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Simple Summary: Neuroendocrine neoplasms have been usually described as infrequent tumors,
but their incidence has been rising over time. [177Lu]Lu-DOTA-TATE (PRRT-Lu) was approved by
the European Medicines Agency and by the Food and Drug Administration as the first radiophar-
maceutical for peptide receptor radionuclide therapy in progressive gastroenteropancreatic NET.
PRRT-Lu is considered a therapeutic option in progressive SSTR-positive NETs with homogenous
SSTR expression. The NETTER-1 study demonstrated that PRRT-Lu yielded a statistically and clini-
cally significant improvement in PFS as a primary endpoint (HR: 0.18, p < 0.0001), as well as a clinical
trend towards improvement in OS. These results made scientific societies incorporate PRRT-Lu into
their clinical guidelines; however, some questions still remain unanswered.

Abstract: This review article summarizes findings published in the last years on peptide receptor
radionuclide therapy in GEP NENs, as well as potential future developments and directions. Unan-
swered questions remain, such as the following: Which is the correct dose and individual dosimetry?
Which is the place for salvage PRRT-Lu? Whicht is the role of PRRT-Lu in the pediatric population?
Which is the optimal sequencing of PRRT-Lu in advanced GEP NETs? Which is the place of PRRT-Lu
in G3 NENs? These, and future developments such as inclusion new radiopharmaceuticals and
combination therapy with different agents, such as radiosensitizers, will be discussed.

Keywords: neuroendocrine neoplasms; PRRT; [177Lu]Lu-DOTA-TATE

1. Introduction

Neuroendocrine neoplasms (NENs) are typically described as rare tumors; however,
their incidence has been rising over time [1,2]. Neuroendocrine cells are distributed widely
throughout the body, and NENs arise from them; therefore, these tumors can appear in
organs such as the pancreas, foregut, midgut, hindgut, or bronchial tree, or other unusual
locations such as the ovary, cervix, or breast. NENs are classified on the basis of two param-
eters: cell differentiation and rate of proliferation. The World Health Organization (WHO)
classified gastroenteropancreatic NENs (GEP-NENs) accordingly as well differentiated neu-
roendocrine tumors (NETs) and poorly differentiated neuroendocrine carcinomas (NECs).
NENs arising in other localizations, such as bronchial NENs, do not follow this same
classification [3]. Within NENs, GEP NETs are the most common subtype, representing
more than 70% of the totality [4].

Although complex and heterogeneous, somatostatin receptor (SSTR) overexpression
on their cell surface is frequent, and this is the reason why these receptors have been a main
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concern of study in these tumors [5]. Five Somatostatin G protein-coupled receptors have
been identified: SSTR1, SSTR2, SSTR3, SSTR4, and SSTR5. SSTRs are widely distributed in
healthy tissues, with distinct expression throughout the body. Tumor cells and peritumoral
vessels express different SSTR subtypes whose density depends on the type of tumors.
SSTR expression may vary within the different tumors and, in particular, in NETs [6–8]
(Tables 1 and 2).

Table 1. Somatostatin density receptor expression on GEP NETS according to WHO classification.

WHO Classification SSTR1 (%) SSTR2 (%) SSTR3 (%) SSTR4 (%) SSTR5 (%)

G1 80–100% 80–100% 30–80% <15% 80–100%

G2 80–100% 80–100% 30–80% <15% 30–80%

G3 80–100% 80–100% 30–80% <15% <15%

Table 2. Somatostatin density receptor expression according to primary site location and/or func-
tional GEP NETS.

Primary Site Location SSTR1 SSTR2 SSTR3 SSTR4 SSTR5

Pancreas <15% 80–100% <15% <15% 30–80%

Gastric <15% 80–100% <15% <15% 30–80%

Intestinal <15% 30–80% 30–80% <15% <15%

Insulinoma 15–30% 30–80% 30–80% <15% 30–80%

Gastrinoma 15–30% 80–100% 30–80% <15% 30–80%

Among the SSTR subtypes, SSTR2 and SSTR5 have become the main biological targets
of NETs with the development of somatostatin analogues (SSA). In the field of nuclear
medicine, the labeling of these SSA with radionuclides allows for the synthesis of specific
radiopharmaceuticals that bind to SSTRs (especially SSTR2). The use of these radiophar-
maceuticals targeting SSTRs is also referred to globally as peptide receptor radionuclide
therapy (PRRT).

PRRT targeting SSTRs is considered a therapeutic option in progressive SSTR-positive
NETs with homogenous SSTR expression and has been rapidly incorporated on the most
relevant scientific guidelines. On daily clinical practice, PRRT represents a second-line
treatment option after progression to SSA on GEP-NETs with positive SSTR expression.
PRRT is a molecular therapy that offers a personalized cancer treatment because radiophar-
maceuticals are tailored to the unique biological characteristics of both the patient and the
molecular properties of the tumor. The main goal of PRRT is to provide symptom relief, to
stop or slow down tumor progression, and to improve overall survival (OS).

This review article summarizes findings published in the last years on GEP NENs, as
well as unanswered clinical questions and potential future developments and directions.

2. Pathophysiological Basis of Radionuclide Therapy

In nuclear medicine, ionizing radiation emitted by different unstable radioisotopes to
diagnose and treat diseases of different organs and systems is used.

There are three types of ionizing radiation (α, β, γ) that are characterized by their
ability to penetrate matter and by the energy they transmit to it. Thus, the α and β

radiations can easily be shielded by a few materials (a sheet of paper or less than an inch of
material, respectively), but transmit a large amount of energy, and the γ radiations have
a great penetration power and variable emission energy. In this way, radiation-emitting
radionuclides α and β− will be used for treatment, while radionuclides emitting γ and β+
will be used for diagnosis [6,9] (Table 3).
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Table 3. Main radionuclides used for imaging and therapy according to their type of radiation.

Application Radionuclide Type of Emission Source

Imaging

SPECT
99mTc γ Generator
111In γ Cyclotron

PET

68Ga β+ Generator/Cyclotron
18F β+ Cyclotron

64Cu β+/β−/γ Cyclotron

Therapy

90Y β− Generator
177Lu β−/γ Cyclotron
188Re β−/γ Generator
225Ac α Generator
211At α Cyclotron

Single photon emission computed tomography (SPECT); positron emission tomography (PET).

Radionuclide imaging, in fact, offers the unique opportunity to detect and quantify
the expression of a specific tumor biomarker through the use of a certain isotope-labeled
molecules, emitting radiation suitable for imaging. Subsequently, the same radiopharma-
ceutical labeled with a radionuclide that emits α and β− particles to obtain a tumoricidal
effect also allows for the acquisition of images that confirm the uptake of the radiopharma-
ceutical, the location of the lesions, and their progression over time. The whole is what is
commonly known as theranostics, “we treat what we see and we see what we treat”; in a
targeted and precise way, it could be considered as immunohistochemistry in vivo [10].

The radiopharmaceuticals used in this therapy have a triple structure. The princi-
pal structure is the radiometal that emits the radiation, the second is a biological vector
consisting of a peptide that binds to a well-defined target (SSTR), and the third is a bi-
functional chelating agent that binds the radiometal in a stable manner and allows its
conjugation. A linker is usually inserted between the chelating agent and the biological
vector to limit the influence of the chelating moiety. The emission of β− and α radiation by
the radiometal is what allows the destruction of the NENs tumoral cells by breaking DNA
strands. Analogues of the peptides with biological activity are obtained from modifications
in the sequence of amino acids. For example, replacing Phe3 in the octreotide by Tyr3 (TOC)
improves affinity for SSTRs (in particular SSTR2), and the introduction of a Thr (TATE)
instead of Thr (ol) (TOC) further increases this affinity [9] (Figure 1).

Figure 1. Schematic design of radiopharmaceutical complex.
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3. PRRT on GEP NENs

PRRT on GEP NEN targets binds actively to the SSTR2. For more than two decades,
PRRT on GEP NENs has been investigated. Compounds available include diagnostic
radiotracers such as [111In]In-DOTA-TOC and [90Y]Y-DOTA-TOC (PRRT-Y), which were
firstly developed, and [177Lu]Lu-DOTA-TATE (PRRT-Lu), which is the only PRRT approved
for GEP NET patients in Europe and North America (Lutathera®, France). The triple
structure involving this compound is the radiometal 177Lu, the chelating agent DOTA, and
the targeting moiety octreo-TATE.

As shown in Figure 2, [177Lu]Lu-DOTA-TATE enters cells through its union to SSTR2.
Then, it is internalized and retained in the cell lysosomes where β radiation is emitted,
producing DNA chain breakdown and cell death. [177Lu]Lu-DOTA-TATE has a half-life
of 6.7 days. As a double emitter, 177Lu emits both a beta and a gamma radiation. The
low energy gamma radiation (0.208 MeV) enables imaging, and beta energy radiation
(0.497 MeV) with a tissue penetration reaching a range of 2.2 mm (mean 0.67 mm) will
enable treatment [11].

Figure 2. Schematic design of [177Lu]Lu-DOTA-TATE action over NET cells.

4. Clinical Results with PRRT-Lu on GEP NENs

The development of analogue [DOTA]0-Tyr3-octreotate or DOTATATE labeled with a
dual β-γ-emitter (177Lu) was performed in the year 2000 [12].

4.1. Phase I and II Studies with PRRT-Lu

[177Lu]Lu-DOTA-TATE was investigated in several clinical phases I and II stud-
ies [13–18]. These studies proved an enhanced efficacy and manageability compared
to previous radiopharmaceuticals, such as 90Y or 111In [1], due to a lower kidney dosimetric
burden and the additional advantage of obtaining dosimetric studies and scintigraphies at
the same time.

One of the most relevant of these studies was that of the Erasmus Center of Rotterdam in
2008, which evaluated toxicity, efficacy, and survival in a series of 504 patients [14]. A total of
310 patients had an advanced GEP NEN. PRRT-Lu was administered in four cycles of 7.4 GBq
(GigaBecquerel) with a cumulative activity of 22.2–29.6 GBq. Median time to progression
was 40 months. Median OS from the beginning of treatment was 46 months, and median
OS from diagnosis was 128 months. Complete and partial remissions occurred in 2% and
28%, respectively, with minor responses in 16% and stabilization in 35%, respectively. Severe
adverse events that were likely attributable to the treatment were myelodysplastic syndrome
in three patients, and temporary, nonfatal liver toxicity in two patients [14].

In 2011, a phase I-II escalation dose study that aimed to define toxicity and efficacy
of [177Lu]Lu-DOTA-TATE therapy was published. Dosage was studied dividing patients
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in two groups with a dosimetry-based cumulative activity up to 29 GBq. The first group
received escalating activities from 3.7 to 5.18 GBq and the second from 5.18 to 7.4 GBq [15].
Progression-free survival (PFS) was 36 months, with an OS of 68% at 36 months. PRRT-Lu
was well tolerated up to 29 GBq cumulative activity (up to 7.4 GBq/cycle). The maximum
tolerated dose activity/cycle was not reached. No major acute or delayed renal or hemato-
logical toxicity occurred (one grade 3 leukopenia and thrombocytopenia). However, the
authors recommend dividing cumulative activities into lower activity cycles.

Another phase II study was uniquely performed in patients with advanced pancreatic
NETs. A total of 52 consecutive patients were treated at two different therapeutic dosages
of 18.5 or 27.8 GBq in five cycles, in accordance with the patient’s kidney function and
bone marrow reserve [16]. Both therapeutic dosages resulted in antitumor activity, even
at a reduced total activity of 18.5 GBq. No major acute or delayed hematological toxicity
occurred. Progression-free survival was significantly longer (p = 0.05) after a total activity
of 27.8 GBq, which can thus be considered the recommended dosage in eligible patients.

On the other hand, another phase II study evaluated PRRT-Lu uniquely in patients
with advanced G1 and G2 gastrointestinal NETs. A total of 43 consecutive patients with
imaging progression at baseline and a positive [111In]In-pentetreotide scintigraphy com-
pleted treatment with [177Lu]Lu-DOTA-TATE. Cumulative activity was of either 18.5 or
27.8 GBq in five cycles. Both activities proved to be safe and effective in all patients. No
late hematological or renal toxicity was observed in either group. PRRT-Lu was shown
again to be an effective therapeutic option in advanced progressive gastrointestinal NETs
with a mean PFS of 36 months [17].

A more recent study used the standard approach and described the benefit of PRRT-Lu
in a standard treated group with four cycles of 7.9 GBq each one [18]. A total of 61 consecutive
patients with unresectable, advanced small intestinal NET G1-2 stage IV were treated. Disease
control rate was 91.8%. PFS and OS was 33 and 61 months, respectively.

The first phase II experience with PRRT-Lu in the US was reported on 2014 [19]. In this
study, 37 patients with advanced grade 1 or 2 GEP NETs were treated with up to 4 cycles
of [177Lu]Lu-DOTA-TATE to a total of 29.6 GBq. Stable disease was achieved in 41% of
patients with a response rate of 28% in the entire cohort. PFS for patients who received all
four cycles was 16.1 months and a total of 16.5 months for the entire cohort. No significant
acute or delayed hematologic or kidney toxicity was observed.

4.2. Phase III Studies with PRRT-Lu: The NETTER-1 Study

NETTER-1 was the first randomized phase 3 clinical trial on PRRT [20]. A total of
231 patients with advanced, SSTR imaging-positive, midgut NETs who progressed on
standard-dose octreotide LAR were randomized. Patients were either randomized to
PRRT-Lu that was administered in four cycles every 8 weeks plus octreotide 30 mg every
4 weeks or to the control arm treated with high-dose octreotide LAR (60 mg every 4 weeks).
Conducted with a selection of NET patients from metastatic midgut with a mean follow-up
of 14 months, the study reported that treatment with [177Lu]Lu-DOTA-TATE determined a
79% reduction in risk progression or death compared to high doses of octreotide (p > 0.001,
HR 0.21). The response rate in the group of PRRT-Lu was 18% versus 3% in the control
group. Estimated PFS with PRRT-Lu was of 40 months compared to 8.4 months with
high-dose SSA. These markedly higher PFS results on PRRT-Lu arm is what led to the
Food and Drug Administration (FDA) and European Medicines Agency (EMA) approval.
Consecutively, the most relevant clinical guidelines incorporated this treatment into their
respective algorithms [21–26].

Moreover, the NETTER-1 study [27] demonstrated the excellent quality life of patients
treated with [177Lu]Lu-DOTA-TATE in different aspects such as general health, body image,
functionality (general and occupational), diarrhea, pain, fatigue, and worry about the
disease. An analysis of time up to quality-of-life deterioration in both arms of the study
was shown to be much higher in patients with PRRT-Lu compared to the control group
(28.8 months for PRRT-Lu versus 6.1 with SSA) with a RR of 0.40.
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After the 5 year follow-up, recent data on OS have been published [28]. Of the
totality of randomized patients, 86.3% in the PRRT-Lu arm and 86.8% in the control arm
entered long-term follow-up (n = 200). Median OS in the control arm was 36.3 months, and
40 months in the PRRT-Lu arm (HR 0.84 (95% CI: 0.60, 1.17) with p = 0.30). During follow-up,
there was a 36% of patient cross-over to the PRRT arm, and this was the case in the majority
of the patients within 24 months. Although the difference on OS was of 11.7 months, this
was not statistically significant, which was attributed by the investigators to the impact of a
high-rate cross-over of patients in the control arm to PRRT after progression.

Concerning adverse events, 1.8% PRRT-Lu patients in the study developed myelodys-
plastic syndrome, but no new cases of myelodysplastic syndrome or acute leukemia were
reported in the long-term follow-up.

Therefore, the NETTER-1 study demonstrated that PRRT-Lu yielded a statistically
and clinically significant improvement in PFS as a primary endpoint (HR: 0.18, p < 0.0001),
although improvement in OS was not demonstrated, probably due to a high cross-over in
the control arm.

4.3. Meta-Analysis

A meta-analysis undertaken in 2015 included six studies with a total of 473 GEP NENs,
and, although the treatment protocols were not standardized and the treatment effects
should be further verified through prospective randomized controlled trials, the authors
concluded that PRRT-Lu is an effective option for patients with inoperable or metastatic
NENs achieving a disease control rate of approximately 80% [29].

4.4. Cohort Studies with PRRT-Lu

Although hierarchy of evidence to guide clinical interventions is less with case–control
and cohort studies, several large well-designed cohort studies of PRRT-Lu have been
reported that contribute to adding more information of this treatment and its safety in
patients with GEP NET.

One of these cohort studies was the one performed in a Dutch population—610
patients were included with GEP and bronchial NETs [30]. A total of 443 of these patients
were treated with a cumulative activity of at least 22.2 GBq before 2013. PFS and OS for
all patients were 29 months and 63 months, respectively. Long-term toxicity included
myelodysplastic syndrome in 1.5% and acute leukemia in four patients 0.7%. No therapy-
related long-term hepatic or kidney failure were reported.

A cohort analysis of 1048 patients with NETs who underwent either PRRT-Lu, PRRT-Y,
or both therapies in an alternating fashion has been reported [31]. In total, 74% of these
patients had GEP NETs. The best OS was achieved by a combination of PRRT-Y and PRRT-
Lu. The shortest survival was observed in patients treated exclusively with PRRT-Y, while
PRRT-Lu alone resulted in an intermediate survival. Median OS in the PRRT-Lu patients
was 44 months, while median PFS was 17 months. Patients treated with both therapies had
an OS of 64 months with a median PFS of 24 months.

A very relevant study that opens a window to the use of [177Lu]Lu-DOTA-TATE in
patients with G3 NETS is a smaller cohort study that reported the experience of 69 G3
NET patients. Patients either received PRRT-Lu or PRRT-Y [32]. The clinical outcome
was promising, especially in patients with a Ki-67 index of less than or equal to 55% with
a median PFS of 11 months and OS of 22 months. This outcome was observed even in
patients for whom chemotherapy had failed.

5. Position Statement of PRRT in Treatment of GEP NENs

As previously commented, the phase I and II studies, cohort studies, and especially
the NETTER 1 study yielded very relevant results that made scientific societies incorporate
PRRT-Lu on their clinical guidelines [21–26] (Table 4). It was approved in September 2017
in Europe by the EMA and in January 2018 by the FDA as the first radiopharmaceutical for
PRRT in progressive gastroenteropancreatic NET.
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Table 4. Position statement on PRRT of the different scientific societies.

Scientific
Guideline

Year of
Publication Inclusion Criteria for Treatment Sequencing on Pancreatic NET Sequencing Midgut NET

Other Tumors or
Circumstances That May Be
Considerated for Treatment

ENETS 2016

− Inoperable/metastatic well-differentiated
(G1/G2) NET
− Tumor uptake SSTR functional images
− Homogenous SSTR expression (all NET
lesions are positive)
− Bone marrow reserves
Creatinine clearance >50 mL/min
− Expected survival > 3 months
− Karnofsky performance status >50

− Third or subsequent lines.
PRRT after failure to other
therapies: SSA, sunitinib,
everolimus, or chemotherapy

− Second line option after SSA
Or
− Third line after everolimus

−Well-differentiated G3 NET

ESMO 2020 − ENETS criteria

− Third or subsequent lines.
PRRT after failure to other
therapies: SSA, sunitinib,
everolimus, chemotherapy.
− Level of evidence III A

− Second line option after SSA
Or
− Further lines
− Level of evidence I A

− NET G3
− Level of evidence IV C

NANETS 2020 − SSTR-positive tumors

− Third or subsequent lines.
PRRT after failure to other
therapies: SSA, everolimus,
sunitinib, and chemotherapy

− Functional midgut: Second
line after SSA
− Nonfunctional midgut: could
be second line or third line after
everolimus

− Could be considered a
first-line option in patients
with very high tumor burden
where any further growth
would entail significant risk
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[177Lu]Lu-DOTA-TATE is considered a therapeutic option in progressive SSTR-positive
NETs with homogenous SSTR expression [33]. Eligibility and clinical decision making
should be based on multidisciplinary discussion [34]. European Neuroendocrine Tumor So-
ciety (ENETS) consensus guidelines consider the most important inclusion criteria: inopera-
ble/metastatic well-differentiated (G1/G2) NET, sufficient tumor uptake on the diagnostic
SSTR functional images, sufficient bone marrow reserves, creatinine clearance > 50 mL/min,
expected survival >3 months, and Karnofsky performance status >50. Well-differentiated
G3 NET may as well be considered, although further data are required on response rates
and survival [34]. Until the moment there are no randomized clinical trials available that
compare optimal administered activity per treatment cycle, timing between cycles, or
adequate cumulative administered activity for PRRT-Lu, the recommended posology is
of up to four cycles of a fixed activity of 7.4 GBq per cycle, according to those used on
NETTER-1 clinical trial that, in turn, is based on the protocol developed at the Erasmus
Medical Center [20,35].

Where and how to place PRRT on the sequencing of treatment on NETs after progres-
sion to SSA still raises many doubts. ENETS consensus guidelines published in 2016 place
PRRT-Lu as a possible treatment in second line after SSA along with everolimus, locore-
gional therapies, and IFN alpha 2b in advanced midgut NETs. The sequencing of PRRT-Lu
as second- or third-line therapy for advanced intestinal NET also depends on other issues,
including accessibility to PRRT. A strong SSTR expression on imaging is necessary to
achieve better results with PRRT, while extensive bone and/or liver disease as well as a
deteriorated kidney function may limit its use. PRRT-Lu may be therefore recommended
in midgut NET as a second-line therapy after failure of SSA if the general requirements
for applying PRRT are fulfilled or as a third-line therapy after failure of everolimus. In
advanced pancreatic NETs, these guidelines position PRRT-Lu in G1/G2 NET after failure
of medical therapy including SSA, chemotherapy, or novel targeted drugs (sunitinib or
everolimus). This positioning in pancreatic NETs is due to the lack of a prospective trial
with PRRT-Lu in pancreatic NET; however, the authors consider that a potential increasing
toxicity used after prior chemotherapy or targeted therapy might justify an earlier use of
PRRT-Lu in selected patients [36].

European Society of Medical Oncology (ESMO) guidelines [37], recently published in
2020, agree with ENETS guidelines that PRRT-Lu can be recommended in patients with
midgut NETs and disease progression to SSAs. As well as in pancreatic NETs in which these
guidelines coincide that since randomized trials are lacking in this subgroup of patients,
molecular target therapies should be a prior treatment choice before PRRT-Lu. The main
subtle difference in these guidelines compared to the previous ones regarding PRRT is that
levels of evidence are incorporated.

North American Neuroendocrine Tumor Society (NANETS) guidelines [38] also pub-
lished in 2020 coincide mainly with the previous ones with two subtle differences. The
first difference is on midgut NETs, in which a differentiation between functioning and
non-functioning is made. While on functioning midgut, PRRT is recommended as a second
line, on non-functioning midgut, PRRT could be recommended as second- or third-line
therapy after everolimus. The other peculiarity is that it includes the option of using PRRT
as a first-line therapy option in patients with very high tumor burden where any further
growth would entail significant risk.

6. Unanswered Questions on PRRT in Patients with GEP NENs

Although treatment PRRT yields promising results in patients with GEP NENs re-
garding clinical response and low toxicity, many questions remain unanswered, such as
the following: Which is the correct dose and individual dosimetry? Which is the place for
salvage PRRT-Lu? Which is the role of PRRT-Lu in the pediatric population? Which is the
optimal sequencing of [177Lu]Lu-DOTA-TATE in advanced GEP NETs? Which is the place
of [177Lu]Lu-DOTA-TATE in G3 NENs?
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6.1. Which Is the Correct Dose and Individual Dosimetry?

As mentioned previously, up until now, there are no randomized clinical trials that
compare optimal activity per cycle, timing between cycles, or cumulative administered
activity for [177Lu]Lu-DOTA-TATE. PRRT-Lu is therefore administered in four cycles of a
fixed activity of 7.4 GBq per cycle. This fixed activity results in variable absorbed doses both
in healthy organs and in the tumor. There is a large patient variability in the biodistribution
of radiopharmaceuticals [39]. A special emphasis should be made on the absorbed doses
for bone marrow and kidney, since they are considered as the dose-limiting organs in
[177Lu]Lu-DOTA-TATE [40,41]. Personalized medicine achieving an individual dosimetry-
based activity administration could help optimizing treatment and reducing secondary
effects. Methods for accurate tumor and normal tissue dosimetry and determination of
predictive factors that are associated with higher uptake of the radiopharmaceutical in
NETs are needed [42].

Dosimetry can be based on pre-PRRT with [68Ga]Ga-DOTA-SSA PET/CT or post-PRRT
single-photon emission computed tomography (SPECT) scanning.

The group from Uppsala evaluated the dose–response relationship for pancreatic NETs
treated with PRRT-Lu. The absorbed dose calculations relied on sequential post-treatment
distribution SPECT/CT imaging at 24, 96, and 168 h after infusion of [177Lu]Lu-DOTA-
TATE [43]. Tumor-absorbed doses necessary to reach best response ranged from 10 to
340 Gy. The results implied a significant correlation between absorbed dose and tumor
reduction; however, large variations in response for similar absorbed doses were observed.
Previously, this same group described that in 50% of patients, more than four cycles of
7.4 GBq could be administered, and patients were treated with up to 10 cycles [44].

Another group performed dosimetry on the basis of the kidney-absorbed dose. The
aim of this study was to assess the accuracy and inter-observer reproducibility of simpli-
fied dosimetry protocols on the basis of quantitative two-time-point SPECT (QSPECT),
which provided reproducible and accurate dose estimates. The authors affirm that the
kidney-absorbed dose over the four-cycle induction PRRT course can be standardized by
personalizing injected activity on the basis of the product of glomerular filtration rate with
lean body weight or body surface area for the first cycle and on prior renal dosimetry for
the subsequent cycles. The results were encouraging without adding an extra toxicity [45].

Monte Carlo simulation is a non-deterministic or numerical statistical method, used to
approximate complex mathematical expressions that are costly to evaluate accurately. By
introducing the map of voxel-wise, time-integrated activity or mass density distribution
into the Monte Carlo simulation, one can estimate the related absorbed energy dose distri-
bution in an interesting target region [46]. Recently, a novel Monte Carlo-based voxel-wise
dosimetry approach to determine organ- and tumor-specific total tumor doses has been
published. After the first cycle of therapy, regions of interest were defined manually on the
SPECT/CT images for the spleen, the kidneys, and all tracer-positive tumor lesions. Four
SPECT images, taken at 4 h, 24 h, 48 h, and 72 h after injection of [177Lu]Lu-DOTA-TOC,
were used to determine their effective half-lives in the structures of interest. The absorbed
doses were calculated by a three-dimensional dosimetry method based on Monte Carlo
simulations. Total tumor doses were calculated as the sum of all products of single tumor
doses with single tumor volumes divided by the sum of all tumor volumes. These results
were promising as a new tool to predict the total tumor dose received [42].

Ongoing trials aim to prove the feasibility and efficacy of the individual dosimetry-
based strategy for PRRT improvement. One of these trials is ClinicalTrials.gov Identifier:
NCT04467567, in which the use of a new camera, VERITON-CT™ CZT (Spectrum Dynamics
Medical, Morges, Switzerland), is being explored. The primary outcome is the comparison
of dosimetric results obtained from a conventional gamma camera and the new VERITON-
CT™ CZT camera. Secondary outcomes include both measurement of average absorbed
doses in tumor lesions and in limiting organs. Correlation between the dosimetry result
and average absorbed doses to the kidneys and to the bone marrow versus renal function
are studied [47].
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Another trial is aiming to evaluate safety and dosimetry of PRRT-Lu in adolescent
patients with GEP-NETs and paragangliomas (ClinicalTrials.gov Identifier: NCT04711135).
The dosimetric study will be performed during the first week after the first treatment dose,
which will allow an estimation of the cumulative absorbed radiation dose and for decision
making on the following dose levels.

6.2. Which Is the Place for Salvage PRRT-Lu?

Eventually, most patients with advanced GEP NETs will present progressive disease
after PRRT. The efficacy and safety of PRRT salvage treatment (R-PRRT) have been an-
alyzed in studies with small patient cohort with NETs at different locations and stages
and with limited follow-up. In some studies, different radiopharmaceuticals or their com-
binations have been used in initial PRRT and salvage treatment. In these studies, there
was a great variability in the number of cycles as well as in the cumulative activities
administered [48–54].

The largest cohort of patients from a single institution who underwent initial PRRT-Lu
and R-PRRT-Lu, with the longest follow-up, is that of the Erasmus Center [49]. This study
included R-PRRT-Lu in 168 GEP and bronchial NET patients. Patients received a median
cumulative activity dose of 14.9 GBq (3.7–16.2 GBq), resulting in total median cumulative
administered activities doses of 44.7 GBq (26.3–46.4 GBq) after retreatment and 59.7 GBq
(55.2–60.5 GBq) after re-retreatment. Patients with bronchial NET or GEP-NET with R-
PRRT-Lu had a significantly longer OS than patients in the control group. Patients with
midgut NET had an OS was 77.3 months compared to 51 months in the control group.
Patients with pancreatic NET had an improved OS following R-PRRT: OS was 93.9 months
in the retreatment group and 61.5 months in the control group.

Recently, two meta-analyses and systematic reviews have been published [55,56]. Both
studies agree that R-PRRT may be a therapeutic choice in patients with progressive GEP
NETs. The first of these studies [55] evaluated a total of 414 patients—median PFS was
12.52 months (95% CI: 9.82–15.22) and a median OS was 26.78 months (95% CI: 18.73–
34.83). The second [56] evaluated a total of 426 patients. R-PRRT raised an estimated
PFS of 14.1 months (95% CI: 12.2–15.9) and OS of 26.8 months (95% CI: 18.8–34.9). Both
agree that R-PRRT-Lu provided encouraging PFS in patients and a safety profile similar to
initial PRRT.

However, concerns about which is the appropriate time for R-PRRT after progression
(12–18 months), long-term toxicities in retreated patients, and its role in G2-G3 patients
exist. These unresolved issues may be due to the lack of well-designed studies that would
definitively clarify these clinical and safety questions encountered with R-PRRT.

6.3. Which Is the Role of PRRT-Lu in Pediatric Population?

Although overall incidence and prevalence of GEP-NETs has been gradually increasing
over the last few decades, data on the pediatric population specifically are limited due to
its rare occurrence in this population [57]. NETs in children show a high SSTR expression
and could be potentially treated with PRRT-Lu; however, children under the age of 18 have
been excluded from participation on PRRT trials.

Data regarding its use in other pediatric tumors such as neuroblastoma and medul-
loblastoma, which also express SSTR 2, have been published with promising results. Re-
cently preliminary studies showed that PRRT-Lu is tolerable and feasible in pediatric
patients with SSTR2-positive tumors. However, long-term efficacy and adverse effects in
children are unknown [58].

In children, there is no widespread experience in the treatment with PRRT-Lu, and the
injected activities should be adapted per square meter [59,60]. In general, the same activity
is used as in adults adapted to the weight with a maximum activity of 7.4 Gbq per infusion,
with a total of four cycles every 8 weeks [58].
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This unresolved question opens the need for further clinical trials PRRT-Lu in the
pediatric population with GEP-NETs in which dosimetry data should be collected as well.
The recent, abovementioned clinical trial NCT04711135 will explore some of these issues.

6.4. Which Is the Optimal Sequencing of PRRT-Lu in Advanced GEP NETs?

As above mentioned, treatment with [177Lu]Lu-DOTA-TATE is placed as a second-
line therapy along with everolimus in midgut NET tumors and as third or fourth line in
pancreatic tumors. Despite the lack of data from specific phase III clinical trials, there is
positive evidence of efficacy and safety in advanced pancreatic NET patients in which
PRRT could surpass on treatment sequencing other targeted therapies [61,62]. Moreover, a
potential increasing toxicity used after prior chemotherapy or targeted therapy has been
described, which might justify an earlier use of PRRT in selected patients [36].

Ongoing, well-designed randomized controlled trials (RCT) could enhance the most
appropriate sequencing in patients with advanced metastatic NETs after treatment with SSA.

One of these RCTs is the ClinicalTrials.gov Identifier: NCT03049189 [63]: Efficacy and
Safety of PRRT-Lu in GEP-NET Patients (COMPETE). The COMPETE trial is a prospective,
randomized, controlled, open-label, multicenter phase III study to evaluate efficacy and
safety of PRRT-Lu compared to targeted molecular therapy with everolimus in patients
with inoperable, progressive, SSTR-positive (SSTR+) GEP NET.

Another of these RCTs is the ClinicalTrials.gov Identifier: NCT02230176 [64]: anti-
tumor efficacy of PRRT-Lu randomized vs. sunitinib in unresectable progressive well-
differentiated pancreatic NET: first randomized phase II (OCCLURANDOM). The OC-
CLURANDOM trial is the first randomized, open-label, national, multicenter, phase II
study assessing the efficacy and safety of OCLU in subjects with pretreated progressive
pancreatic, inoperable, SSTR+, well-differentiated pancreatic NET. Subjects must have
experienced documented progression of disease within 1 year prior to the start of the study.
The control group of patients receiving sunitinib will be used as internal control to assess
the hypothesis of 12 months PFS equal to 35% in patients receiving sunitinib.

6.5. Which Is the Place of PRRT-Lu in G3 NENs?

SSTR density expression on GEP NETS according to WHO classification shows that
G2/G3 NETs have a considerable expression (Table 1), and therefore PRRT has been
considered as a therapeutic option in these group of patients.

Published data in these subgroups of patients are scarce, and studies are retrospec-
tive [32,65–67]. The published data are of 280 NEN G3 patients, and the overall results
show PFS between 9 and 23 months and an OS between 19 and 53 months. Disease control
rates range between 30 and 80%. Patients with lower Ki-67 proliferation rate (<55%) show
better response compared to those with higher values.

These preliminary results have made recent ESMO guidelines to include PRRT-Lu
as a therapeutic option in NET G3 patients with a level of evidence of IV and grade C of
recommendation [37]. New RCTs have been recently initiated to address this issue.

The NETTER-2 (ClinicalTrials.gov Identifier: NCT03972488) trial [68] is a phase III
multi-center, randomized, open-label study to evaluate the efficacy and safety of [177Lu]Lu-
DOTA-TATE in patients with grade 2 and grade 3 advanced GEP-NETS. The aim of
NETTER-2 is to determine if PRRT-Lu in combination with long-acting octreotide pro-
longs PFS in GEP-NET patients with high proliferation rate tumors (G2 and G3) when
given as a first-line treatment compared to treatment with high-dose (60 mg), long-acting
octreotide.

The COMPOSE (ClinicalTrials.gov Identifier: NCT04919226) trial, which has not yet
started recruitment [69], is a prospective, randomized, controlled, open-label, multicenter
study to evaluate efficacy, safety, and patient-reported outcomes of PRRT-Lu compared to
best standard of care in patients with well-differentiated aggressive grade 2 and grade 3,
SSTR+, GEP NETs. PFS and OS are the primary and secondary outcomes, respectively, and
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PRRT will be compared with the best standard of care in these patients, which includes
treatment with everolimus, FOLFOX, and CAPTEM.

7. Future Investigations on PRRT in Patients with GEP NENs

Different methods to improve the objective response rate and survival are under inves-
tigation. This includes changes of the radionuclide or radiopharmaceutical, combination
therapy with different agents such as radiosensitizers, or other abovementioned issues
such as dosimetry (Figure 3).

Figure 3. Schematic design of future directions on RLT.

7.1. New Radionuclides

The use of alpha-emitting radionuclides in PRRT could potentially increase the level
of tumoral cell death by increasing the number of DNA double-strand breaks [70]. These
radionuclides include 213Bismuth (213Bi), 225Actinium (225Ac), and 212Lead (212Pb). The
literature with these radionuclides is scarce, and there is a need for good clinical trials
regarding the dose-limited toxicity and efficacy.

Promising results with 213Bi [71] have been published. Enduring responses were ob-
served in all treated patients. Chronic kidney toxicity was moderate. Acute hematotoxicity
was even less pronounced than with the preceding beta therapies.

Recently, in July 2021, a phase 1 study was completed (ClinicalTrials.gov Identifier:
NCT03466216) in which [212Pb]Pb-DOTAM-TATE was tested [72]. This drug substitutes
beta emitters currently being used (i.e., 177Lu or 90Y) with an alpha emitter (212Pb). The
reason for the change to this alpha emitter is that it will provide significantly higher linear
energy transfer, causing more tumor death and a short penetration depth, which would
result in less collateral damage in healthy tissue. The primary objective is to assess the
safety and dose-limiting toxicity using ascending doses of this alpha emitter. The secondary
objectives are to determine the pharmacokinetic properties and preliminary effectiveness
(of AlphaMedix™, Petach Tikva, Israel). Results from this study are not yet published.
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7.2. Somatostatin Antagonists

Up until now, SSA have been used, as it was believed that receptor internalization
was essential for a higher tumor uptake. However, toxicity remains the main concern with
these agents since an increase uptake in bone marrow or kidney has been described [70].

However, preclinical studies in mice have found a significantly higher tumor uptake
with somatostatin antagonist as well as a longer survival and better tumor control [73,74].
Compared to the agonist [177Lu] Lu-DOTA-TATE, the antagonist [177Lu] Lu-DOTA-JR11
showed 1.7–10.6 times higher tumor dose uptake in humans [75]. These promising re-
sults have been explored on an interventional study in which experimental imaging with
[68Ga]Ga-DOTA-JR11 and experimental treatment with [177Lu]Lu-DOTA-JR11 are to be
explored. The primary outcome is overall response rate according to RECIST 1.1 and
median PFS and OS [76].

7.3. Upregulation of SSTR2 Expression

SSTR2 is the highest affinity target used for imaging and treatment in NETs. Strategies
to improve binding of somatostatin agonists to this receptor are being studied by intro-
ducing epigenetic modulation of the SSTR2 gene. This epigenetic modulation has been
induced by epidrug treatment such as valproic acid [77,78], and more recently by epidrugs
5-aza-2′-deoxycytidine and valproic acid [79]. This last group showed an increased uptake
of radiolabeled octreotide, as well as increased sensitivity to the SSA octreotide in functional
cAMP inhibition. At epigenetic level, they observed a low methylation level of the SSTR2
gene promoter region, irrespective of expression. Activating histone mark H3K9Ac could
be regulated with epidrug treatment. The conclusion of this study is that epidrug treatment
might hold promise for improving and adding to current somatostatin agonist treatment
strategies of patients with pancreatic NETs.

7.4. Combined Therapies to Improve PRRT Efficacy

In order for PRRT outcomes to be further improved, the use of combination therapies
is being attempted at different cellular levels [80]: increasing cellular DNA damage with
traditional chemotherapies, radio sensitization inhibiting DNA repair, radio sensitization
inhibiting phosphoinositide-3-kinase/protein kinase b/mammalian target of rapamycin
(mTOR) signaling, radio sensitization inhibiting hedgehog signaling, radio sensitization
inhibiting p53–murine double minute 2 (MDM2) interactions, radio sensitization disrupt-
ing cell cycle, radio sensitization disrupting nicotinamide adenine dinucleotide (NAD1)
metabolism, and radio sensitization blocking immune checkpoints (Table 5) [80–109].
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Table 5. Main clinical and preclinical studies performed or currently underway of combined therapies to improve PRRT efficacy on NETs.

Cellular Level Agents Clinical Studies Preclinical Studies

Increasing cellular DNA damage

[177Lu]Lu-DOTA-TATE
+ capecitabine

[81–84]
NCT02736500 [8]

[85]
[177Lu]Lu-DOTA-TATE

+ temozolomide
[86]

[177Lu]Lu-DOTA-TATE
+ capecitabine + temozolomide

[86–90]

Inhibiting DNA repair

PARP inhibitors: olaparib NCT04086485 [94]
NCT04375267 [95] [91–93]

HSP90 inhibitors: onalespib and ganetespib - [96,97]

Topoisomerase inhibitors: topotecan - [98]

Inhibiting phosphoinositide-3-kinase/protein kinase b/mammalian
target of rapamycin (mtor) signaling Everolimus [104]

NCT03629847 [105] [99–103]

Inhibiting hedgehog signaling Sonidegib - [106]

Inhibiting p53–murine double minute 2 (MDM2) interactions - - [107]

Disrupting cell cycle/microtubules Taxanes In prostate cancer -

Disrupting nicotinamide adenine dinucleotide (NAD1) metabolism Inhibitor GMX1778 - [108]

Blocking immune checkpoints Nivolumab [109]
(Lung NET) -

Poly-ADP ribose polymerase inhibitors: PARP inhibitors.
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8. Conclusions

PRRT-Lu has undoubtedly come to stay as a cornerstone treatment in metastatic GEP-
NET. PRRT-Lu has been demonstrated to be a treatment option that is highly effective in
controlling advanced, metastatic, or inoperable progressive neuroendocrine tumor disease.
PRRT is rarely curative but has been shown to help relieve symptoms, improve a patient’s
quality of life, shrink tumor lesions, and slow the progression of the disease. PRRT-Lu
is considered as a second line therapy in midgut NET and on further line therapies on
pancreatic NET by the most relevant scientific societies (ENETS, ESMO, and NANETS).
However, many questions still remain unresolved, and future directions are moving to-
wards optimizing dosimetry; the use of somatostatin antagonists; combined therapies
that increase tumoral DNA damage such as capecitabine or temozolomide; or inhibiting
tumoral DNA repair such as PARP, HSP90, or topoisomerase inhibitors, as well as other
cellular signaling inhibitors, at the same time as repositioning of treatment on algorithms
or its use on GEP-NET G3, which will surely be answered in the upcoming clinical trials.
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