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Abstract: Hyperfine interactions of 57Fe nuclei in Fe100-xNix nanostructures synthesized in polymer
ion-track membranes were studied by Mössbauer spectroscopy. The main part of obtained
nanostructures was Fe100-xNix nanotubes with bcc structure for 0 ≤ x ≤ 40, and with fcc structure for
50 ≤ x ≤ 90. The length, outside diameter and wall thickness of nanotubes were 12 µm, 400 ± 10 nm
and 120 ± 5 nm respectively. For the studied nanotubes a magnetic texture is observedalong their
axis. The average value of the angle between the direction of the Fe atom magnetic moment and
the nanotubes axis decreases with increasing of Ni concentration for nanotubes with bcc structure
from ~50◦ to ~40◦, and with fcc structure from ~55◦ to ~46◦. The concentration dependences of the
hyperfine parameters of nanotubes Mössbauer spectra are qualitatively consistent with the data for
bulk polycrystalline samples. With Ni concentration increasing the average value of the hyperfine
magnetic field increases from ~328 kOe to ~335 kOe for the bcc structure and drops to ~303 kOe in
the transition to the fcc structure and then decreases to ~290 kOe at x = 90. Replacing the Fe atom
with the Ni atom in the nearest environment of Fe atom within nanotubes with bcc structure lead
to an increase in the hyperfine magnetic field by “6–9 kOe”, and in tubes with fcc structure—to a
decrease in the hyperfine magnetic field by “11–16 kOe”. The changes of the quadrupole shift and
hyperfine magnetic field are linearly correlated with the coefficient −(15 ± 5)·10−4 mm/s/kOe.
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1. Introduction

Over the past few decades, nanotechnology has become one of strategic directions of industrial
and industrial development. The increased interest in nanostructures is based on the real possibility of
their practical application in various fields of science and technology, ranging from microelectronics,
catalysts, magnetic media, to alternative energy sources and targeted drug delivery [1–5]. Such interest
is due to the unique properties of nanostructures, as well as the possibility of obtaining nanostructures
with different shapes and geometries: wires, dendrites, cubes, tubes, spheres, etc. [4–8]. Moreover,
in most cases, it is the form that determines both the structural characteristics, and the field of
nanostructures application. Today, an enormous amount of work has been done on methods of
obtaining and synthesizing nanostructures, as well as evaluating the effect of various parameters on
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the physical-chemical, structural, conducting, and magnetic properties [7–15]. More than a dozen
methods have been developed for producing nanostructures of one, two, and more component
structures [13–17], layered nanowires in which layers of different thicknesses [18,19] are used in
microelectronics, and Core-Shell-type structures [20–22], which have proven to be promising targets
for biomedical applications, etc. Among the variety of nanostructure forms, hollow magnetic
nanostructures in the form of tubes [23–25] are of the greatest interest. Increased interest in this form
is due from a fundamental point of view: that is associated with the miniaturization of dimensions
and structural and magnetic properties, and with the wide possibilities of practical application
of nanotubes; it is also due to the fact that many properties, particularly the magnetic texture
and orientation of magnetic domains, are due not only to the phase composition, but also to the
geometric characteristics of the structure [26,27]. Among the variety of different compositions of
nanostructures, iron-containing (Fe100-xNix) nanostructures are incredibly interesting due to their
magnetic characteristics and have found wide application in catalysis, magnetic carriers with ultra-high
recording density, and biomedicine [28–32]. Despite the large number of papers devoted to the study
of Fe100-xNix nanostructures properties, interest in fundamentals of the influence of various factors
on magnetic properties and ultra-fine magnetic texture has not faded [33–36]. The possibility of
controlling the magnetic and structural characteristics, studying the effect of the phase composition on
the physical-chemical properties gives grounds for further research in this area [37–43].

The paper presents the results of a systematic study of the influence of the phase composition
and nickel concentration in the structure on magnetic properties of Fe100-xNix nanotubes. The method
of electrochemical synthesis into the pores of polymer templates was used as a method of obtaining
nanostructures in tube form. X-ray phase and energy dispersive analysis were used to study phase and
elemental composition. The evaluation of the influence of phase composition on magnetic properties
was studied by Mössbauer spectroscopy method that allows studying the domain structure and
hyperfine parameters of the magnetic field, as well as the orientation of magnetic domains.

2. Materials and Methods

2.1. Obtaining Fe–Ni Nanostructures

The scheme for obtaining hollow Fe100-xNix nanostructures using the template synthesis method
is presented in Figure 1. The first stage was preparation of PET-based templates (Hostaphan trend,
Mitsubishi Polyester Film Corp., Wiesbaden, Germany), which were irradiated at DC-60 heavy ion
accelerator with specified parameters. After irradiation, the polymer films were etched in a solution
of sodium hydroxide (2.2 M) at a temperature of 85 ± 2 ◦C for 210 s. These conditions allowed the
obtainment of cylindrical pores with a diameter of 380 ± 10 nm (according to SEM images, Figure 1b).

The second stage was the electrochemical synthesis of hollow nanostructures into the pores of
polymer templates. To obtain cylindrical nanostructures in the form of tubes a thin layer of gold,
no more than 25–30 nm thick, was deposited on one side of the polymer template, which was the
contact layer for the start of nucleation processes along the pore walls. The composition of electrolyte
solution used to obtain Fe and Fe100-xNix nanostructures was the following: FeSO4 × 7H2O, NiSO4 ×

7H2O in the required molar ratio, boric and ascorbic acids. All used chemical reagents had purity of
reagent grade (content of the main component is above 98%) or analytical grade (content of the main
component is more than 99%). The difference of the applied potentials was 1.75 V. The electrolyte
temperature was 25 ± 2 ◦C. The choice of these synthesis conditions allowed us to control with high
accuracy the geometry of resulting nanostructures, as well as the uniformity of composition over the
entire length of the nanotubes. The growth of nanostructures was monitored by chronoamperometry
using an Agilent 34410A multimeter (Agilent Technologies, Santa Clara, CA, USA).
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Figure 1. (a) Schematic representation of nanotubes synthesis; (b) SEM images of Fe80Ni20 nanotubes.

2.2. The Study of Structural Characteristics and Elemental Composition

The structural characteristics of nanotubes were studied using a scanning electron microscope
«Hitachi TM3030» (Hitachi Ltd, Chiyoda, Tokyo, Japan). The elemental composition was studied using
the system EDA Bruker Flash MAN SVE (Bruker, Karlsruhe, Germany) at an accelerating voltage of
15 kV. The deviation from the expected concentrations of Ni and Fe in the synthesis process did not
exceed 2%. Table 1 presents the data of energy dispersive analysis of investigated samples.

Table 1. The results of energy dispersive analysis of investigated nanostructures.

Sample
Atomic Ratio, %

Ni Fe Sample Ni Fe

Fe100 0 100 Fe50Ni50 51 ± 4 49 ± 3

Fe90Ni10 91 ± 4 * 9 ± 2 Fe40Ni60 38 ± 2 62 ± 4

Fe80Ni20 79 ± 4 21 ± 2 Fe30Ni70 31 ± 3 69 ± 3

Fe70Ni30 72 ± 4 28 ± 3 Fe20Ni80 19 ± 2 81 ± 4

Fe60Ni40 61 ± 3 39 ± 3 Fe10Ni90 11 ± 2 89 ± 4

* The accuracy of measurements was confirmed by measuring the spectra from different sites along the entire length
of investigated samples in an amount of at least 10 spectra [44].
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2.3. Methods of Characterization

The phase composition and crystal structure of the samples were determined on an Empyrean
Panalytical diffractometer (Malvern Panalytical B.V., Eindhoven, The Netherlands) (CuKα, λ = 1.5405 Å)
in the Bragg-Brentano geometry at a voltage of U = 40 kV and an amperage of I = 40 mA. The program
HighScore Plus and the international database ICDD PDF4 were used. The main part of the Fe–Ni
nanostructures was Fe100-xNix nanotubes with a body-centered cubic (bcc) structure (space group
Im3m) for 0 ≤ x ≤ 40 and with a face-centered cubic (fcc) structure (space group Fm3m) for 50 ≤ x ≤ 90.
Figure 2a shows, as an example, the diffractograms of some of the studied samples in which the nickel
concentration was lower than the iron concentration. It can be seen that the intensity peaks in these
diffractograms are at an angle of 2ϑ, equal to 44.6◦, 65.0◦ and 82.3◦, with the corresponding Miller
indices: (011), (002) and (112), which confirmed the body-centered cubic structure (bcc). Figure 2b
shows the diffraction patterns for samples in which the nickel content exceeds the iron content.
Similarly, from the obtained data on diffraction angles of 2ϑ, the values of which were 44.0◦, 51.0◦ and
75.3◦ with the corresponding Miller indices (111), (002) and (022), the crystal structure was determined.
For these samples, a face-centered cubic structure (fcc) was observed. The diffraction line at an angle of
~53.7◦, observed for all samples, corresponds to the PET pattern template. Figure 2c shows a plot of
the change in parameters of the crystal lattice on nickel concentration in the structure in comparison
with the literature data.
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According to the obtained data, the variation of the crystal lattice parameter from the nickel
concentration revealed that for the bcc structure there is a slight increase in the unit cell parameter,
and for fcc there is a decrease. Note that the phase diagram of synthesized nanostructures is in good
agreement with the phase diagram for bulk samples obtained in [41].

The Mössbauer studies were carried out on a MS1104Em spectrometer (Chernogolovka, Russia)
in the constant acceleration mode with a triangular change in the Doppler velocity of the source
movement relative to the absorber. All spectra were measured at room temperature. The 57Co nuclei
in a Rh matrix served as the source. The Mössbauer spectra were processed in SpectrRelax software
using techniques based on the reconstruction of hyperfine parameter distribution and model fitting of
spectra taking the a priori information about the subject of the study into account [45,46].

All spectra of the Fe100-xNix nanotubes were also processed as part of the model interpretation.
In the model used, the following assumptions were made. First, a random distribution of Ni atoms
over the positions of Fe atoms was assumed, i.e., obeying the binomial probability distribution:

Pn(m) =
n!

m!(n−m)!
xm(1− x)n−m (1)

where n is the number of atoms in the nearest environment of the Fe atom, m = 0, 1, ..., n is the number
of Ni atoms in the nearest environment of the Fe atom, x = x/100% is the concentration of Ni atoms.
In the case of the bcc structure, n = eight atoms located in the nearest environment of the Fe atom, and
in the case of the fcc structure, n = 12 atoms.

Taking into account the binomial distribution of Ni atoms in Fe100-xNix nanotubes, the Mössbauer
spectra were processed using a model consisting of a superposition of two quadrupole doublets,
a Zeeman sextet, a corresponding iron-containing magnetically ordered impurity, and sextets
corresponding to nanotubes (nine sextets for bcc structure and 13 sextets for fcc structure).

Secondly, within the model used, the intensity ratios of Zeeman sextets corresponding to different
environments of Fe atoms in nanotubes were assumed to be equal to probability ratios according to the
binomial distribution for different concentrations of Ni atoms:

I1:I2: . . . :Im: . . . :In = Pn(0):Pn(1): . . . :Pn(m): . . . :Pn(n) (2)

Third, an additive dependence of the hyperfine parameters Hn, δ, and ε on the number of m Ni
atoms in the nearest environment of the Fe atom was assumed:

Hn(m) = Hn(0) + m∆Hn, (3)

δ(m) = δ(0) + m∆δ, (4)

ε(m) = ε(0) + m∆ε. (5)

When deciphering the Mössbauer spectra the following were varied: the width of the resonance
lines Γ, changes in the hyperfine magnetic field ∆Hn, the shift of the Mössbauer line ∆δ and quadrupole
displacement ∆ε, caused by replacing the Fe atom by the Ni atom in the nearest atomic environment of
the Fe atom, the hyperfine parameters Hn(0), δ(0) and ε(0), corresponding to the absence of Ni atoms
in the nearest environment of the Fe atom. In this case, the value of the parameter α, which defines the
shape of the resonance line, was fixed to zero, i.e., the description of resonance lines shape was carried
out using the Lorentz function.

3. Results

3.1. Results of Restoring the Distribution of Ultrathin Parameters of the Mössbauer Spectra

All Mössbauer spectra were obtained at room temperature and in the general case they consist
of pairs of Zeeman sextets and quadrupole doublets. The main relative contribution to the intensity
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is made by a sextet with broadened lines, corresponding to Fe100-xNix nanotubes. The second sextet
corresponds to a magnetically ordered iron-containing oxide impurity. Its contribution did not exceed
4%, and the values of the hyperfine magnetic field of this sextet were in the range of “16–489 kOe.
Whereas quadrupole doublets could be attributed to Fe3+ cations in iron-oxide formed during the
synthesis of nanotubes.

Figure 3 shows the Mössbauer spectrum of Fe nanotubes (left) and the result of reconstructing
the distribution of the hyperfine magnetic field (right). It can be seen that the distribution maximum
is reached at ~328 kOe. The shifts of the Mössbauer line δ and the quadrupole shift ε are practically
zero, which corresponds to the structure of α-Fe. As a result of processing the spectrum within the
restoration of ultrathin parameters, the angle ϑ between the magnetic moment of the Fe atom and the
nanotube axis was determined as (47 ± 1◦). It indicates the presence of some magnetic texture along
the axis of the nanotubes.
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As we can see, for Fe100-xNix nanotubes, the broadening of the hyperfine magnetic field
distributions was noticeable compared with Fe nanotubes (Figure 4). With an increase in nickel
concentration in the case of 10 ≤ x ≤ 40, the distribution maximum was observed in the direction of
increasing hyperfine magnetic field (to the right), and at 50 ≤ x ≤ 90 in the direction of decreasing
hyperfine magnetic field (to the left).

As a result of the analysis of the recovered distributions, the average values of the hyperfine
parameters of the Mössbauer spectra were obtained and their concentration dependences were plotted.
Figure 7a shows the concentration dependence of the average value Hn of the hyperfine magnetic field
Hn on 57Fe nuclei. It can be seen that this dependence consisted of two regions, the transition between
which was accompanied by a jump in Hn. On the left, for the bcc structure, there was an increase in the
average values of the hyperfine magnetic field from ~328 kOe to ~335 kOe, and on the right, for the fcc
structure, a decrease from ~303 kOe to ~290 kOe. Table 2 presents the data for hyperfine parameters
for all samples.
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Figure 7. (a) The dependence of the average value of the hyperfine magnetic field Hn on Ni concentration,
obtained by restoring the distribution of the hyperfine magnetic field; (b) The dependence of the isomer
shift of the Mössbauer line δ on Ni concentration, obtained by restoring the distributions of hyperfine
parameters; (c) The concentration dependence of the mean value of the quadrupole shift, obtained as a
result of the restoration of distributions of hyperfine parameters; (d) Concentration dependence of the
average angle ϑ between the magnetic moment and the axis of the nanotubes, obtained by restoring the
distribution of the hyperfine magnetic field. �—the model fitting result; �, ∆, ♦—literary data [41–43];
#—the reconstructed distribution of the magnetic field p(Hn) result.
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Table 2. The data for hyperfine parameters.

Sample

PseudoVoight Sextet PseudoVoight
Doublet 1

PseudoVoight
Doublet 2

Intensity, % I2/I1
Hyperfine Magnetic

Field, kOe
Quadrupole Shift,

mm/s Intensity, % Intensity, %

Fe100 79 ± 3 0.495 327.8 ± 0.2 −0.001 ± 0.001 15 ± 1 6 ± 1

Fe90Ni10 69 ± 2 0.337 332.5 ± 0.6 0.001 ± 0.003 25 ± 1 6 ± 1

Fe80Ni20 85 ± 3 0.346 333.4 ± 0.6 −0.001 ± 0.001 14 ± 1 1 ± 1

Fe70Ni30 82 ± 3 0.285 341.9 ± 0.6 −0.03 ± 0.01 8 ± 1 10 ± 1

Fe60Ni40 94 ± 2 0.405 342.3 ± 1.6 −0.02 ± 0.01 5 ± 1 1 ± 1

Fe50Ni50 85 ± 3 0.689 301.5 ± 0.5 0.01 ± 0.01 5 ± 1 10 ± 1

Fe40Ni60 97 ± 2 0.660 301.5 ± 0.3 0.01 ± 0.01 2 ± 1 1 ± 1

Fe30Ni70 76 ± 3 0.525 285.1 ± 0.7 0.03 ± 0.01 6 ± 1 18 ± 1

Fe20Ni80 93 ± 3 0.504 287.7 ± 3.1 0.01 ± 0.01 2 ± 1 5 ± 1

Fe10Ni90 83 ± 3 0.504 283.8 ± 0.5 0.01 ± 0.01 2 ± 1 15 ± 1

The dependence character qualitatively coincides with the behavior of literature data for massive
polycrystalline Fe100-xNix samples, denoted by hollow polygons (Figure 7a).

Concentration dependences for the mean shifts of the Mössbauer line δ and quadrupole shift
ε, shown in Figure 7b,c, respectively, were also obtained. The mean shift of the Mössbauer line
increased from about zero to ~0.045 mm/s at 0 ≤ x ≤ 40 and then decreased to ~0.02 mm/s at 50 ≤ x ≤ 90.
The average values of the quadrupole shift were close to zero (ε < 0.01 mm/s) for all samples,
but negative for the bcc structure and positive for the fcc structure. The behavior of the obtained values
coincides with the available literature data in the case of x > 50 [41–43]. From the ratio of intensities of
the second and fifth resonant lines of the Zeeman sextet to the first and sixth lines, respectively, we can
determine the angle ϑ between the direction of gamma-quantum transit (axis of nanotubes) and the
direction of the magnetic moment of the Fe atom:

I2,5

I1,6
=

4 sin2 ϑ

3(1 + cos2 ϑ)
(6)

The average values of this angle as a function of Ni concentration are shown in Figure 7d. It can
be seen that, both in the bcc region and in the fcc structure region, an increase in the concentration
of Ni atoms led to a decrease in the mean angle ϑ. The random distribution of magnetic moments
corresponded to ϑ = 54.7◦. For nanotubes with a bcc structure, the average angle between the magnetic
moment and the axis of the nanotubes decreased to ~40◦, and with the fcc structure decreased from
~55◦ to ~46◦. The change in the angle of the magnetic texture is due to the transition of the structure
from the bcc to fcc with increasing nickel concentration in the structure. This transition is accompanied
by the presence of two phases in the structure at a nickel concentration of 50–70% with a predominance
of the fcc phase and an increase in nickel atoms in the lattice sites [47]. In this case, the presence of
the contribution of the second phase lea to a partial disorder of the magnetic texture and a change in
the angle. An increase in the nickel content in the structure led to the exclusion from the structure of
the inclusions characteristic of the bcc structure and the ordering of the magnetic texture. Therefore,
for studied nanotubes, a magnetic texture was observed along their axis.

3.2. Results of Model Interpretation of Mössbauer Spectra

Figure 8 shows the spectrum of Fe nanotubes and the results of its model interpretation. It can be
seen that the main contribution was the sextet corresponding to nanotubes with the optimal values of
the hyperfine parameters found with an accuracy determined by the standard deviations of statistical
errors: Hn = 327 kOe, δ = 0.003 ± 0.001 mm/s and ε = −0.001 ± 0.001 mm/s (the value of the chi-square
functional χ2 = 1.2 ± 0.1). These values confirm that the nanotubes did consist of α-Fe.
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Figure 8. The result of the model interpretation of the Mössbauer spectrum of Fe nanotubes.

The Mössbauer spectra of Fe100-xNix nanotubes are shown in Figure 9 for x = 10, 20% and x = 30,
40%, respectively. The figures above the spectra depict bar graphs of positions of the resonance lines of
each of the Zeeman sextets for Fe atoms with different nearest atomic environments. The arrangement
of the bar charts from top to bottom corresponds to an increase in the number of Ni atoms in the
nearest environment of the Fe atom. It is seen that for the Fe100-xNix nanotubes with the bcc structure,
the change in the hyperfine magnetic field ∆Hn caused by replacing the Fe atom with the Ni atom in
the immediate environment of the iron atom was positive.
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Figure 9. The result of the model decoding of the Mössbauer spectrum of Fe100-xNix nanotubes.

The spectra of nanotubes with fcc structure (with concentrations x = 50, 60, 70, 80, and 90%) are
presented in Figure 10. Since in the case of an fcc structure, there can be from 0 to 12 nickel atoms in
the nearest environment of the iron atom, the contribution from Fe100-xNix nanotubes were processed
by 13 Zeeman sextets. It can be seen (see the bar graphs above the spectra) that as the number of Ni
atoms in the nearest environment of the Fe atom increased, the values of the hyperfine magnetic field
for the corresponding sextets decreased, indicating a negative ∆Hn value.

We note that the data for the hyperfine parameters of the spectra corresponding to the model
interpretation, coincided with obtained values as a result of the restoration of distributions. The model
interpretation of the Mössbauer spectra also made it possible to determine the average values of
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the angle between the axis of nanotubes and the magnetic moments of Fe atoms, depending on
the concentration of Ni atoms, shown in Figure 11. In this case, the data obtained by two methods
confirmed the presence of a magnetic texture for nanotubes and with bcc and with fcc structure.Nanomaterials 2019, 9, x FOR PEER REVIEW 11 of 16 
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the axis of nanotubes, obtained as a result of the restoration of distribution of hyperfine magnetic field
(#) and the model interpretation.
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From the concentration dependences presented above, it can be concluded that the results of the
model decoding and restoration of distributions of the hyperfine parameters coincide. That confirms
the assumptions made in the chosen model.

3.3. The Effect of the Replacement of Iron Atoms on Nickel Atoms in the Immediate Environment of Iron Atoms

Within the model, an assumption was made about the additivity of contributions to the hyperfine
magnetic field, the shift of the Mössbauer line, and the quadrupole shift depending on the number m
of Ni atoms in the nearest environment of Fe atom:

Hn(m) = Hn(0) + m∆Hn, (7)

δ(m) = δ(0) + m∆δ (8)

ε(m) = ε(0) + m∆ε (9)

This made it possible to obtain the values of changes in the hyperfine magnetic field ∆Hn, the shift
of the Mössbauer line ∆δ, and the quadrupole displacement ∆ε caused by the replacement of the Fe
atom by the Ni atom in the nearest environment of the iron atom. The concentration dependence of the
change in the hyperfine magnetic field is shown in Figure 12a. Replacing the Fe atom with the Ni atom
in the nearest environment of the Fe atom in nanotubes with a bcc structure led to an increase in the
hyperfine magnetic field on 57Fe nuclei by 6–9 kOe, and in tubes with a fcc structure to a decrease in the
hyperfine magnetic field by 11 to 16 kOe. The dependences of the changes in the shift of the Mössbauer
line ∆δ and the quadrupole shift ∆ε on the nickel concentration are shown in Figure 12b,c, respectively.
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Figure 12. (a) The concentration dependence of the change in the hyperfine magnetic field ∆Hn, caused
by the replacement of the Fe atom by the Ni atom in the nearest environment of the iron atom; (b) The
concentration dependence of the change in the shift of the Mössbauer line ∆δ, caused by the replacement
of the Fe atom by the Ni atom in the nearest environment of the iron atom; (c) Concentration dependence
of the quadrupole shift ∆ε change caused by the replacement of the Fe atom by the Ni atom in the
nearest environment of the iron atom.
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Replacing the Fe atom with the Ni atom in the nearest environment of the Fe atom in the bcc
structure led to an increase in the shift of the Mössbauer line (from 0.02 mm/s to 0 mm/s, depending on
the Ni concentration) and a decrease in the quadrupole shift by 0.02–0.03 mm/s Figure 11b,c). For the
Fe100-xNix nanotubes with the fcc structure, replacing the Fe atom by the Ni atom practically did not
cause a shift in the Mössbauer line (|∆δ| < 0.005 mm/s) and the quadrupole shifted by ~0.02 mm/s.

Knowing the values of changes in the hyperfine parameters caused by the replacement of the Fe
atom by the Ni atom in the nearest environment of the iron atom, the ratios ∆δ/∆Hn (Figure 13a) and
∆ε/∆Hn (Figure 13b) were calculated.
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Figure 13. (a) The concentration dependence of the ratio of the change in the shift of the Mössbauer
line to the change in the hyperfine magnetic field; (b) Concentration dependence of the ratio of the
quadrupole shift change to the change in the hyperfine magnetic field; (c) The concentration dependence
of the linear correlation coefficient of the shift of the Mössbauer line δ and the hyperfine magnetic
field Hn when the position of the iron atom changes in the structure of nanotubes; (d) Concentration
dependence of the linear correlation coefficient of the quadrupole displacement of the line ε and the
hyperfine magnetic field Hn when the position of the iron atom changes in the structure of nanotubes.

It is seen that for an fcc structure, the ratio of the change in the shift of the Mössbauer line to the
change in the hyperfine magnetic field caused by the replacement of the Fe atom by the Ni atom in the
nearest environment of the iron atom was close to zero (Figure 12a), and the ratio of the change in
quadrupole bias to the change in the hyperfine magnetic field was ~ −0.001 mm/s/кOe (Figure 12b).
As a result of reconstructing the distributions of the hyperfine parameters of the Mössbauer spectrum,
linear correlation coefficients Kδ,Hn were obtained between the Mössbauer line shift δ and the hyperfine
magnetic field Hn (Figure 13c), as well as between the quadrupole shift ε and the hyperfine magnetic
field Hn (Figure 13d).
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As can be seen, the linear correlation coefficient of the Mössbauer line δ shift and the hyperfine
magnetic field Hn, when the position of the iron atom changes in the structure of nanotubes was
approximately zero for nanotubes (Figure 12c). Also, a change in quadrupole displacement with a
linear correlation coefficient Kε,HnKε,Hn −(15 ± 5)·10−4 mm/s/кOe was observed correlated with the
hyperfine magnetic field. Note that the concentration dependences of the linear correlation coefficients
Kδ,Hn , and, Kε,Hn and the ratios of changes in the hyperfine parameters, ∆δ/∆Hn and ∆ε/∆Hn, almost
coincided. This means that distributions of the hyperfine parameters of the spectra were determined
mainly by the degree of substitution of Fe atoms by Ni atoms in the nearest environment of the
iron atom.

4. Conclusions

The main part of the obtained nanostructures was Fe100-x Nix nanotubes with bcc structure for
0 ≤ x ≤ 40% and with fcc structure for 50 ≤ x ≤ 90%. The length, outside diameter and wall thickness of
the nanotubes were 12 µm, 400 ± 10 nm and 120 ± 5 nm respectively. Extra subspectra of low intensity
observed in experimental spectra presumably corresponds to the impurities of salts and magnetically
ordered iron oxide compounds formed during synthesis. The concentration dependences of the
hyperfine parameters of nanotube Mössbauer spectra are qualitatively consistent with the data for bulk
polycrystalline samples. With Ni concentration increasing the average value of the hyperfine magnetic
field increases from ~328 kOe to ~335 kOe for the bcc structure and drops to ~303 kOe in the transition
to the fcc structure and then decreases to ~290 kOe at x = 90. The average value of the Mössbauer line
shift increases from ~0 mm/s to ~0.045 mm/s for the bcc structure and decreases from ~0.04 mm/s to
~0.02 mm/s for the fcc structure. The average values of the quadrupole shift are close to zero (|ε| <

0.01 mm/s) but negative for the bcc structure and positive for the fcc structure. Magnetic texture is
observed along axis of the studied nanotubes. The average value of the angle between the direction of
the Fe atom magnetic moment and the nanotubes axis decreases with increasing of Ni concentration for
nanotubes with bcc structure from ~50◦ to ~40◦ and with fcc structure from ~55◦ to ~46◦. Replacing the
Fe atom with Ni atom in the nearest environment of Fe atom within nanotubes with bcc structure lead
to an increase in the hyperfine magnetic field on 57Fe nuclei by “6–9 kOe” and decrease of quadrupole
shift by 0.02–0.03 mm/s, and in tubes with fcc structure—to a decrease in the hyperfine magnetic field
by “11–16 kOe” and increase of quadrupole shift by ~0.02 mm/s. The changes of the quadrupole shift
and hyperfine magnetic field from one to another position of Fe atom in the structure of nanotubes
are linearly correlated with the coefficient −(15 ± 5)·10−4 mm/s/kOe. Such changes are caused by a
variation in the number of Ni atoms in the nearest environment of an Fe atom.
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