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Abstract: Male infertility is a multifactorial disease with a strong genetic background. Abnormal
sperm morphologies have been found to be closely related to male infertility. Here, we conducted
whole-exome sequencing in a cohort of 150 Han Chinese men with asthenoteratozoospermia. Two
novel hemizygous mutations were identified in USP26, an X-linked gene preferentially expressed
in the testis and encoding a deubiquitinating enzyme. These USP26 variants are extremely rare
in human population genome databases and have been predicted to be deleterious by multiple
bioinformatics tools. Hematoxylin-eosin staining and electron microscopy analyses of the spermato-
zoa from men harboring hemizygous USP26 variants showed a highly aberrant morphology and
ultrastructure of the sperm heads and flagella. Real-time quantitative PCR and immunoblotting
assays revealed obviously reduced levels of USP26 mRNA and protein in the spermatozoa from
men harboring hemizygous deleterious variants of USP26. Furthermore, intracytoplasmic sperm
injections performed on infertile men harboring hemizygous USP26 variants achieved satisfactory
outcomes. Overall, our study demonstrates that LUSP26 is essential for normal sperm morphogenesis,
and hemizygous USP26 mutations can induce X-linked asthenoteratozoospermia. These findings
will provide effective guidance for the genetic and reproductive counseling of infertile men with
asthenoteratozoospermia.
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1. Introduction

Sperm biogenesis is a complex biological process that requires accurate spatio-temporal
regulation of a list of specific genes; the absence of any important gene will lead to abnor-
mal spermatogenesis [1]. Asthenoteratozoospermia, an important factor leading to male
infertility, has been defined as a disorder of genetic origin, and recurrent mutations have
been identified in several specific phenotypes, including macrozoospermia, globozoosper-
mia, and multiple morphological abnormalities of the flagella (MMAF). For example,
homozygous mutations of AURKC were identified to be responsible for most cases of
macrozoospermia [2]. Gene defects in SPATA16 and DPY19L2 were found to be associated
with typical globozoospermia [3,4]. Furthermore, 22 MMAF-associated genes have been
reported since the initial identification of DNAH1 [5-10]. All of these findings indicated
the genetic heterogeneity of asthenoteratozoospermia and the potential involvement of
other pathogenic factors.

Ubiquitination is an important biological process that controls the stability and degra-
dation of cellular proteins [11]. The addition of ubiquitin to substrate proteins, mediated
by the relayed reactions of ubiquitin-associated enzymes, can promote the degradation
of target proteins in proteasomes [12]. In contrast, the removal of ubiquitin from sub-
strate proteins (also called deubiquitination), catalyzed by ubiquitin-specific peptidases
(USPs; also known as deubiquitinases (DUBs)), can prevent target proteins from being
degraded [12]. The balance between ubiquitination and deubiquitination is essential for
the correct completion of spermatogenesis, as it regulates the biological activity, stability,
or subcellular localization of related proteins [13-15]. As a member of the USP family,
numerous nucleotide variations in USP26 have been identified in infertile men [16-18].
However, conflicting results obtained by Luddi et al. also revealed a nonsense mutation in
USP26 in a normospermic man, making the association of variations in LUSP26 with male
infertility unclear [19].

In this work, we analyzed genetic data obtained by whole-exome sequencing (WES)
from a large cohort of 150 asthenoteratozoospermia-affected Chinese men, and identified
two patients harboring hemizygous variants in USP26, a gene specifically expressed in
the testis and encoding an important deubiquitinating enzyme. The subjects harboring
hemizygous variants in USP26 displayed reduced progressive sperm motility and multiple
malformations in sperm morphology. Notably, a good pregnancy outcome was acquired
by intra-cytoplasmic sperm injection (ICSI) treatment, using the spermatozoa from the
two men harboring hemizygous USP26 variants. These findings suggest that a deficiency
in USP26 can cause severe asthenoteratozoospermia, mainly manifesting as multiple
malformations in both the sperm heads and flagella.

2. Materials and Methods
2.1. Subjects and Clinical Investigation

A cohort of 150 subjects affected by asthenoteratozoospermia was enrolled from
the First Affiliated Hospital of Anhui Medical University, the Human Sperm Bank of
West China Second University Hospital of Sichuan University, and the Affiliated Suzhou
Hospital of Nanjing Medical University. All the recruited individuals displayed isolated
infertility without obvious primary ciliary dyskinesia-related symptoms, such as bronchitis,
sinusitis, otitis media, or pneumonia [20]. A clinical investigation suggested that all the
probands in this study displayed normal male external genitalia, bilateral testicular sizes,
hormone levels, and secondary sexual characteristics. All individuals had normal somatic
karyotypes (46, XY), with no large-scale deletions in the Y chromosome. Informed consent
was obtained from all of the subjects and their family members participating in the study.
This study was approved by the institutional review boards at Fudan University, the First
Affiliated Hospital of Anhui Medical University, West China Second University Hospital of
Sichuan University, and the Affiliated Suzhou Hospital of Nanjing Medical University.
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2.2. Whole-Exome Sequencing and Bioinformatic Analysis

Whole-exome sequencing (WES) of the 150 subjects was performed according to a
previously described protocol [21]. In brief, genomic DNA was isolated from peripheral
blood samples of human subjects by the DNeasy Blood and Tissue Kit (QIAGEN, Ger-
many, 51106). Then, 1 pg of genomic DNA was used to enrich the human exome by using
the AIExome Enrichment Kit V2 (iGeneTech, Beijing, China), and was sequenced on the
Novaseq 6000 platform (Illumina, San Diego, CA, USA). The obtained original data were
mapped to the human genome assembly (GRCh37/hg19) by Burrows-Wheeler Aligner
(BWA) software, and Picard software was used to evaluate the quality of variants and
remove PCR duplicates [22]. ANNOVAR software was further used for functional anno-
tation with information from OMIM, Gene Ontology, KEGG Pathway, SIFT, PolyPhen-2,
MutationTaster, 1000 Genomes Project, and gnomAD [23]. Nonsense, frameshift, and
essential splice-site variants were preferred. Missense variants predicted to be deleterious
simultaneously by the bioinformatic tools of SIFT, PolyPhen-2, and/or MutationTaster
were also included for further evaluation. Sanger sequencing was conducted for variant
verification, and the primers are listed in Table S1.

2.3. Structural Modeling for USP26 and Its Mutants

The sequences of USP26 and its mutant Arg825Gly were submitted to the Swiss Model
web server (https://swissmodel.expasy.org/ (accessed on 17 March 2021)) to perform
homology modeling. The fragments around Arg825 and Arg825Gly were selected for the
search model, and the final model was built using default settings (the template identity
was about 31%). The full-length sequences of USP26 and its mutants Arg825Gly and
Asn799Ser were submitted to the I-TASSER server (http://zhanglab.ccmb.med.umich.edu/
I-TASSER (accessed on 25 January 2021)) to carry out structure prediction. Five models
were compared, and the best model with common good sharp and a regular local structure
was selected for further analysis. The local structure around Arg825, modeled by the
Swiss Model server, was similar to the structure model predicted by the I-TASSER server
(superposition RMSD~2.3 A).

2.4. Semen Characteristics Analysis

Semen samples were obtained by masturbation after a period of 2 to 7 days of sexual
abstinence, and analyzed in the source laboratories during a routine biological examination
according to the Fifth World Health Organization (WHO) guidelines. Analyses of semen
volume, sperm concentration, and motility were replicated three times. Sperm morphology
was assessed with hematoxylin and eosin (H&E) staining and scanning electron microscopy
(SEM), including six categories: thin heads, absent, short, bent, coiled flagella, and flagella
of irregular caliber. For each subject, at least 200 spermatozoa were examined to evaluate
the rates of morphologically abnormal spermatozoa.

2.5. Electron Microscopy Evaluation

For electron microscopy evaluation, spermatozoa were prepared according to a pre-
viously described protocol [10]. For the SEM assay, sperm specimens were deposited on
poly-L-lysine-coated coverslips, immersed in 2.5% glutaraldehyde, rinsed in 0.1 mol/L
phosphate buffer, and post-fixed in osmic acid. Then, the sperm specimens were pro-
gressively dehydrated with an ethanol and isoamyl acetate gradient and dried by a CO,
critical-point dryer (Eiko HCP-2, Hitachi). Next, the specimens were mounted on alu-
minum stubs, sputter-coated using an ionic sprayer meter (Eiko E-1020, Hitachi), and
analyzed via SEM (Stereoscan 260) under an accelerating voltage of 20 kV. For transmission
electron microscopy (TEM) assay, semen samples were washed and immersed routinely.
Then, dehydration was conducted using graded ethanol (50%, 70%, 90%, and 100%) and
100% acetone, followed by infiltration with 1:1 acetone and SPI-Chem resin overnight
at 37 °C. After infiltration and embedding in Epon 812, the specimens were sliced with
ultra-microtome and stained with uranyl acetate and lead citrate. Then, the slices were
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observed and photographed via TEM (TECNAI-10, Philips) with an accelerating voltage of
80 kV.

2.6. Real-Time Quantitative PCR(RT-gPCR)

The total RNA of human spermatozoa was extracted using the Allprep DNA/RNA/
Protein Mini Kit (QIAGEN), and approximately 1 ug of obtained RNA was converted into
c¢DNAs using HiScript II Q RT SuperMix for quantitative PCR (Vazyme). The obtained
cDNAs were individually diluted 5-fold to be used as templates for the subsequent real-
time fluorescence quantitative PCR, with AceQ qPCR SYBR Green Master Mix (Vazyme) on
a CFX Connect Real-Time PCR Detection System. GAPDH was used as an internal control,
and the primers for real-time quantitative PCR are listed in Table S2. The expression of
mRNA was quantified according to the 2~~~ method.

2.7. Immunoblot Analysis

The proteins of human spermatozoa were extracted using Minute™ Total Protein
Extraction Kit for Animal Cultured Cells and Tissues (Invent), and were separated by
10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), followed by
transferal to a polyvinylidene difluoride (PVDF) membrane (Millipore) for immunoblot
analysis. Membranes were blocked in 5% non-fat milk for 1 h at room temperature before
incubation overnight at 4 °C with the following primary antibodies: rabbit polyclonal
anti-USP26 (NBP2-93692, Novus, 1:1000) and HRP-conjugated beta actin (HRP-60008,
Proteintech, 1:2000). After being washed in TBST (Tris-buffered saline with Tween-20)
three times, the membranes were further incubated with HRP-conjugated anti-Rabbit IgG
antibody (M21002, Abmart, 1:2500) for 1 h at room temperature. After washing three times
in TBST, ChemistarTM High-sig ECL Western Blotting Substrate (Tanon) was used to detect
the immunoreactive protein bands by Tanon 5200.

2.8. Immunofluorescence Analysis

For immunofluorescence staining, the sperm cells were washed and fixed in 4%
paraformaldehyde for 30 min at room temperature, followed by two washes with PBS,
and smeared onto slides pre-coated with 0.1% poly L-lysine (Thermo Scientific). Then,
the slides of sperm cells were blocked in 10% donkey serum for 1 h at room temperature,
before being incubated overnight at 4 °C with the following primary antibodies: rabbit
polyclonal anti-USP26 (NBP2-93692, Novus, 1:100), and monoclonal mouse anti-a-tubulin
(T9026, Sigma, 1:500). Next, washes were performed using PBS with 0.1% (v/v) Tween20,
followed by 1 h incubation at room temperature with highly cross-adsorbed secondary
antibodies Alexa Fluor 488 AffiniPure Donkey anti-Mouse IgG (34106ES60, Yeasen, 1:1000)
and Cy3-conjugated AffiniPure Goat Anti-rabbit IgG (111-165-003, Jackson, 1:4000). Images
were captured with a confocal microscope (Zeiss LSM 880).

3. Results
3.1. Identification of Hemizygous USP26 Variants in Men with Asthenoteratozoospermia

In this study, whole-exome sequencing analyses were performed on the cohort of
150 subjects affected by asthenoteratozoospermia, according to a previously described
protocol [21]. After applying stringent bioinformatic analyses, we identified two men har-
boring hemizygous missense variants in USP26 (MIM: 300309): c.2473C>G (p. Arg825Gly)
in subject H002 II-1 and ¢.2396A>G (p. Asn799Ser) in subject H042 II-1 (Figure 1A). Subse-
quent Sanger sequencing revealed that these hemizygous USP26 variants were inherited
from their heterozygous maternal carriers (Figure 1A). Both of the hemizygous variants in
USP26 are absent or extremely rare in human genome datasets, and have been predicted to
be damaging through the use of the PolyPhen-2, SIFT, M-CAP, and CADD tools (Table 1).
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Figure 1. Identification of hemizygous variants of X-linked USP26 in men with asthenoteratozoosper-
mia. (A) Pedigrees of two families affected by hemizygous USP26 variants. Black-filled squares
indicate the male individuals with asthenoteratozoospermia. Sanger sequencing results are shown
below the pedigrees. The variant positions are indicated by red arrows. WT, wild type. (B) Variant
locations and phylogenetic conservation of the mutated residues in the USP26 protein. The NCBI
reference sequence number for the USP26 protein is NP_114113.1. The orange boxes indicate different
domains, as described by the NCBI browser. The UCH_N, N-terminal of ubiquitin carboxyl-terminal
hydrolase 37; Peptidase_C19, Peptidase C19 contains ubiquitinyl hydrolases.

Table 1. Hemizygous deleterious USP26 variants identified in Chinese men with asthenoterato-

zoospermia.
USP26 Variant M1 M2
cDNA alteration ? ¢.2473C>G c.2396A>G
Variant allele hemizygous hemizygous
Protein alteration p-Arg825Gly p-Asn799Ser
Variant type missense missense
Allele Frequency in Human Population
1000 Genomes Project 0 0
East Asians in gnomAD 0.0001444 0.00007219
All individuals in gnomAD 0.00001093 0.000005463
Function Prediction
SIFT damaging damaging
PolyPhen-2 damaging damaging
M-CAP damaging damaging
CADDP® 18.76 11.84

2 The NCBI reference sequence number of USP26 is NM_031907.3. © Variants with CADD values greater than
4 are considered to be deleterious.



Cells 2021, 10, 1594

6 of 15

USP26 (NM_031907.3) is located on chromosome X, and encodes a predicted 913-
amino acid protein. USP26 is specifically expressed in the testis according to the Human
Protein Atlas, and is described to be associated with the deubiquitination process. Im-
portantly, the residues in USP26 affected by these aforementioned variants are all highly
conserved across species (Figure 1B). Further structural analysis by online bioinformatic
tools revealed the severe effects of these amino acid-substituting mutations on the structure
of USP26, including the likely changes in the specificity of the surface for binding in the
USP26 mutant p.Arg825Gly, and the possible difference of the helix-loop-helix conforma-
tion or electrostatic map difference in the USP26 mutant p.Asn799Ser (Figure 2). These
findings suggest that the asthenoteratozoospermia phenotypes were likely caused by the
identified hemizygous USP26 variants.

A

iii

SER-799

.
* ARG-798
.

Figure 2. Effects of USP26 missense mutations on the structure of the USP26 protein. (A) The
structure comparison of wild-type USP26 and the mutant Arg825Gly. (i) Structure comparison in
cartoon images (Arg825 in spheres, wild-type in cyan, and mutant in green); (ii) MEP (molecular
electrostatic potential) of the wild-type USP26 structure, (iii) MEP of the mutant Arg825Gly structure;
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(iv) Arg825 superposition on the MEP of the mutant Arg825Gly. The mutants in the surface area
are highlighted with dashed circles. (B) The structure comparison and close-up view of the mutant
Asn799Ser. (i) Superposition and comparison of wild-type USP26’s (in cyan) whole structure and
its mutant Asn799Ser (in wheat). According to the close-up view of the helix-loop-helix (HLH)
structure (ii), the surface comparison (iii), and the MEP comparison (iv) of the two structures, Asn799
is located in an HLH structure motif and exposed at the surface of loop; thus, its mutant Asn799Ser
tends to induce the HLH conformation change. The side chain of its neighbor residue, Arg798, has
a large reorientation, which may lead to a significant surface change, as well as the electrostatic
map difference.

3.2. Hemizygous Variants in USP26 Lead to Obviously Reduced Expressions of USP26 mRNA
and Proteins

To further investigate the pathogenicity of hemizygous USP26 variants, we obtained
new sperm samples from a fertile control man and from men harboring USP26 variants.
The expressions of USP26 mRNA and protein were investigated using RT-qPCR and im-
munoblot assays, respectively. The abundance of USP26 mRNA in the sperm from subjects
harboring hemizygous USP26 variants was significantly reduced when compared to the
normal control (Figure 3A). As for the protein level, the expression of the USP26 protein
was also obviously decreased in the sperm samples from men harboring hemizygous
USP26 variants (Figure 3B). Consistently, as shown by immunostaining assay, USP26 im-
munostaining was mainly localized at the base of the sperm flagella in normal spermatozoa,
but was almost absent in the spermatozoa from men harboring hemizygous USP26 variants
(Figure 4). These experimental observations further indicated the important contribution
of these hemizygous USP26 variants to asthenoteratozoospermia.

A
1.5+
I 1
:\& Kekk
=
i)
@ 1.0-
o
o
x
()
(]
2 0.5-
®
)
14
0.0' T T
Normal male HO002 II-1 HO042 111
B
Normal male H002 II-1 HO042 II-1

- ~170 Kd

. - - - - - - - - - - —— e (- ~130 Kd
usezs | M e —net

~«~100 Kd

~~70 Kd

B-actin | sE—_— 2

Figure 3. Expression analysis of USP26 mRNA and USP26 in the spermatozoa from a normal male

control and men harboring hemizygous USP26 variants. (A) Real-time quantitative PCR analysis
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indicated that the abundance of USP26 mRNA was significantly reduced in the sperm from men
harboring hemizygous USP26 variants, when compared to that of a normal control man. Data
represent the means + standard error of measurement of three independent experiments. Two-tailed
Student’s paired or unpaired t-tests were used as appropriate (*** p < 0.001). (B) Inmunoblotting
assay indicated dramatically reduced expression of USP26 in the spermatozoa from men harboring
hemizygous USP26 variants. -actin was used as a loading control. The red circle represents
non-specific bands.

USP26 TUBULIN DAPI MERGE

HO02 11-1

HO42 11-1

Normal human male

Figure 4. Immunofluorescence staining of USP26 in the spermatozoa from a normal male control
and men harboring hemizygous USP26 variants. The sperm cells were stained with anti-USP26
(red) and anti-a-tubulin (green) antibodies. DNA was counterstained with DAPI (4’ ,6-diamidino-2-
phenylindole) as a marker of the cell nucleus. Scale bars: 5 mm.

3.3. Asthenoteratozoospermia Phenotypes in Men Harboring Hemizygous USP26 Variants

The semen parameters of men with hemizygous USP26 variants were investigated
in the source laboratories, according to World Health Organization guidelines. Semen
analysis indicated slightly reduced sperm progressive motility in both of the men harboring
hemizygous USP26 variants. A sperm morphological study using H&E staining and SEM
indicated multiple malformations in the spermatozoa from men harboring hemizygous
USP26 variants, including absent, short, and coiled flagella, and thin heads (Figure 5). The
rates of coiled flagella and thin heads were obviously higher in men with hemizygous
USP26 variants than in normal controls (Table 2). Furthermore, TEM was conducted to
investigate the ultrastructure of spermatozoa in the subjects with USP26 variants. As
shown in Figure 6, partial defects or loss of the acrosome can be observed in the sperm
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heads of subjects with hemizygous USP26 variants. As for sperm flagella, the cross-sections
displayed typical ‘9 + 2" microtubule structure (nine peripheral microtubule doublets and
a central pair of microtubules) in a normal male, but presented with a higher rate of
disorganization in the axonemal or other peri-axonemal structures (e.g., loss or displaced
mitochondrial sheath) in the spermatozoa from men harboring hemizygous USP26 variants
(Figure 6 and Figure S1).

Normal male HO02 II-1 HO042 I1-1
A B C

3

Figure 5. Sperm morphology analyses for men harboring hemizygous USP26 variants. Normal
morphology of the spermatozoon from a healthy control male, as revealed by light microscopy (A)
and scanning electronic microscopy (F). For the spermatozoa from men harboring hemizygous USP26
variants, multiple malformations were observed, including short (B,I) and coiled flagella (C,D,H),
and thin heads (D,E,G-I). Scale bars: 5 mm.
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HOO02 II-1 Normal male

HO42 II-1

Figure 6. TEM analyses of sperm cells from a normal male control and men harboring hemizygous USP26 variants. In the
cross-sections of the sperm cells from a control individual, acrosomes can be seen tightly attached to the nucleus (A), the
mitochondrial sheath is regularly distributed in the midpiece of the sperm flagella (B), and typical “9 + 2” microtubule
structures are clearly observed (C). Cross-sections of the spermatozoa from men harboring hemizygous USP26 variants
revealed various abnormal ultrastructures of sperm heads and flagella, including partial defects or loss of the acrosome
(D,E,G,H), disorganization of the mitochondrial sheath and peripheral microtubules (E,F,H,I), and a lack of the central pair
of microtubules or other peri-axonemal structures (F,I). Abbreviations: CP, central pair of microtubules (blue arrows); DMT,
peripheral microtubule doublet (purple arrows); ODEF, outer dense fiber (green arrows); MS, mitochondrial sheath (yellow
arrows); AC, acrosome (red arrows); N, nucleus (orange arrows).
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Table 2. Semen characteristics and sperm morphology in men harboring hemizygous USP26 variants.

Subject Ho002 II-1 H042 I1-1 Reference Limits
Semen Parameter
Semen volume (mL) 24 1.6 152
Sperm concentration (106 /mL) 31.2 31.5 15.02
Motility (%) 31.0 51.9 40.02
Progressive motility (%) 26.0 26.8 32.0%
Sperm Morphology
Thin head (%) 23.0 52.8 14.0b
Absent flagella (%) 1.8 2.5 50b
Short flagella (%) 7.5 2.3 1.0P
Coiled flagella (%) 18.0 29.0 17.0°
Angulation (%) 1.0 2.0 13.0b
Irregular caliber (%) 13 1.0 20P

2 Reference limits according to the WHO standards. ? Reference limits according to the distribution range of
morphologically normal spermatozoa observed in 926 fertile individuals.

3.4. Good Prognosis of ICSI in Men Harboring Hemizygous USP26 Variants

Previous studies have suggested intracytoplasmic sperm injection treatment as an
effective way to rescue asthenoteratozoospermia-associated infertility phenotypes [24]. In
this study, both of the men harboring USP26 mutations had undergone assisted repro-
ductive therapy by ICSI treatment. As shown in Table 3, for H002 II-1, four oocytes were
retrieved at metaphase II, and four were fertilized. From these, three good quality 8 cells
developed, and two were used for embryo transfer. The couple achieved a single successful
pregnancy and delivery. For H042 II-1, 10 oocytes were retrieved at metaphase II, and
seven were fertilized. A good prognosis was also acquired after embryo transfer. Thus,
ICSI can be recommended for USP26-associated asthenoteratozoospermia.

Table 3. Clinical outcomes of ICSI cycles using the spermatozoa from men harboring hemizygous
USP26 variants.

Subject HO002 II-1 Ho042 1I-1
Male age (year) 30 34
Female age (year) 31 32
Number of ICSI cycles 1 1
Number of oocytes injected 4 10
Number (and rate) of fertilized oocytes 4 (100%) 7 (70%)
Number (and rate) of cleavage embryos 4 (100%) 7 (100%)
Number (and rate) of 8 cells 3 (75%) 3 (42.9%)
Number of transfer cycles 1 1
Number of embryos transferred per cycle 2 2
Implantation rate 100% 50%
Clinical pregnancy rate 100% 100%

Miscarriage rate 0% 0%
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4. Discussion

Spermatogenesis is a testis-specific and multistep biological process, which is reg-
ulated by complex mechanisms. During spermatogenesis, deubiquitination enzymes
play an important role in regulating diverse cellular activities and protein turnover (e.g.,
replacement of histones by protamine, germ cell apoptosis, mitotic proliferation, and differ-
entiation of spermatogonial stem cells) [25-29]. Here, our genetic analyses using WES on a
cohort of 150 cases with asthenoteratozoospermia identified two unrelated men carrying
hemizygous variants in USP26, which is a member of the DUB family that is preferentially
expressed in the testis. These LISP26 variants are either rare or absent in human populations,
and were predicted to be damaging by multiple bioinformatics software programs. Further
pathogenicity analyses by RT-qPCR and immunoblotting showed that the expression of
USP26 was significantly reduced in the spermatozoa from men harboring hemizygous
USP26 variants. Therefore, the asthenoteratozoospermia-associated phenotypes in these
cases are likely to be caused by hemizygous variants in USP26.

USP26 is a single-exon gene located on the X chromosome that was first identified
by Wang et al. and thought to be a retrogene that originates from autosomal Usp39/
USP39 [30,31]. Previous studies have indicated that USP26 is mainly located at sper-
matogonia (types A and B), preleptotene and leptotene-zygotene spermatocytes, round
spermatids, and the blood—testis barrier in both mouse and human testes [31,32]. Several
studies have reported the association of USP26 with male infertility. Stouffs and colleagues
identified the presence of USP26 mutations in patients with various histological patterns
of spermatogenic defects (Sertoli-cell-only syndrome and maturation arrest) [16]. Genetic
polymorphisms further verified the association of USP26 with abnormal spermatogenesis,
from Sertoli-cell-only syndrome to non-obstructive azoospermia or asthenoteratozoosper-
mia [16,18,33-38]. Several spermatogenesis-associated proteins, such as the androgen
receptor MDM2, SMAD?, and polycomb repressive complex 1, have been identified as
substrates of USP26 [39-43]. In addition, Usp26 mutation in mice also leads to defec-
tive spermatogenesis, which manifests as a decreased sperm count and a malformed
sperm head morphology [44]. However, there are also studies using enzymatic assays or
meta-analyses that do not support a direct association between USP26 variants and male
infertility [45,46]. These differences may be due to different ethnic origins or number of
patient samples, different analytical methods, or different definitions of infertility [36]. In
our study, genetic analysis by whole-exome sequencing identified two hemizygous variants
in USP26 from 2 of 150 individuals affected by asthenoteratozoospermia. The spermatozoa
from men harboring USP26 mutations also displayed multiple malformations, including
higher rates of coiled flagella and thin heads. TEM analysis further revealed partial defects
or loss of the acrosome, and dramatic disorganization in axonemal or other peri-axonemal
structures in the spermatozoa from men harboring hemizygous USP26 variants. Thus, our
study, combined with previous findings, fully confirmed that USP26 might be an important
candidate gene for asthenoteratozoospermia.

As an assisted reproductive technology, ICSI has become an important tool for help-
ing infertile couples achieve a successful pregnancy. Previous studies and our recent
works have revealed the outcomes of ICSI for a series of asthenoteratozoospermia-related
genes. For example, good clinical outcomes can be achieved by ICSI treatment using the
spermatozoa from asthenoteratozoospermia-affected individuals with DNAH1, DNAHS,
TTC29, and CEAP47 variants [6,10,24,47]. However, only failed pregnancies were reported
for CEP135 or DNAH17-associated asthenoteratozoospermia, due to abnormal centriole
assembly or other unknown reasons [48,49]. In our study, both of the subjects harboring
USP26 mutations underwent ICSI treatment with their own sperm, and successful clinical
pregnancies were acquired, indicating that ICSI can be recommended for USP26-associated
asthenoteratozoospermia.
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5. Conclusions

In conclusion, our genetic and functional analyses in human subjects suggest that
hemizygous variants in USP26 are a crucial genetic cause of asthenoteratozoospermia. Our
experimental observations, together with previously reported evidence in Usp26 mutant
mice, strongly support the importance of USP26 in spermatogenesis. A good pregnancy
outcome can be acquired by ICSI treatment using the spermatozoa from men harboring
hemizygous USP26 variants. These findings provide new knowledge for genetic counselors
and clinicians to further understand the genetic etiology of asthenoteratozoospermia and
establish effective interventions.
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