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Introduction
Toxin production by pathogenic microorganisms likely serves to (i) protect against phagocyto-
sis by predatory cells, (ii) aid in penetrating tissue barriers, (iii) promote nutrient release, or
(iv) alter cellular architecture and metabolism in ways that facilitate the establishment of a
niche for colonization and replication. Useful enzymatic targets for some bacterial toxins may
be similar between prokaryotic and eukaryotic environments, necessitating a need for eukary-
otic-specific cofactors to regulate toxin activity. Host cell—derived factors may impart localiza-
tion properties to an effector, induce folding events, provide a platform for the inhibition of
cellular processes or support greater substrate promiscuity (Fig 1). The aim of this review is to
describe the diversity of bacterial effectors known to require, or to be stimulated by eukaryotic
cofactors and to integrate new ideas regarding the structural and functional implications of this
relationship (Table 1).

I. Phospholipases
Many bacterial toxins contain catalytic domains with homology to plant patatins, which are
lipid acyl hydrolases found in potato tubers. Cofactor activation of phospholipase activity is
best characterized for ExoU, a lipid membrane—hydrolyzing protein encoded by the opportu-
nistic pathogen P. aeruginosa. Monoubiquitin, ubiquitin polymers, and ubiquitylated proteins
are capable of activating ExoU [1]. Bioinformatic analyses identified at least 17 additional bac-
terial patatin-like phospholipases that fit the criteria for ubiquitin-mediated activation [2].
Functional studies of a selected subset of enzymes demonstrated that ubiquitin activates phos-
pholipases from P. asymbiotica, B. thailandensis, and P. fluorescens [2].

ExoU orthologs are also found in frank pathogens within the Rickettsiae, Legionellae, and
Salmonellae. R. typhus encodes ExoU homologs, Pat1 and Pat2 [3,4]. Both proteins are acti-
vated by preparations of bovine SOD1 (bSOD1 [3,4]), which may provide a source of ubiquitin
[1]. Additionally, R. prowazekii, the etiologic agent of typhus, displays enhanced enzymatic
activity in the presence of bSOD1 (ubiquitin, [5]). Rickettsial-derived PLA enzymes function in
cellular entry [6], phagosomal escape, and noncytolytic free fatty acid release [7].

VipD lipase from L. pneumophila displays a Rab5-dependent PLA1 activity [8] that targets
the enzyme to endosomes resulting in inhibition of phagosome maturation. SseJ, a glyceropho-
spholipid-cholesterol acyltransfersase (GCAT)-like enzyme from Salmonella, is activated by
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Fig 1. Examples of cofactor regulation of secreted bacterial enzymes. Toxins delivered to their target cell by either direct injection (yellow) or cell surface
binding and translocation (green) can be host cofactor activated. These enzymes generally contain dynamic structures that assume a catalytically active fold
upon complex formation with a host factor. The key depicts this process through cofactor-mediated organization (blue) of an unstructured sequence. Apo, the
apoenzyme catalytically-inactive state. Holo, the holoenzyme active state in which the toxin is in complex with its cofactor. CyaA, the plasmamembrane-
localized nucleotide cyclase toxin from Bordetella pertussis complexed to calcium ions and calmodulin. EF, edema factor from Bacillus anthracis, binds to
calmodulin in a different orientation than CyaA. PA, protective antigen. The cofactor for cholera toxin (ARF) is shown in the myristolated, GTP-bound form.
ER, endoplasmic reticulum, with cholera toxin peptide being secreted through ER protein channels.

doi:10.1371/journal.ppat.1004944.g001
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GTP-RhoA [9] likely for the temporal regulation of cholesterol metabolism in infected cells
[10]. The Y. enterocolitica homolog to SseJ, YspM, may have a similar function [11].

II. Transferases
Most cofactor-stimulated transferases catalyze the transfer of an ADP-ribose moiety from nic-
otinamide adenine dinucleotide to a target protein. Exoenzyme S from P. aeruginosa was one
of the first identified bacterial ADP-ribosyltransferases requiring a cofactor for activation [12].
Members of the 14-3-3 family of eukaryotic scaffolding proteins stimulate ADP-ribosylation of
a variety of targets causing disruptions in cytoskeletal integrity and vesicular trafficking [13].
Homologous enzymes are present in A. hydrophila [14] and V. parahaemolyticus [15].

Another enzyme from P. aeruginosa, ExoT, is similar (76% identity) to ExoS and requires
14-3-3 proteins as cofactors, but has limited target recognition and is not overtly cytotoxic
[16]. CrkI and CrkII are the only proteins modified by ExoT [17]. ADP-ribosylation uncouples
integrin signaling and alters the cytoskeleton. A. hydrophila and A. salmonicida encode
enzymes similar to ExoT/S termed AexT [18].

Bacterial effectors with acetyltransferase activity include YopJ, a type III secreted enzyme
from Yersinia that inhibits immune responses through acetylation of several residues in the
kinases involved in the MAPK and NFκB pathways [19]. Acetyltransferase activity is

Table 1. Cross kingdom enzyme stimulators for secreted bacterial toxins.

Strain Enzyme Stimulated Activity Activator

Pseudomonas aeruginosa ExoU PLA2/Lyso-PLA Ubiquitin

Pseudomonas fluorescens ExoU-like PLA2 Ubiquitin

Photorhabdus asymbiotica LopU PLA2 Ubiquitin

Burkholderia thailandensis ExoU-like PLA2 Ubiquitin

Rickettsia prowazekii RP534 PLA1/PLA2/Lyso-PLA2 bSOD(ubiquitin)

Rickettsia typhi RT0590/Pat1 PLA2 bSOD(ubiquitin)

Rickettsia typhi RT0522/Pat2 PLA2 bSOD(ubiquitin)

Legionella pneumophila VipD PLA1 Rab5

Salmonella typhimurium SseJ Esterase GTP-RhoA

Bordetella pertussis CyaA Nucleotidyl cyclase Calmodulin

Bacillus anthracis Edema factor Nucleotidyl cyclase Calmodulin

Pseudomonas aeruginosa ExoY Nucleotidyl cyclase Actin?

Aeromonas hydrophila AexU ADP-ribosyltransferase 14-3-3

Aeromonas spp. AexT ADP-ribosyltransferase 14-3-3

Pseudomonas aeruginosa ExoS ADP-ribosyltransferase 14-3-3

Pseudomonas aeruginosa ExoT ADP-ribosyltransferase 14-3-3

Vibrio parahaemolyticus VopT ADP-ribosyltransferase 14-3-3

Vibrio cholerae Cholera toxin ADP-ribosyltransferase ARF

Escherichia coli Heat labile toxin ADP-ribosyltransferase ARF

Shigella flexneri OspG Kinase E2-Ubiquitin

Yersinia pestis YopO/YpkA Kinase G-actin

Pseudomonas syringae HopZ1 Acetyl transferase IP6

Yersinia spp. YopJ Acetyl transferase IP6

Salmonella typhimurium AvrA Acetyl transferase IP6

Vibrio parahaemolyticus VPA1380 Cysteine protease IP6

Pseudomonas syringae AvrRpt2 Cysteine protease Cyclophilin

Totals 26 9 12

doi:10.1371/journal.ppat.1004944.t001
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stimulated by a highly abundant eukaryotic signaling carbohydrate, inositol hexakisphosphate
(IP6, [20]). P. syringae secretes an IP6-activated acetyltransferase, HopZ1, which interferes
with plant cell cytoskeletal networks and downstream cell wall—mediated immune responses
by acetylating microtubules [21]. The binding of IP6 to S. typhimurium AvrA suggests that
stimulation of acetyltransferase activity in this family of enzymes likely involves allosteric con-
formational changes [20]. Structural investigations of V. cholerae RTX toxin [22] and Clostrid-
ium difficile toxin A [23] suggest that IP6 interactions with bacterial enzymes, and their
subsequent allosteric conformational changes, may be a conserved strategy.

ADP-ribosylation factors (ARFs) have been identified as stimulators of type I and type II
heat labile toxin (LT) activity from enteric bacteria. Cholera toxin from V. cholerae, LT-I and
LT-II from E. coli, are the most studied enzymes of this family to date; each are highly homolo-
gous in sequence and structure. Cholera toxin A1 subunit was shown to fold on host cell lipid
rafts [24] before interacting with ARF proteins in their GTP-bound state [25]. Activated
enzymes ADP-ribosylate the alpha subunit of the heterotrimeric G stimulatory protein (Gs),
locking it into the GTP-bound form. This stimulates adenylyl cyclase activity and generates
supraphysiological amounts of cAMP, deregulating the chloride balance in the intestinal
lumen to cause diarrhea.

III. Nucleotide Cyclases
Cofactor-stimulated nucleotide cyclases include the adenylyl cyclases edema factor (EF) of
anthrax toxin and CyaA of B. pertussis. These enzymes contain structurally similar components
but differ in affinity and binding mechanism for their eukaryotic activator, calmodulin (CaM).
Edema factor has three domains: a protective antigen-binding domain, the adenylyl cyclase
core domain, and an alpha-helical domain. The helical domain interacts with the core domain
to maintain an unstructured activation loop. The N-terminal domain of CaM interacts with
the EF helical domain, causing a conformational switch between the helical and core domains
[26]. The C-terminal domain of CaM then docks into a crevice between the helical and core
domains, stabilizing the catalytic loop [27].

In contrast to soluble EF, CyaA localizes to the cytosolic interface at the plasma membrane.
The CaM binding domain involves completely different sequences with an affinity that is
roughly 100-fold stronger as compared to EF. N- and C-terminal domains of CaM participate
in binding, stabilization, and activation of CyaA. The C-terminal domain stabilizes a catalytic
loop, and the N-terminal domain is postulated to bind a β-hairpin motif of CyaA to promote
substrate (ATP) binding within the catalytic chamber [28].

Exoenzyme Y is a type III-secreted, cofactor-stimulated adenylyl cyclase from P. aeruginosa
[29]. Functionally, ExoY cyclase activity disrupts the actin cytoskeleton and is correlated with
Tau hyperphosphorylation, which leads to microtubule breakdown, endothelial cell gap forma-
tion, and increased tissue permeability [30]. The cofactor for ExoY remains to be established,
but preliminary work suggests that host cell actin stimulates cyclase activity [31]. Sensitive
detection methods demonstrate that ExoY, EF, and CyaA have broad nucleotidyl cyclase activ-
ity and catalyze the formation of cCMP and cUMP (or cGMP and cUMP with ExoY) in addi-
tion to cAMP [32,33]. The production of cCMP and cUMP during in vivo infection may
provide an experimental system to explore the roles of these cyclic nucleotides as new second
messengers [34].

IV. Kinases
Yersinia species inject actin-stimulated effector kinases into host cells [35]. YopO or YpkA
binds to actin in a manner that does not interfere with the association of other actin-targeting
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proteins, while simultaneously blocking actin incorporation into a filament. Thus, actin facili-
tates catalysis by stabilizing the enzyme’s catalytic loop while serving as a platform for phos-
phorylation of other actin-binding proteins [36].

Another kinase characterized from Shigella species, but also present in strains of Yersinia
and enterohemorrhagic E. coli, is OspG [37–39]. OspG is involved in attenuating NFκB signal-
ing by interfering with IκBα degradation [40]. Ubiquitin and ubiquitin chains were first identi-
fied as stimulators of OspG kinase activity in vitro [39]. Two groups subsequently solved
structures of OspG in complex with E2 ubiquitin-conjugating enzymes covalently linked to
monoubiquitin, UbcH5a~Ub [38] and UbcH7~Ub [37]. At least 10 different E2~Ub conjugates
appear to be able to activate OspG, suggesting that there may not be a strict preference towards
a particular E2.

V. Proteases
V. parahaemolyticus has recently been shown to secrete an IP6-activated enzyme, VPA1380,
with homology to the cysteine protease domains of multifunctional-autoprocessing RTX
(MARTX) domains from Vibrio and large clostridial toxins A and B [41]. The mechanism of
activation, toxicity, and target substrates are yet to be elucidated. P. syringae secretes a protease,
AvrRpt2, which is homologous to the staphopain cysteine proteases that are activated through
interactions with cyclophilins [42]. AvrRpt2 is predominantly in an unstructured coil confor-
mation until binding to a host cyclophilin, which induces folding into a stable conformer [43].
Analysis of protease activity supports a model in which AvrRpt2 must be in complex with
cyclophilin cofactor for maximal enzymatic activity [44].

Conclusions
Numerous secreted bacterial enzymes interact with host cell factors to ensure enzymatic activa-
tion in the correct environment, and in some cases, trafficking to a specific location within the
host. Common properties of the activators are that they are ubiquitously distributed through-
out the eukaryotic kingdom, are present in high concentration, and play roles in cell signaling.
The prevailing theme of a high cellular concentration may facilitate the required conditions for
toxins to establish a cross kingdom binding partner as they evolved [45]. In this way, highly
regulated and flexible proteins that are easily translocated across lipid barriers could be alloste-
rically reorganized to a stable and active conformation. Importantly, bacterial utilization of
host cell machinery to ensure maximal toxin activity in the correct environment minimizes the
maintenance of bacterial genetic information.
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