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Differentiation therapy and the
mechanisms that terminate cancer cell
proliferation without harming normal cells
Francis O. Enane 1, Yogen Saunthararajah2,3 and Murray Korc1,4,5

Abstract
Chemotherapeutic drugs have a common intent to activate apoptosis in tumor cells. However, master regulators of
apoptosis (e.g., p53, p16/CDKN2A) are frequently genetically inactivated in cancers, resulting in multidrug resistance.
An alternative, p53-independent method for terminating malignant proliferation is to engage terminal-differentiation.
Normally, the exponential proliferation of lineage-committed progenitors, coordinated by the master transcription
factor (TF) MYC, is self-limited by forward-differentiation to terminal lineage-fates. In cancers, however, this exponential
proliferation is disengaged from terminal-differentiation. The mechanisms underlying this decoupling are mostly
unknown. We performed a systematic review of published literature (January 2007–June 2018) to identify gene
pathways linked to differentiation-failure in three treatment-recalcitrant cancers: hepatocellular carcinoma (HCC),
ovarian cancer (OVC), and pancreatic ductal adenocarcinoma (PDAC). We analyzed key gene alterations in various
apoptosis, proliferation and differentiation pathways to determine whether it is possible to predict treatment
outcomes and suggest novel therapies. Poorly differentiated tumors were linked to poorer survival across histologies.
Our analyses suggested loss-of-function events to master TF drivers of lineage-fates and their cofactors as being linked
to differentiation-failure: genomic data in TCGA and ICGC databases demonstrated frequent haploinsufficiency of
lineage master TFs (e.g., GATA4/6) in poorly differentiated tumors; the coactivators that these TFs use to activate genes
(e.g. ARID1A, PBRM1) were also frequently inactivated by genetic mutation and/or deletion. By contrast, corepressor
components (e.g., DNMT1, EED, UHRF1, and BAZ1A/B), that oppose coactivators to repress or turn off genes, were
frequently amplified instead, and the level of amplification was highest in poorly differentiated lesions. This selection
by neoplastic evolution towards unbalanced activity of transcriptional corepressors suggests these enzymes as
candidate targets for inhibition aiming to re-engage forward-differentiation. This notion is supported by both pre-
clinical and clinical trial literature.

Facts

● Treatment outcomes for most disseminated p53
mutant solid tumors are poor.

● The most lethal of these tumors are morphologically
poorly differentiated.

● Differentiation-restoring treatments are an emerging
non-toxic, p53-independent treatment alternative.

● Advances in omics big data can be used to define
molecular targets for differentiation-restoring
therapy.

● Pharmacological inhibition of corepressor enzymes
re-engages suppressed differentiation pathways.
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Open questions

● Which among the multiple corepressors identified in
cells are rational molecular targets for
pharmacologic manipulation?

● What is the in vivo evidence of how corepressor
inhibiting therapy triggers terminal-differentiation?

● What are the key MYC-antagonists in any given
lineage that mediate cell cycle exits by terminal-
differentiation?

Introduction
Conventional chemotherapy aims to activate apoptosis

even in tumors where master regulators of apoptosis are
physically unavailable through inactivating gene muta-
tions, leading to multi-drug resistance1. Therefore, alter-
native targets and pathways of therapy are needed. The
complex process of cellular proliferation is coordinated by
the master transcription factor (TF) MYC. Master TF that
drive commitment into a lineage cooperate with MYC to
drive exponential proliferation, but simultaneously drive
forward-differentiation that culminates in cell cycle
exits2–4. Malignant exponential self-replication involves
decoupling of proliferation from this forward-
differentiation5–7. One way of approaching the mechan-
isms underlying such decoupling is to consider three
major modules in multi-cellular cell physiology: (i) pro-
liferation or replication; (ii) apoptosis; (iii) lineage-
differentiation7. Cell proliferation, the essence of all can-
cers, is coordinated by the master TF MYC2,8,9—amplifi-
cation of the MYC gene, and activation of MYC or its
paralogues is seen across all human malignancies10. The
master regulator of cellular apoptosis p53 (TP53) or its
key cofactors are almost universally inactivated in human
malignancies11—while multiple copies of TP53 protect
elephants from a high rate of cancer proportionate to
their high cellular mass12, TP53 mutations can be viewed
as “the elephant in the room” of all cancer therapy, since
most treatments intend to activate this master regulator
which ironically is absent from most cancers. The
mechanisms underlying impeded lineage-differentiation
in cancer are still mostly opaque and require wider
mechanistic characterization to allow development of
therapeutic interventions aiming to restore lineage-fates.
Differentiation-failure is used to distinguish malignant

from benign tumors13, and the degree of differentiation-
failure separates high from low aggressive transforma-
tions, e.g., pancreatic intraepithelial neoplasia (PanIN)
lesions from pancreatic ductal adenocarcinoma (PDAC).
Loss-of-differentiation may not be obvious by light
microscopy, but can be detected using gene expression
analysis of differentiation factors6. Tissue differentiation is
usefully considered in three compartments: (1) tissue
stem cells—cells with an intrinsically low proliferation

rate but capable of self-renewal and of giving rise
to daughter cells committed into various tissue-
lineages14–16; (2) lineage-committed progenitors—cells
with high levels of MYC activity17–20 and exponential
proliferation that is coupled with forward differentiation
towards lineage-fates; and (3) terminally differentiated
cells that have transitioned from exponential proliferation
to a focus on performing specialized tissue functions21–23.
Each stage of differentiation is regulated by key master
TFs—stem cell TFs, lineage-progenitor TFs and terminal-
differentiation TFs. The purpose of this review and study
is to define differentiation related molecular targets that
can be used in the development of p53 independent
therapies that are not toxic toward normal stem cells and
that do not alter normal stem cell replication.

Methods
We conducted a systematic review in accordance to

PRISMA guidelines (Fig. S1)24. We searched the national
library of medicine through PubMed for literature con-
taining cell proliferation, apoptosis, and differentiation in
cancer (Fig. S1). Search terms included chemotherapy,
cancer apoptosis, proliferation, and cell differentiation.
We also searched the work cited in the identified articles
for additional relevant literature. We then focused on
three therapy-resistant cancers: Hepatocellular carcinoma
(HCC), Ovarian cancer (OVC), and pancreatic ductal
adenocarcinoma (PDAC). Additional terms of phase 1, 2,
and 3 randomized clinical trials were searched in Web
Science, Pubmed/MEDLINE, Embase, ClinicalTrials.gov
and Google Scholar. The search strategy included studies
published in English language from January 2007 to June
2018.
We then analyzed gene datasets from The Cancer

Genome Atlas (TCGA) (https://cancergenome.nih.gov/)
and International Cancer Genome Consortium (ICGC)
(http://icgc.org/) to eliminate risk of bias such as selective
reporting and publication bias of altered pathways. Search
terms for altered genes in both databases were mut
(missense, frameshift, inframe, truncating mutations),
Hetloss (heterozygous deletion), Homdel (homozygous
deletion), gain, and amplification25,26. We further sear-
ched protein–protein interactions in literature and in data
deposited in UniProt (http://www.uniprot.org/) to identify
master TFs and their interacting partners necessary for
gene activation (coactivators) or repression (corepressors)
(Table 1).

Results
MYC amplification decreases survival across multiple
human malignancies
One of the key TFs regulating mammalian cell pro-

liferation is the myelocytomatosis viral oncoprotein
(MYC), whose function is conserved across evolutionary
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hierarchies27–31. Physiologically, MYC regulated pro-
liferation is succeeded by lineage-differentiation programs
that antagonize MYC to terminate proliferation20. We
analyzed MYC alterations by two approaches. First, we
analyzed copy number (CN) alterations at the MYC locus
using TCGA and ICGC data available through cBioPortal
platform and found frequent amplifications and gains of
MYC (Fig. 1a). We then accessed TCGA pan-cancer
(PANCAN) data containing 11,000 patients across 33 of
the most prevalent tumors and analyzed it through Xena
Browser. MYC was highly amplified across these malig-
nancies8,10. In both data sets MYC CN changes were
determined using GISTIC score method, where values of

−2,−1,0,1,2, represented homozygous deletion, hetero-
zygous deletion, diploid, low-level amplification, or high-
level amplification32. We next performed survival analysis
using GISTIC scores predicting low level deletion/wild-
type MYC, vs. gain/amplification using the PANCAN
dataset. MYC amplification correlated with decreased
overall survival (p < 9.784 × 10−11, n= 2628) compared to
cases with MYC CN WT/low level deletions (n= 1352)
(Fig. 1b). We then analyzed the correlation between
GISTIC scores at the MYC locus vs. MYC mRNA
expression and patient survival. There was a strong cor-
relation (spearman r= 0.3339, p < 0.0001, n= 9697)
between MYC GISTIC score and MYC mRNA expression

Table 1 Lineage specific master transcription factors, coactivators and corepressors of various tissues and identified
genetic alterations in human malignancies

Tissue (n - TCGA) Master

transcription

factor

Alteration

frequency in

TCGA database

Uniprot predicted

coactivators

Alteration

frequency in

TCGA database

Uniprot predicted

corepressors (http://

www.uniprot.org/)

Alteration

frequency in

TCGA database

Liver (n= 442) GATA46, 119 67% Hetloss ARID1A 44% Hetloss, fs* KDM1B 42% Amp, Gain

ARID2 17% Hetloss, fs* BAZ1B

FOXA1120 3% Amp Gain KMT2A 28% Hetloss, fs* SUZ12 32% Amp, Gain

SMARCA4 24% Hetloss, fs* DNMT1

FOXA2120 30% Amp Gain SMARCAD1 46% Hetloss BAZ2A 25% Amp, Gain

15% Amp, Gain

14% Amp, Gain

Pancreas (n= 109) GATA4121 49% Hetloss ARID1A 49% Hetloss, fs* BAZ1B 57% Amp, Gain

ARID1B 61% Hetloss DNMT1

GATA6121 23% Hetloss ARID3C 43% Hetloss UHRF1 50% Amp, Gain

SMARCD1 50% Hetloss SUZ12

PTF1A122 20% Hetloss SMARCB1 34% Hetloss BAZ2A 45% Amp, Gain

FOXA2123 43% Amp Gain 40% Amp, Gain

PDX1 58% Hetloss 39% Amp, Gain

Ovary (n= 302) GATA483 69% Hetloss ARID3A 91% Hetloss EZH2 38% Gain amp

ARID3B 50% Hetloss DNMT1 39% Gain amp

FOXL1/282, 87 67% Amp, Gain ARID3C 37% Hetloss BAZ1A 18% Gain amp

SMARCAD1 68% Hetloss EED 39% Gain amp

FOXO1124 63% Hetloss ARID1B 67% Hetloss

ARID1A 44% Hetloss

SMARCA1 47% Hetloss

We analyzed TCGA data in cBioPortal to determine genetic alterations in genes mediating differentiation pathways. Lineage specific transcription factors were
identified using lineage tracing studies. Cofactors interacting with lineage specific transcription factors were determined using data deposited in UniProt database
(http://www.uniprot.org/). Master transcription factors are lineage specific and they recruit various coactivators to cooperate and turn on differentiation genes. While
heterozygous loss of GATA4 and inactivation by frameshift mutations of GATA4 coactivators are frequent in hepatocellular carcinoma, other master transcription
factors such as FOXA1 are available to mediate differentiation pathways. However, corepressors such as KDM1B, which are also recruited by these TFs, are aberrant in
HCC by copy number gains and amplification. Such alterations impair ability for differentiation to ensue in HCC through epigenetic suppression of target genes5, 88, 89.
These forms of alterations are commonly observed also in PDAC, and OVC. Since corepressors are either gained or amplified in cancer but not inactivated by
frameshift mutations, inhibition of these enzymes may serve as logical molecular targets of therapy (Fig. 5c, d)
*Frameshift mutation; hetloss, heterozygous deletion
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Fig. 1 MYC alterations across multiple human malignancies. a TCGA and IGCG data were analyzed through cBioPortal to determine aberrations
at the MYC locus using pre-assigned GISTIC scores in multiple cancers from different tissue types. b We analyzed TCGA PANCAN data sets available
through TCGA hub in Xena Browser. Survival analysis of cases with copy number (CN) gains and amplification at the MYC loci vs. those with CN WT/
minor deletion of MYC demonstrated a significant overall survival (p-value < 9.784E−11, LogRank test, n= 1352 WT/minor del, 2628 CN gain and
amplification). Survival data analyzed in Xena Browser (https://xenabrowser.net/) c Anlysis of MYC GISTIC Score vs. MYC mRNA expression using
PANCAN RNA-seq data available in TCGA hub in Xena Browser. There was a strong correlation with spearman r= 0.3339, p < 0.0001, n= 9697.
d Survival analysis of patients with increased MYC mRNA compared to those with decreased MYC mRNA expression. Expression levels are normalized
relative to expression levels in normal tissues. Increased MYC mRNA was associated with poor survival (n= 1762) compared to decreased MYC mRNA
(n= 1776, p= 5.06 × 10−18 e Schematic representation of metazoan differentiation and how differentiation is stalled in malignant cells.
Differentiation continuum is initiated through stem cells lineage commitment, followed by exponential proliferation of tissue precursors/progenitors
mediated by two copies of the MYC gene. To maintain homeostasis, MYC-mediated proliferation is dominantly antagonized by terminal
differentiation pathways. f Human malignancies have impaired differentiation that fails to antagonize the MYC gene allowing for exponential
proliferation of tissue precursors
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(Fig. 1c). High (n= 1762) vs. low n= 1776) MYC mRNA
levels were associated with decreased (p < 5.609 × 10−8)
overall survival (Fig. 1d). Thus, MYC is a vital oncogene
across many human malignancies and identification of
mechanisms to antagonize MYC in cancer could have
therapeutic applications. MYC function is conserved
across evolutionary hierarchies27–31. The simple life cycle
of protozoa requires MYC to generate daughter cells that
resemble their parental cells with each cell division27,29.
Evolution from single cell organism to multicellular
organisms led to intense use of energy to open the
chromatin and to expose naked DNA allowing lineage
TFs to bind and activate hundreds of terminal differ-
entiation genes that guide cell fate and specialization into
various layers of cells. This process does not require
actively proliferating cells. Hence, MYC mediated pro-
liferation is potently antagonized at this stage33,34 (Fig.
1e). This form of potent MYC antagonism is also neces-
sary for the existence of multi-cellularity29,35. Convin-
cingly, infection of multicellular organisms with protozoa
parasites enhances transformation of infected cells into
proliferative cells by complex mechanisms that activate
MYC protein and suppress differentiation TFs27,29,36.
Unlike normal cells, malignant cells undergo prolifera-

tion without terminal-differentiation (Fig. 1e, f). This
aberrant process is strongly dependent on stabilization of
MYC and its co-proteins that modulate cell growth and
division17,20,37–39. Genetic and epigenetic alterations
ensure that persistent proliferation of lineage committed
progenitors occurs without final differentiation in cancer
cells (Fig. 1e)7. First, persistent proliferation is achieved by
consistent upregulation and chromosome gains of the
genetic locus encoding the MYC gene across human
malignancies (Fig. 1a). MYC amplification predicts poor
overall survival (LogRank p-value= 9.784 × 10−11, n=
3980) (Fig. 1a, b). In studies using genetically engineered
mouse models (GEMM) or xenograft models of cancer,
antagonizing MYC sustains tumor regression across
multiple tumors39–41. For instance, Shachaf et al. devel-
oped a transgenic mouse model conditionally expressing
MYC in hepatocytes using tetracycline-controlled
expression39. Inactivation of Myc induced regression of
murine HCC increasing hepatocytes and hepatobiliary cell
differentiation, loss of HCC marker α-fetoprotein, and
suppressed proliferation39. In a xenograft PDAC model,
Zhang et al. targeted MYC-MAX dimerization with a
small molecule (10058-F4) that disrupts the MYC tran-
scriptional activity40. Addition of 10058-F4 to gemcitabine
led to drastic attenuation of tumorigenesis compared to
single agent treatment40. Using a Kras driven mouse
model of lung cancer, Soucek et al. targeted MYC using a
dominant negative MYC dimerization domain mutant
disrupting MYC binding to canonical Myc E-box
response element ‘CACGTG’, thereby inhibiting MYC

transactivation activity41. Inhibition of MYC transactiva-
tion increased mice survival by terminating lung cancer
growth41.
From a translational perspective, various challenges

exist in the attempt to directly target MYC pharmacolo-
gically42. The most important challenge is that prolifera-
tion is a feature of normal progenitors and such therapy
could have a poor therapeutic index20. Additionally,
tumors have heterogeneous genetic backgrounds con-
tributing to sustained MYC activity. Therefore, to
understand mechanisms that antagonize excessive MYC
actions, it is imperative to define the evolutionary con-
served physiological methods by which normal progeni-
tors antagonize MYC to turn off intense proliferation and
how these can be restored in cancer.

Terminating proliferation by engaging apoptosis is toxic to
normal dividing cells
To retain cohesion and integrity between different cell

types, multicellular organisms have evolved a system of
checks and balances collectively known as apoptosis43,44.
The master TFs of apoptosis p53 (TP53) and its cofactor
p16 or p14ARF (CDKN2A) play crucial roles by arresting
proliferating cells to enable repair of damage, or initiating
orderly suicide if such damage cannot be repaired45,46.
During embryogenesis, expression of p53 is down-
regulated perhaps because embryonic stem cells self-
renew without exponentially proliferating47–49. Functional
studies of differential expression of p53 using reporter
assays demonstrated higher expression at later develop-
mental stages, and decreased expression in terminally
differentiated cells48. During cell division, p53 pathways
potently antagonize MYC pathways to halt proliferation
allowing impaired cells to undergo repair; irreparable cells
undergo self-destruction through irreversible apoptosis to
protect the integrity of entire organism43. Since p53-
knockout (KO) mice have normal development and are
not enlarged50, this illustrates that apoptosis pathways are
not the dominant mechanisms used by lineage-
progenitors to terminate exponential proliferation. Thus,
mice exhibiting double KO of Trp53, and Phosphatase
and tensin homolog (Pten) develop glioma tumors by
failing to antagonize MYC, but this phenotype is only
observed in the Trp53 and Pten double knockouts45,46. In
PDAC the most frequent gene mutation is KRAS (~92%).
GEMMs in which mutant KRAS (KC mice) is expressed in
pancreas cells develop PDAC in 30 to 40% of cases at
~8–12 months of age51. Adding mutant Trp53 to the
above GEMM (KPC mice) increases PDAC penetrance
and decreases survival to ~5 months whereas KC mice
with Ink4a deletion survive for ~2–3 months52,53. Mice
with mutant Trp53 alone without mutant Kras do not
develop PDAC53. By contrast, in ovarian cancer mouse
models it has been demonstrated that Trp53 inactivation
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Fig. 2 Apoptosis induction in p53/p16 mutant malignancy remains toxic to normal cells while simultaneous linked to refractory disease. a
Data was downloaded from TCGA and ICGC and analyzed in cBioPortal for mutations in TP53 and CDKN2A genes. b Top 10 malignancies with high
TP53/CDKN2A alterations (TP53/CDKN2A high). *Cases where these alterations were linked to poor disease-free or overall survival with a p-value <
0.05 (Table S1). c Bottom 10 cases with least frequency of alterations in TP53/CDKN2A (TP53/CDKN2A low). *Cases where these alterations were
linked to poor disease-free or overall survival with a p-value ≤ 0.05 d Disease-free survival of testicular cancer, cases with minor alterations (gains, and
heterozygous loss of one allele in TP53 and CDKN2A) vs. cases with wild type TP53 and CDKN2A (p-value= 0.211, LogRank test). e Disease-free survival
of pancreatic cancer with mutant TP53 and CDKN2A cases was significantly lower vs. cases with wild-type TP53 and CDKN2A (p-value= 0.0078,
LogRank test). f Disease-free survival of liver cancer was also significantly lower in mutant TP53 and CDKN2A cases vs. wild-type (p-value= 0.0068,
LogRank test). g Quantitative analysis of TP53 and CDKN2A mutations demonstrated less frequency of alteration of these genes in curable vs. high
refractory/treatment resistant human malignancies. h During physiologic maturation, unhealthy cells with WT p53/p16 undergo irreversible
apoptosis. Alterations in these proteins sustain oncogenic evolution leading to aberrant proliferation without apoptosis
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results in invasive tumors but tumor development is
accelerated in mice with concomitant inactivation of
Brca1 and Trp5354.
TP53 and CDKN2A are frequently bi-allelically inacti-

vated across human malignancies (Fig. 2a). Such inacti-
vation has major impact on treatment7. To terminate
malignant proliferation, conventional chemotherapeutics
aim to upregulate p53/p16 by inducing cytotoxic stress
that mimics physiological activators of this pathway55.
Since malignant cells and normal cells co-exist within the
same milieu, such treatment has an unfavorable ther-
apeutic index, as these genes are mutated/physically
unavailable in malignant cells, but intact in normal cells.
Multiple methods to re-engage apoptosis in cancer ther-
apy have been investigated but it has been difficult to
address this fundamental issue of therapeutic index56.
Advances in genomic techniques indicate that when
TP53/CDKN2A genes are wild-type, as in testicular can-
cer, treatment with cytotoxic chemotherapy (e.g., cispla-
tin) produces complete responses that increase overall
and disease-free survival57 (Fig. 2a, b). Malignancies with
high rates of TP53/CDKN2A inactivation do not exhibit
these responses leading to resistance to multiple
apoptosis-based treatments (broad chemo-resistance and
radio-resistance) (Fig. 2a, b, e, f)7. Even different tumor
types originating from the same organ have better
responses to therapy if apoptosis genes are intact. For
instance, TP53 and CDKN2A mutations occur in ~70 and
90% of PDAC, respectively58 (Fig. 2a). The overall 5 year
survival rate in PDAC is ~9% even when including
patients treated with chemotherapy or combination
therapies and/or surgery59,60. By contrast, pancreatic
neuroendocrine tumors (PNETs), generally do not harbor
TP53 mutations, exhibit only minimal deletions of
CDKN2A61, and have a 5 year survival rate of >50% when
treated with apoptosis-inducing therapy62. Similarly,
glioblastoma multiform (GBM) exhibits a variety of clin-
ical, histopathologic, and molecular characteristics, and
harbor TP53 mutations in ~30% of primary cases and
~65% of secondary GBM63,64. Glioma cells with WT TP53
are responsive to cytotoxic stress induced by clinically
available chemotherapeutic agents compared to those
with transcriptionally silenced mutant TP5365–67. Addi-
tionally, in the Trp53 induced mouse model of PDAC
(KPC), genetic inactivation of one allele of Myc sensitizes
therapeutic response gemcitabine40. We therefore ana-
lyzed genomic data by comparing the top ten malig-
nancies with an elevated frequency of TP53/CDKN2A
alterations (TP53/CDKN2A-high) with the bottom ten
malignancies with low-frequency TP53/CDKN2A altera-
tions (TP53/CDKN2A-low) (Fig. 2b, c). We found that 7/
10 of TP53/CDKN2A-high cancers had a decrease in
disease-free and overall survival when these genes were
mutated (Fig. 2b; Table S1) (p-values < 0.05). Consistently,

even in TP53/CDKN2A-low cases, there was a decrease in
disease-free and overall survival when these genes were
altered (p-values < 0.05) (Fig 2c; Table S1). Thus, the rate
of alterations in apoptosis genes is lower in curable
malignancies (testicular cancer/pediatric ALL) compared
to high refractory/treatment resistant cancers (PDAC/
HCC) (Fig. 2g). During physiologic maturation, WT TP53
induces irreversible apoptosis of unhealthy cells to retain
integrity of entire organism (Fig. 2h). By contrast, onco-
genic evolution mutates mediators of apoptosis leading to
resistance to apoptosis induction (Fig. 2h).

Genetic and epigenetic alterations of differentiation genes
in cancer
The most aggressive human malignancies are poorly

differentiated13. While differentiation contributes to poor
survival across multiple human malignancies, the
mechanisms that underpin differentiation impediment in
malignant cells are mostly unclear, but new knowledge is
emerging5–7. We identified key lineage master TFs for the
development of the ovary, pancreas and liver using pub-
lished lineage conversion studies, or studies with trans-
genic mouse models6,68–74 (Table 1). Cellular
differentiation and lineage commitment programs are
dictated by this handful of master TFs and their cofactors.
While multiple cofactors have major roles, the most vital
of these are transcriptional coactivators and corepressors
that use ATP to remodel chromatin to turn-on or turn-off
target genes33,34,75. Accordingly, we analyzed the genetic
alterations in lineage TFs, their coactivators and cor-
epressors in OVC, PDAC, and HCC (Table 1).
Since malignant cells cannot completely suppress dif-

ferentiation, as it is a continuum along which all cells
exist, master TFs that specify commitment into various
lineages are nearly never completely inactivated by
mutation but are frequently haploinsufficient (Fig. 3a;
Table 1). This dose-reduction is sufficient to stall advan-
ces along the differentiation continuum at its most pro-
liferative points5–7. For instance, FOXL1 loss was frequent
in OVC (Fig. 3a), and the frequency of FOXL1 loss was
highest in poorly differentiated OVC (Fig. 3b). This pat-
tern was similar for GATA4 in PDAC and HCC, even
though these malignancies had small numbers of patients
surviving beyond stages I and II (Fig. 3b, c). We identified
key interacting partners that are coactivators and cor-
epressors of various lineage specific TFs (Table 1) by lit-
erature analysis and data deposited in UniProt database
(http://www.uniprot.org/). To augment the stalled differ-
entiation, the coactivators were found frequently inacti-
vated and deleted (Table 1; Fig. 4a) favoring repression of
downstream genes targeted by key TFs. New lines of
evidence now imply that such alterations impair pathways
mediating terminal differentiation6,7,76. Early discoveries
of the functions of these coactivator enzymes
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demonstrated that their role in physiology was to utilize
ATP to mobilize histone DNA interactions such that
naked DNA was exposed, thereby allowing TFs to bind to
and activate target genes33,34,75,77. This process is con-
served in evolution from yeast78, one of the simplest
metazoa, to homo-sapiens77. Inactivation of these genes in
cancer could be an attempt to impair the ability of
coactivators to expose DNA to master TFs that activate
downstream genes. A major clue to this hypothesis is that
lineage master TFs are selective in their use of specific
coactivators to mediate activation of lineage genes
(Table 1). Another clue is that malignant cells tend to lose
one allele of lineage specifying TFs, an event that may be
sufficient to allow lineage commitment but insufficient for
terminal differentiation6,7 (Fig. 3a; Table 1). For instance,
liver progenitors require cooperation between GATA4
and FOXA1 to recruit coactivators (e.g., ARID1A) and
mediate activation of hepatocyte differentiation genes. In
HCC, heterozygous loss of GATA4 is frequent (68%, n=

366, Fig. 3a; Table 1) and inactivating mutations in
ARID1A are common (44%, n= 366, Fig. 4a; Table 1)6.
Hepatic differentiation is impaired and proliferation
enhanced in livers with Gata4 or Arid1a liver-conditional
haploinsufficiency6,76,79. Moreover, reintroduction of
GATA4 in GATA4 deficient HCC, or ARID1A in ARID1A
mutated but GATA4 intact HCC, activates hundreds of
hepatocyte epithelial-differentiation genes6. The master
TFs of the pancreatic lineage include GATA4 and
GATA680,81. Copy number losses of one allele of these
factors are seen in PDAC, with loss of function mutations
in coactivators also observed (Table 1; Figs. 3a, 4a).
However, PDACs also exhibited a high incidence of
amplification or gain of GATA4 and GATA6, suggesting
that in certain instances these TFs may confer a growth
advantage to pancreatic cancer cells. In OVC, one allele of
ovarian master TFs FOXL182,83 is frequently lost (80%,
Fig. 3a; Table 1 n= 316), while coactivators, such as
ARID3A and ARID3B, are often inactivated (Table 1; Fig.

Fig. 3 Genetic alterations in lineage specifying master transcription factors in human malignancies. a Analysis of TCGA data deposited in
cBioPortal to determine alterations of master transcription factors of various lineages (Table 1). Key lineage specifying transcriptions factors were
mostly haploinsufficient (heterozygous deletion/hetloss) in malignant cells or contained frequent amplification and gains. None of the transcription
factors had biallelic frameshift inactivating mutations. Thus stalled differentiation occurs through genetic haploinsuffiency of key lineage specific
transcription factors6. b Analysis of FOXL1 deletions across varying degrees of differentiation grades (pathological grades) of ovarian cancer. c Analysis
of GATA4 deletions across varying degrees of differentiation grades of pancreatic cancer (PDAC). d Analysis of GATA deletions across varying degrees
of differentiation grades liver cancer (HCC)
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4a). Thus at the core of malignant transformation, dif-
ferentiation impediment routinely enhances malignant
proliferation and is achieved through haploinsufficiency of
master TFs and inactivation of the coactivators they use.
This understanding could lead to treatments aiming to re-
engage forward-differentiation, as an alternative to
apoptosis, as the means of terminating malignant
proliferation.

Corepressor enzymes: emerging targets for differentiation-
restoring oncotherapy
An enhanceosome is composed of multiprotein com-

plexes cooperating to activate genes of a given lineage84,85,
e.g., hepatic enhanceosomes activate hepatocyte genes6,
whereas pancreas and ovarian enhanceosomes activate
pancreatic86 and ovarian genes87, respectively. Genetic
disruption of this cooperation can shift the content of

Fig. 4 Frequent inactivating mutations of coactivators and amplification and copy number gains at gene loci of transcriptional
corepressors. TCGA data was analyzed in cBioPortal to determine frequent genetic alterations in transcriptional corepressor and coactivator
enzymes (Table 1). a Inactivating mutations, bi-allelic and frameshift mutations and deletions of transcriptional coactivator enzymes in ovarian,
pancreatic and liver cancers (Table 1). b Copy number (CN) gain and amplifications of corepressors was frequently observed in various tumors
including ovarian cancer (OVC), pancreatic cancer (PDAC) and liver cancer (HCC) (Table 1). c Analysis of HES1 CN gains across varying degrees of
differentiation grades (pathological grades) of OVC. d Analysis of CN gains of BAZ1B across varying degrees of differentiation grades PDAC. e Analysis
of CN gains KDM1B gains across varying degrees of differentiation grades HCC
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these protein hubs away from coactivators to corepressors
that repress lineage genes instead76,88,89. Such repression
is further enabled by the inherent closed chromatin status
of terminal-differentiation genes, contrasting with inher-
ently open chromatin at proliferation and early-
differentiation genes6,7,90.
For exponential proliferation to occur decoupled from

forward-differentiation, a high degree of corepressor
activity is necessary for epigenetic silencing of lineage-
differentiation genes. Consequently, aberrant corepressor
activity is frequently observed in malignant cells, where

hundreds of terminal differentiation genes have accumu-
lation of active corepressors6,89. Unlike coactivators,
which are frequently inactivated by genetic mutations/
deletions6, corepressors are frequently either wild-type or
amplified in malignant cells (Table 1; Fig. 4b). DNA
methyl transferase 1 enzyme (DNMT1) is a corepressor
for master TF and also the maintenance methyltransferase
that recapitulates CpG methylation onto the newly syn-
thesized DNA strand as cells go through cycles of divi-
sion91–93. In TCGA PANCAN data, high levels of
DNMT1 are associated with poor survival (p < 0.00001,

Fig. 5 Corepressor upregulation and model for inhibiting corepressors to re-engage forward-differentiation. a Corepressor DNMT1 mRNA
upregulation predicts poor survival across multiple human malignancies in TCGA PANCAN data. b Corepressor UHRF1 (that partners with DNMT1 for
epigenetic repression activities) mRNA upregulation predicts poor survival across multiple human malignancies in TCGA PANCAN data. c Model
example in PDAC alterations of coactivators and corepressors and candidate small molecules that can be used as corepressor therapy. d Model
schematic summary for p-53 independent differentiation-restoring therapy. Non-malignant cells (normal cells) have intact lineage specifying
transcription factors of cell fate determination that dynamically recruit coactivators and corepressors enzymes to turn on or turn off differentiation
genes. Gene dose reduction by heterozygous deletion of a master transcription factor and inactivating mutations in its coactivators impairs the
activation component of differentiation genes epigenetically6. Aberrant amplifications in transcriptional corepressor enzymes facilitate a closed
chromatin status and epigenetically silence hundreds of differentiation genes6, 7 (Table 1). This mode of alteration is clinically relevant and can be
developed to suppress proliferation even in TP53 mutant malignancies102, 105
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n= 5145), compared to cases with low DNMT1 levels
(n= 5199) (Fig. 5a). This suggests an important role of
this enzyme in numerous human cancers. Therefore,
multiple studies have evolved in the last decade
attempting to develop therapeutic interventions targeting
DNMT1 in cancer therapy94–102. Similarly, Ubiquitin-like,
containing PHD and RING finger domains, 1, (UHRF1),
closely cooperates with DNMT1 in regulating DNA
methylation103,104. We analyzed the expression levels of
UHRF1 in the PANCAN dataset and found that high
UHRF1 expression levels (p < 0.0001, n= 5150) strongly
predicted poor survival rates compared to low levels (n=
5189) (Fig. 5b), illustrating the importance of these
methylation genes in human cancers.
DNMT1-depletion without cytotoxicity has therapeutic

benefits even in myelodysplastic syndrome (MDS) and
acute myeloid leukemia (AML) containing p53-system
defects102,105, and multiple clinical trials are ongoing to
evaluate DNMT1-depletion more broadly in cancer
therapy (although decitabine and 5-azacytidine used to
deplete DNMT1 have pharmacologic limitations which
can undermine their ability to deplete-DNMT1 from solid
tumors) (Table 2). In acute promyelocytic leukemia
(APL), complete remissions are achieved by combination
of arsenic with retinoic acid to inhibit corepressors
recruited on leukemia fusion protein PML-RARA106,107.
Since co-repressors are not mutated and have aberrant
activity in cancer, they are sufficient and logical molecular
targets that may engage terminal differentiation genes for
p53 cell cycle exits7,89,99,100,102,105,108–111 (Table 2; Fig. 5c,
d).
Various other corepressors have also been investigated

as potential molecular targets for epigenetic therapy of
cancer. For instance, histone deacetylase (HDAC)
enzymes are key corepressors recruited into TF hubs of
many human malignancies and are known epigenetic
suppressors of gene expression5,6,88,89. In many pre-
clinical studies, HDAC enzymes have been investigated
as potential inducers of cell differentiation94,95. One pro-
blem with targeting HDACs, however, is their pleiotropic
cellular functions—even on-target activity may thus pro-
duce unintended side effects. Other common cor-
epressors upregulated in many human malignancies are
lysine demethylase enzymes such as KDM1A (Fig. 4b).
Various studies have demonstrated differentiation
induction by pharmacologic targeting of KDM1A and
related clinical trials are currently ongoing112–116. Using a
high throughput pan-cancer in vivo screen, Carugo et al.
recently demonstrated a link between the corepressor
WDR5 and sustained MYC mediated proliferation of
PDAC117. Disrupting WDR5 through inhibition assays led
to arrested tumor progression and increased survival in
PDX mouse models of PDAC117. In this systematic
review, we have documented additional corepressors

recruited into the master TF hubs of many human
malignancies that require additional genetic and phar-
macologic validation as candidate molecular targets that
enhance differentiation. These include HES1, BAZ1A/B,
BAZ2A, EED, SUZ12 and UHRF1 (Figs. 4b, 5b; Table 1).
Furthermore, upregulation of these corepressors was
found linked to advanced clinical pathological stages
suggesting direct effect on differentiation suppression. For
example, HES1 was found as the most frequently upre-
gulated corepressor in OVC (Fig. 4b), and stage III and IV
OVC had higher HES1 gains compared to stages I and II
(Fig. 4c). Thus, HES1 inhibition therapy may be vital for
OVC differentiation therapy. This pattern was also seen
for BAZ1B in PDAC and KDM1B in HCC (Fig. 4b, d, e).
These observations suggest that, in these malignancies,
targeting these key enzymes for differentiation induction
could provide additional therapeutic strategies that cir-
cumvent p53-system defects.

Discussion
Human malignancies upregulate the master regulator of

cell proliferation MYC, and this genetic alteration is sig-
nificantly linked to poor survival rates. Historically, MYC-
driven malignant proliferation has been antagonized by
induction of apoptosis. Malignant cells, however, often
harbor inactivating alterations to the master regulator of
apoptosis p53 or its key co-factors, resulting in multi-drug
resistance but continued apoptosis-induction in normal
dividing cells (poor therapeutic index)7,43,56. To improve on
issues of resistance and toxicity, it is thus imperative to find
p53-independent strategies for antagonizing MYC6,7.
Restoring forward-differentiation is one such potential
strategy, and can be guided by an understanding that
forward-differentiation is suppressed by partial loss-of-
function to master TF that drive lineage-fates and to the
coactivators they use to activate lineage-differentiation
genes. This results in unbalanced activity of corepressors
that repress the lineage-genes instead33,34,76,89. The cor-
epressors are not frequently inactivated in human malig-
nancies but are upregulated by CN gains and amplification
of their chromosomal segments. Therefore, targeting these
corepressors can provide therapy that engages differentia-
tion instead of apoptosis7,88,89,99,101,102,105. Various clinical
trials targeting transcriptional corepressors (e.g., DNMT1)
without cytotoxicity have produced meaningful clinical
responses102,105.
To sustain a given tissue through daily wear and tear,

tissue lineage-progenitors proliferate exponentially2,39.
Since cell division involves mechanical processes such as
DNA replication, mitosis and meiosis, that are prone to
error2,4,9, metazoan cells contain an apoptosis program to
ensure that only healthy cells continue through phases of
the cell cycle44,45. Therefore, p53/apoptosis potently
antagonizes MYC to halt proliferation.
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The 2012 Nobel prize awarded to Yamanaka and col-
leagues demonstrated in spectacular fashion that cell
lineage-fates are commanded by handfuls of master
TFs68,74. Master TFs combine and collaborate to
exchange corepressors (“off enzymes”) for coactivators
(“on enzymes”) and activate lineage-programs6,7,118. It is
clear from the broadly available genomic data on cancers
(TCGA etc.) that lineage master TFs, and the coactivators
they use to activate target genes, are very frequently
haploinsufficient in cancers. Crucially, however, unlike
p53 or p16, these master TF circuits are not completely
inactivated, and small molecule drugs that target the
transcriptional corepressors aberrantly enriched in these
highly expressed master TF hubs can resume forward
lineage-differentiation and terminate proliferation, even if
p53 or p16 are absent7,89,99,100,102,105,109. Importantly,
such treatments simultaneously spare normal tissue stem
cells needed for health and life.

Conclusion and perspective
The enduring problems of oncotherapy are resistance

and toxicity. A major reason for this situation is that most
oncotherapeutics are designed to induce apoptosis, yet,
the master regulators of this program are very frequently
bi-allelically inactivated in cancers11,43. An alternative
pathway for terminating malignant self-replication is to
re-engage forward-differentiation in these differentiation-
arrested cells. Pre-clinical genetic, epigenetic, biochemical
and cell data, and both pre-clinical and clinical in vivo
data, suggests that this can be achieved by inhibiting the
corepressors aberrantly enriched, at the expense of
coactivators, in the lineage master TF hubs highly
expressed in replicating cancer cells.
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