effects. The area under the curve (AUC) was calculated using the AUC
function in the DescTools package (76). Coabundant groups (CAGs) of microbes were defined by
hierarchical clustering of the Spearman’s rank correlation coefficients of sequence relative abundances.
Only those CAGs that were present in at least 20 samples were included in the correlation analysis. R
code for all analysis is provided as described in the data availability statement below.

RNA extraction from blood and library preparation. RNA extraction and genomic DNA elimination
were carried out using the RiboPure kit (Ambion, Inc.) according to the manufacturer’s instructions. Final
elution into 10 ul RNase-free water yielded 5 to 20 ug total RNA as determined by analysis of samples
using a Bioanalyzer 2100 (Agilent). RNA was transcribed into cDNA in a strand-dependent manner using
the Ovation human blood RNA-Seq library systems kit (NuGen Technologies) with 500 ng RNA as the
input material. cDNA was sheared into fragments of 200 to 300 bp using a Covaris S220 focused
ultrasonicator with empirically determined settings, and the samples were selectively enriched for
non-ribosomal RNA and nonglobin sequences via targeted depletion of selected sequences using Insert
Dependent Adaptor Cleavage technology. Additional oligonucleotides were also designed and incorpo-
rated to deplete the infant-predominant y-globin, and unique adaptors were incorporated for RNA-Seq
multiplexing. The resulting cDNA libraries were visualized on a Bioanalzyer 2100 to confirm the correct
size distribution and to determine the cDNA concentration. Libraries were pooled and sequenced using
an lllumina HiSeq 2500 machine (1 X 100-bp single-end reads).

RNA-Seq data analysis. The quality and number of the reads for each sample were assessed using
FastQC version 0.11.4 (77). Read trimming was carried out using Trimmomatic version 0.38 (78) with a
window size of 2 and an average quality score of 20. Following this, reads which were <50 nucleotides
after trimming were discarded. Reads that passed all quality control steps were then aligned to the
human genome (GRCh38 assembly) using HISAT2 version 2.1.0 (79). The gene count matrix was
generated with FeatureCounts version 1.5.0-p2 (80) using the union model with Ensembl version 93
annotation. This was then imported into R version 3.5.0 for further analysis. Counts were normalized
using the trimmed mean of M values (TMM) method in EdgeR version 3.22.3 (81) prior to multidimen-
sional scaling analysis and differential gene expression analysis (as performed with the gImLRT function).
Gene sets were filtered to remove genes with <1 count per million (cpm) in 50% of samples prior to
differential expression analysis. Pathway and Gene Ontology (GO) overrepresentation analysis were
carried out with InnateDB (82), and cell type expression enrichment was undertaken using CTen (45).
HOMER (Hypergeometric Optimization of Motif EnRichment) was used to identify transcription factor
binding sites enriched among differentially expressed genes (83).

Correlating the relative abundances of taxa in the microbiota with gene expression levels in
peripheral blood. Spearman correlation analysis was used to identify associations between the relative
abundances of CAGs of ESVs in the microbiota at 1, 2, and 3 months of life and normalized blood gene
expression levels at BPD diagnosis in an approach similar to that previously described by the Human
Microbiome Project in reference 47. Only genes that were expressed with a com of >10 in at least 15
samples were included in the analysis. Samples from both BPD and non-BPD infants from whom both
fecal and blood samples were collected were included in the analysis. Prior to correlation analysis, CAG
counts were adjusted by fitting each to a mixed-effects model in Ime4 where the subject was modelled
as a random effect and adjusting for gestational age, sex, and birth mode. The residuals from each model
were then used for the correlation analysis in place of the CAG counts. Genes that were correlated with
at least one CAG (P < 0.05; Spearman’s p > 0.3) were identified and analyzed to identify significantly
enriched (FDR < 0.01) pathways or Gene Ontology terms. This approach is analogous to methods that
have been successfully implemented to detect signatures in genome-wide association data when
individual associations do not reach genome-wide significance (48-51). Pathway, GO, or cell type (45)
(using the highly expressed, cell-specific HECS gene database) enrichment analysis was performed using
a hypergeometric test implemented in R version 3.5.0. The statistical significance of enriched terms was
further assessed using a permutation-based approach whereby we randomized the gene labels and
repeated the enrichment analysis 1,000 times. Any pathways/GO terms found to be significantly enriched
(FDR < 0.01) in any permutation with randomized gene labels were not considered to be significantly
associated with CAG relative abundance. The R code for all analysis is provided as described in the data
availability statement below.

Data availability. 165 rRNA gene sequence data have been deposited in the NCBI Sequence Read
Archive under BioProject accession number PRINA517768. RNA-Seq data have been deposited in the
Gene Expression Omnibus (GEO) under accession number GSE125873. Count tables, metadata, and R
code are available via the N3RO analysis repository in the Lynn Laboratory BitBucket (https://bitbucket
.org/lynnlab/n3ro_data_analysis).

SUPPLEMENTAL MATERIAL

Supplemental material for this article may be found at https://doi.org/10.1128/
mSystems.00484-19.

FIG S1, PDF file, 0.4 MB.

FIG S2, PDF file, 0.4 MB.
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