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We propose a Bayesian hierarchical method for combining in silico and in vivo data onto

an augmented clinical trial with binary end points. The joint posterior distribution from the

in silico experiment is treated as a prior, weighted by a measure of compatibility of the

shared characteristics with the in vivo data. We also formalise the contribution and impact

of in silico information in the augmented trial. We illustrate our approach to inference with

in silico data from the UISS-TB simulator, a bespoke simulator of virtual patients with

tuberculosis infection, and synthetic physical patients from a clinical trial.

Keywords: Bayesian hierarchical model, clinical trials, information sharing, in silico experiments, power prior,

tuberculosis, therapeutic vaccine

1. INTRODUCTION

There will always be a push for innovative treatments for medical use—either drugs, devices, or
therapies—in order to improve efficacy, cost-effectiveness, i.e., releasing new treatments suitable for
public use requires stringent testing; hence, clinical trials must be closely regulated and scrutinised.
Currently, this means the average duration of a clinical trial (Phase I–III) is 6–7 years, with a success
rate of about 11% andmean cost of about USD 1.3 Billion (1–3). A promising avenue for improving
on this issue is the use of formal models (mathematical and engineering) designed to simulate the
effect of treatments in patients [see, e.g., (4, 5) and references therein]. A step further is using the
information from in silico models to supplement clinical trials to decrease their size and duration,
potentially speeding up the commercialisation of new interventions and reducing their cost to
the public.

We concentrate on a novel therapeutic vaccination approach for treating tuberculosis (TB).
Despite being treatable, TB was the cause of about 1.4M deaths in 2019 (6), the first cause of death
by infectious pathogen. It is endemic in some South Asian countries, with a burden of about 40%
(7). This is not a localised problem at all, and despite the low burden in the region, Europe has the
highest number of new multi-drug resistant TB (MDR-TB) cases in the world1.

Despite continuous efforts, no new effective TB vaccines have been developed for almost a
century, Andersen and Scriba (8); however, therapeutic vaccination is a promising treatment
alternative (9–11). Within the STriTuVaD project2, we are developing methodology to generate
in silico patients treated with RUTI as a coadjuvant in standard TB treatment (12), to supplement
the data from a Phase II clinical trial. In this study, we propose a hierarchical Bayesian method,
enabling the incorporation of the information from computer simulations onto an augmented in
silico Phase II clinical trial investigating the efficacy of this therapeutic vaccination strategy.

1https://www.euro.who.int/en/health-topics/communicable-diseases/tuberculosis [accessed August 23, 2021].
2In silico trials for tuberculosis vaccine development. Available at: https://www.strituvad.eu/ [accessed August 23, 2021].
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2. MATERIALS AND METHODS

One key complication in the development of new treatments
for TB, with serious implications due to its impact on MDR-TB
patients, is the rate of non-compliance (7, 13). From a clinical
trial standpoint, the issue calls for increased recruitment in order
to account for dropout rates, further increasing their cost. The use
of in silico technologies has huge potential benefits, both clinical
and financial, in these kinds of scenarios.

In section 2.1, we introduce the bespoke simulator of
therapeutic RUTI vaccination of patients with TB in a Phase
II clinical trial with a binary endpoint; section 2.2 describes
the models used for the in silico and in vivo data sources,
and section 2.3 details a model combining both sources of
information to evaluate the end point of the clinical trial.

2.1. UISS-TB
The Universal Immune System Simulator (UISS) is a multi-
scale, multi-organ, three-dimensional agent-based model (ABM)
of the immune system, capable of simulating the dynamics of
specific biological pathways at the molecular level. UISS has been
successfully applied to numerous biological scenarios (14–17),
with the majority of them including the simulation of vaccination
evolution. A recent extension of the capabilities of UISS, the so-
called UISS-TB, deals with the immune system at larger scales,
enabling simulation of larger organs, such as the lungs, key in
effective modelling the behaviour of TB.

FIGURE 1 | Behaviour of weight function h(p) in Equation 10 for different values of λ and κ. The closer h(p) to 1, the more compatible the simulations are to the

physical data and a larger virtual cohort is used in the combined trial. In general, h(p) is rather insensitive for small values of λ and more discriminatory as κ increases.

Universal Immune System Simulator for Tuberculosis is a
unique, bespoke ABM for the evolution of TB in the lung after
RUTI vaccination (12, 18, 19), which can be considered as a
computational model for RUTI vaccination. As such, under
ASME V&V 40-2018 it is necessary to define its Context of Use
under the Question of Interest [see, e.g., (20, 21), and references
therein]. Based on the taxonomy proposed in Viceconti et al.
(22), this process is carefully carried out in Curreli et al. (23)
for using UISS-TB in augmented clinical trials. This ABM
produces in silico data from a number of biological entities
and chemical species (e.g., cytokines) for an individual virtual
patient, identified and characterised through an initial vector of
22 features. In order to create cohorts of virtual patients, we use
the novel approach from Juárez et al. (24), tailored for UISS-
TB. In short, these features can be sampled, either at once or
sequentially, and based on the joint distribution of the population
characteristics, each virtual patient is then simulated using UISS-
TB and the endpoint of the clinical trial recorded.

2.2. Modelling in silico and in vivo Data
Our main focus is to entertain models for the endpoint of the
clinical trial with the aim of making them amenable to sharing
information with the in silico data produced from the UISS-TB
computer experiment. We propose a two layer approach: a layer
dealing with the individual sources of information, either in silico
or in vivo data, and a second combining the information in an
augmented clinical trial.
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TABLE 1 | Key patient features.

Group Feature Range n Min q0.025 q0.5 q0.975 Max

In vivo Ctrl

Age [10, 80]

75

32 34.85 44 52.45 56

Sputum [0, 10, 000] 4,879 4,896 5,010 5118.3 5,149

BMI [18.5, 35] 20.68 22.58 27.21 31.01 32.16

INFγ [0, 268.2] 13.56 13.89 25.13 32.09 33.23

In vivo RUTI

Age [10, 80]

75

33 35.7 44 54 55

Sputum [0, 10, 000] 4,865 4922.2 5,004 5,100 5,144

BMI [18.5, 35] 22.03 23.49 26.87 32.03 33.88

INFγ [0, 268.2] 14.11 16.41 24.75 32.48 36.86

In silico Ctrl

Age [10, 80]

75

32 34.55 45 53.15 62

Sputum [0, 10, 000] 4,871 4890.85 5,006 5,082 5133

BMI [18.5, 35] 21.18 22.91 26.58 30.70 30.95

INFγ [0, 268.2] 15.3 15.88 24.33 30.77 33.21

In silico RUTI

Age [10, 80]

75

35 36.85 44 51 53

Sputum [0, 10, 000] 4,892 4910.7 5,002 5097.35 5,178

BMI [18.5, 35] 19.87 22.02 26.42 30.04 31.85

INFγ [0, 268.2] 13.47 18.42 24.94 34.62 36.52

Admissible ranges of UISS-TB features [see (24)] and sample summary statistics (min, max, 2.5, 50, and 97.5% quantiles) from each subgroup in the virtual and physical cohorts used

in the augmented Phase IIb clinical trail of RUTI.

FIGURE 2 | Sputum levels in time from profiles chosen at random from both RUTI and Control groups in the in vivo (IV) and in silico (IS) cohorts, using run 49 out of a

100 available.

For the former, we consider standard Bayesian (hierarchical)

generalised linear models (hGLM), whereas for the latter we
entertain a power prior approach based on the in silico model
and a similarity measure, controlling the flow of information

from the in silico experiment onto the augmented trial.
We implement these Bayesian models using a benchmark
prior, but our methodology can accommodate alternative
prior specifications.
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FIGURE 3 | Posterior distribution of odds for both RUTI (top left) and Control (bottom left) groups, when either using profiles with identical initial vector of features as

individual patients (red dotted) or taking each profile with its corresponding 100 simulations as a replicate of a specific patient (solid blue). On the left panel, the

posterior distributions of the random effect precision from each group is displayed.

2.2.1. Individual Sources of Information
For an individual source of information, either from in silico or in
vivo data, we use a logistic hGLM. Given the stochastic nature of
ABMs, our model (Equation 2) includes an additional source of
uncertainty for the in silico data to capture the stochasticity from
UISS-TB simulations.

Formally, for each group j = R,C —treatment (RUTI) and
control—, each patient i = 1, . . . ,m is identified by their
corresponding vector of features, xi = xi1, . . . , xip, p = 22. We
denote them× pmatrix of features by X = [x1, . . . , xm], and for
each patient, we define

r
j
i =

{

1 i-th patient in group j has a negative sputum culture

0 otherwise
,

(1)

with P(r
j
i = 1) = θ

j
i the individual probability of a negative

sputum smear count. To control for individual characteristics, we
assume

g(θ
j
i ) = log

θ
j
i

1− θ
j
i

=







µj + u
j
i + x

j
iβ for in silico data

µj + x
j
iβ for in vivo data

, (2)

where β the vector of coefficients adjusting for individual
features, µj is related to the baseline rate of conversion, and

u
j
i is the random effect accounting for the variability arising

from simulating a specific profile i on UISS-TB, with u
j
i ∼

N
(

u
j
i

∣

∣

∣
0, σ

j
i

2)

and σ
j
i elicited from repeated measurements of the

corresponding profile. This formulation is readily simplified if

the underlying simulator is mechanistic instead, by letting σ
j
i =

0.
We can then enable evaluation of the endpoint using both

arms, by realising that log-odds ratio,

g(θRi )− g(θCi ) = log
( θRi

1− θRi

/ θCi

1− θCi

)

= (µR − µC)+ (xRi − x
C
i )β ,

is the expected log-difference in performance, adjusted for
individual characteristics. Thus,

δ = exp
[

µR − µC
]

, (3)

is the endpoint of the trial, our quantity of interest.

2.2.2. Prior Setup
For benchmarking, we propose a conventional Gaussian-Gamma
prior,

π(µj,β ,ω) ∝ N
(

µj
∣

∣

∣
mj, τ j

−1
)

Np

(

β
∣

∣ η,ω−1Ip
)

Ga
(

ω
∣

∣ cω, dω

)

,

(4)
with the parameters {mj, τ j, cω, dω} fixed to reflect relative little
prior information and use π *η ∝ 1.
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FIGURE 4 | The posterior distribution of the random effect precision is displayed for both RUTI and Control groups, along with their corresponding best gamma

distribution fit. In both cases, we elicit the prior distribution for τui from the combined models.

2.3. Combining Information From in silico

and in vivo Data
In order to enhance the precision in evaluation of the endpoint
and reduce the number of real patients needed, we want to
combine the information from fitting (Equation 2) to the in
silico UISS-TB data with the in vivo data. From our Bayesian
approach, it is natural that the posterior distribution from the
in silico data to function as the prior for the in vivo data model,
with an additional parameter, the so-called power prior, for
controlling the amount of information from the in silico data
going into the combined model as in Haddad et al. (25). The
power parameter is set based on a measure of compatibility
between the in silico to the in vivo data, by using a weight
function to account for dissimilarities in the distributions, and
thus controlling the impact the virtual cohort has on the
combined model.

It is worth noting here that, in practise, there will be a subset
of features common to both in silico and in vivo experiments,
susceptible of information sharing, whereas a number of features
will be unique to each experiment. Formally, let βs be the vector
of coefficients associated with the in silico data model and βv

to the physical data model. Then, βc = βs ∩ βv represents
the common parameters to both experiments, and βv−c the
parameters from the in vivomodel only, so that βv = {βv−c,βc}.
The likelihood from the in silicomodel can be expressed as,

L
(

βs ; Ds

)

∝ f
(

r
∣

∣ βs, X
)

=

m
∏

i= 1

f
(

ri
∣

∣ βs, xi
)

, (5)

with Ds the in silico data. Hence, the posterior distribution of βs

is

π
(

βs

∣

∣ Ds

)

∝ f
(

r
∣

∣ βs, X
)

π(βs, η,6,ω,µ.λ), (6)

Using similar notation, we denote L
(

βv ; Dv

)

the likelihood from
the physical clinical trial, with Dv the in vivo data, with

π
(

βv

∣

∣ Ds, Dv

)

∝ L
(

βv ; Dv

)

π
(

βc

∣

∣ Ds

)

π(βv−c, η,6,ω,µ, λ),
(7)

the posterior distribution of βv, where π
(

βc

∣

∣ Ds

)

is the joint
marginal posterior of the common feature coefficients from the
in silico data and

π
(

βc

∣

∣ Ds

)

=

∫

π
(

βs

∣

∣ Ds

)

dβs−c, (8)

with βs−c the set of parameters from the in silicomodel only.
Summarising, our model in Equation (7) takes into account

the information coming only for the in vivo model, i.e.,
L
(

βv ; Dv

)

, and draws all prior information for the common
parameters to both experiments based on the joint marginal
posterior distribution from in silico in Equation (8).

2.3.1. Measure of Similarity
As it stands, π

(

βv

∣

∣ Ds,Dv

)

takes the information coming from
the in silicomodel at face value, i.e., the same weight is assigned to
the information from the computer experiment and the clinical
trial. In order to have a mechanism to control the amount of
information shared, we consider a power prior approach (26–28),
in which the prior distribution in Equation (8) is weighted based
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FIGURE 5 | Weight associated with each combination of parameters in the weight function, h(p), for the RUTI group. Relative low values of λ do not provide clear

separation, regardless of the potential number of additional virtual patients. For the data observed, λ = 0.4 and κ = 1 provide appropriate separation and suggest

adding 12–30 virtual patients to the combined trial.

on a measure of compatibility α, with 0 < α < 1, and, therefore,
the posterior distribution of βv in Equation (7) updates in,

π
(

βv

∣

∣ Ds, Dv

)

∝ L
(

βv ; Dv

)

π
(

βc

∣

∣ Ds

)α
π(βv−c). (9)

We follow Haddad et al. (25) and express α = m/M, withM the
size of the virtual patient cohort and 0 < m < M the effective
size of the in silico trial. To provide a measure of agreement,
let π(δs | Ds) and π(δv | Dv) be the posterior distribution of
the endpoint from the virtual and the physical cohorts, using
the conventional non-informative prior distribution. One would
expect p = P(δv < φs) to be close to 0 or 1 if the virtual
cohort provided dissimilar information to the physical; thus, p
can be treated as a measure of agreement. We use a weight
function, m = h(p) × mmax, based on p, in such a way that
m → 0 if p → 0, 1 and m → mmax if p → 1/2, with
mmax the maximum number of virtual patients allowed in the
combined trial. Formally, we consider the symmetric weight
function around 1/2,

h(p ; λ, κ) ∝











1− exp
[

−(
p
λ
)
κ
]

p < 0.5

1− exp
[

−(
1−p
λ
)
κ
]

p ≥ 0.5

, (10)

where the parameters λ and κ control the scale and shape of the
function, respectively, and hence the stringency of the penalty

as p deviates from 1/2. In short, larger values of λ and/or κ

provide a faster decrease from the peak of the function, therefore
decreasing the effective size m; this behaviour is illustrated in
Figure 1 for different combinations of {λ, κ}.

3. RESULTS

To illustrate our methodology, we simulate a two arm Phase IIb
trail to test the efficacy of RUTI in drug-sensitive patients with
TB. Both groups start with standard MDR-TB treatment from
day 0; additionally, the intervention group is injected with 25 µg
RUTI after at day 7. Efficacy is measured as percentage of patients
with sputum culture negative at day 15. There are 150 patients
in the in vivo cohort, split equally at random to each arm. We
generated 150 profiles as in Juárez et al. (24), 75 per arm, and
ran 100 UISS-TB simulations per virtual patient. Table 1 displays
summary statistics from each group.

In Figure 2, we plot the time series of sputum culture for
arbitrary chosen profiles from a single run of the UISS-TB
simulations, also selected at random. Patients in both RUTI
and Control groups appear to have high values of sputum
culture at the beginning of the trial —days 0 to 7— and
seem to show different behaviour at the later stages of the
trial, with small bumps at isolated days, specifically the control
group in the in vivo cohort. The majority of patients seem
to return to a state of negative sputum culture after day 14
on average.
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FIGURE 6 | Weight associated with each combination of parameters in the weight function, h(p), for the Control group. Relative low values of λ do not provide clear

separation, regardless of the potential number of additional virtual patients. For the data observed, λ = 0.4 and κ = 1 provide a reasonable separation and suggest

adding 18-25 virtual patients to the combined trial.

TABLE 2 | Summary statistics (2.5, 50, and 97.5% quantiles) and interquartile

range (IQR) of posterior distributions of the odds from each group after adding

virtual patient batches of different sizes (ns) to the in vivo cohort (nv ).

Group nv ns q0.025 q0.5 q0.975 IQR

Control 75

0 0.326 0.538 0.875 0.182

5 0.301 0.512 0.845 0.182

15 0.334 0.542 0.875 0.181

25 0.333 0.544 0.873 0.181

35 0.328 0.541 0.873 0.182

45 0.322 0.533 0.860 0.181

RUTI 75

0 0.383 0.649 1.081 0.229

5 0.340 0.607 1.057 0.236

15 0.360 0.629 1.067 0.230

25 0.367 0.630 1.063 0.230

35 0.366 0.627 1.057 0.230

45 0.361 0.628 1.060 0.232

In order to obtain a reasonable estimate for each unique
profile, we average the sputum culture over the 100 UISS-TB

simulations and set a common threshold of 0.05 to obtain r
j
i

in Equation (1) for each patient i = 1, . . . , 75 and each group
j = R, C, where 1 indicates a patient with sputum culture negative
and 0 otherwise. The reason for doing so is the variability coming
from replicates of a specific profile using UISS-TB, summarised
into the random effect term in our model in Equation (2) and
analysed in section 3.1.

3.1. Random Effect in the in silico Cohort
In order to measure the simulation uncertainty in the UISS-TB
output, i.e., the variability of the output from a patient with the

same profile, we first fit (Equation 2) without u
j
i to both groups

using all 75 patients with unique profiles and their 100 runs
as individual patients. We then compare the resulting posterior
distribution of the odds with the one from using a flat prior for
the precision of the random effect.

As illustrated in Figure 3, when the replicates of each profile
are treated as individual patients, the posterior distribution of
the odds is slightly different compared to the case where we take
into account the fact that we do know replicates exist. Overall,
the interpretation of the fitting is fundamentally the same; in
both RUTI and Control groups, the odds are similar (rightmost
panels). However, in the former case there is a clear source of
variability missing, even if it is small, evidenced by the posterior
distribution of the precision of random effect, τui = 1/σ 2

ui
, on

the leftmost panel. Hence, we use the model with a random effect
for the in silico data, eliciting a Gamma prior distribution for τui ,
depicted in Figure 4.

3.2. Determining the Contribution of the in

silico Experiment
In order to control the supplemental amount of information
from the in silico data into the augmented trial, we perform
preliminary runs adding one in silico patient at a time and
analyse the behaviour of the weight, α. Ideally, we seek for
the point where α is higher, while controlling the discrepancy
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FIGURE 7 | Posterior distribution of odds for both RUTI and Control groups, when only the in vivo cohort is fitted and when both the in vivo and in silico cohorts are

combined for the full model. For the latter, the optimal number of virtual patients ns for each group is selected according to the weights in Figures 5, 6.

measured by Equation (10) for different combinations of λ

and κ . The behaviour of this penalty function is illustrated in
Figure 1, and the resulting weight from adding single in silico
patients sequentially to the RUTI and Control cohorts presented
in Figures 5, 6, respectively.

As expected, low values of λ, regardless of κ , yield weights
unable to discriminate the information contribution from
the in silico experiment, particularly for small numbers of
added patients. Larger values, in contrast, allow for better
discrimination, which can be fine tuned by varying κ . In our
implementation, we use λ = 0.4 and κ = 1 enabling
identification of an optimal number of added virtual patients,
i.e., a value of α that keeps the similarity of the in silico and in
vivo cohorts at an acceptable level, allowing us to increase the
sample size of the augmented clinical trial potentially improving
the precision in estimation of the end point.

For the RUTI group, the optimal number of added patients
appears to be between 12 and 30, whereas for the Control group
between 18 and 25. Therefore, for our implementation we will
use a batch of nRs = 26 and nCs = 25 in silico patients to combine
with the nv = 75 in vivo patients in the augmented clinical
trial. Table 2 summarised some of the key characteristics of the
posterior distribution of the odds from both groups with batches
of various sizes added. Results from the Control group change
ever so slightly with the number of the added virtual patients. In
the Control group, adding more than approximately 15 patients
and up to 35 seems to keep a similar posterior mean and slightly
smaller interquartile range (IQR), whereas, in the RUTI group,

TABLE 3 | Summary statistics (2.5, 50, and 97.5% quantiles) and IQR of the

posterior odds of the Control and RUTI groups from the in vivo (nv ) and

augmented trials after adding the optimal size batch of virtual patients, (nos ).

Group Model nv nos q0.025 q0.5 q0.975 IQR

Control
In vivo only

75
0 0.328 0.538 0.863 0.182

augmented 25 0.331 0.544 0.876 0.184

RUTI
In vivo only

75
0 0.384 0.651 1.073 0.229

augmented 26 0.370 0.634 1.059 0.229

Ratio
In vivo only

75
0 0.592 1.210 2.456 0.592

augmented 25 + 26 0.565 1.162 2.355 0.580

adding virtual patients results in a small downward shift on the
posterior mean with similar ranges.

3.3. An Augmented Clinical Trial
Once the optimal number of added virtual patients for each
group, nRs = 26 and nCs = 25, is decided, our modelling approach
enables the evaluation of the end point in an augmented clinical
trial. The posterior distributions of the odds within each group
from the in vivo and augmented trials are shown in Figure 7.
As displayed on the top panel of the figure, 36% of the patients
have negative sputum culture for the Control whereas 41% for
the RUTI group. The posterior expected odds of recovery from
each trial in the Control group remain quite similar, with a
slightly wider equally tailed interval of probability 0.95 from the
augmented trial. The addition of patients to the RUTI group does
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FIGURE 8 | Posterior distributions of odds ratio when only the in vivo cohort is fitted and when both the in vivo and in silico cohorts are combined for the full model.

Adding virtual patients does not alter significantly in the posterior expected odds but provides a decrease in the uncertainty in the estimation of the clinical end point.

not seem to have a significant impact on inference, with both
the posterior mean and 95% interval shifting slightly to the left;
numerical summaries can be found in Table 3.

The effect of augmentation to the end point is shown
in Figure 8, where the posterior distributions of the odds
ratio from the in vivo and augmented clinical trials are
plot together. The red dotted line represents the in vivo

only and the solid blue line the augmented trial, along
with the posterior means (crosses) and equally tailed
0.95 posterior probability intervals. It is apparent that
posterior point estimates are quite similar and would
lead to the same clinical conclusion, but the width of the
posterior interval of the augmented trial is shorter, providing
increased precision.

Our models have been built in RStan (29), which enables
straightforward implementation and modification of the prior.
The code is available from our GitHub repository3 under request.
On average, running our code takes a few minutes for 100s and
slightly longer for 1,000s of patients, the individual models with
the random effect—i.e., the in silico patients—being the slower.
For instance, 750 in vivo patients with 500 in silico patients
take a couple of minutes for both independent and combined
models, whereas 3,750 in vivo with 2,500 in silico patients
runs in about 25 min for the individual model with random
effects and in around 10 min for the combined. We should
point out that, despite not suffering from scaling issues, our
models have been devised for clinical trials with limited number
of in vivo patients, augmented with computer simulations
to boost the performance with respect to the endpoint of
the trial.

3https://github.com/kiagiasdim/AugTrial_UISSTB.git.

4. DISCUSSION

The need for innovative solutions for improving public health is
increasingly apparent. Speeding up the delivery of interventions
to the market, without compromising safety and effectiveness,
can be achieved by adding relevant information to the either
clinical trial phase. Our methodology is designed to incorporate
relevant information from in silico experiments onto clinical
trials data to decrease their size and duration. There are
indeed a number of approaches to simulate different aspects
of TB, from purely synthetic approaches for designing new
multi-epitope subunit vaccine (30) and molecular dynamics
(31), to contagion dynamics (32). There are also models
able to simulate pharmacokinetics in TB on a population
level (33, 34), but none of these produce data relevant
to the endpoint of the clinical trial considered in this
study. UISS-TB is a bespoke ABM capable of simulating
cohorts of TB in silico patients treated with RUTI (12,
24), which has been through ASME V&V 40-2018 (23);
to the extent of our knowledge, currently there is no
available alternative.

We illustrate our approach within an augmented Phase
II clinical trial of a co-adjuvant vaccine for treating patients
with TB. Both sources of information, in vivo and in silico,
are combined using a novel statistical coherent Bayesian
approach capable of propagating the uncertainty from
both sources of information onto the posterior distribution
of the clinical endpoint. The contribution of the in silico
experiment is controlled by a measure of compatibility
with the in vivo data and weighted accordingly into
the combined trial. The models for the each source of
information are tailored to the clinical endpoint, in our case
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study a GLM due to the binary endpoint, but alternatives
can be readily used while adapting the prior structure
accordingly.

We use a novel, bespoke simulator for the RUTI clinical trial,
but the methodology for sharing information can be applied
in a variety of scenarios. In principle, in silico data could
be acquired from a number of sources (statistical, machine
learning, and artificial intelligence) if relevant, adding the
corresponding terms to Equation (2) to account for their
different nature. In any case, appropriate choice of the penalty
function is key, as it controls the quantity of information
from the in silico experiments. This information balance must
be considered carefully and may be indeed effected by a
regulator by setting the maximum number of virtual patients,
mmax. We adapt the approach on Haddad et al. (25) and
heuristically set its parameters by inspecting their discrimination
power. A potential avenue for future research would be to
provide a formal approach for automatic selection, enabling
an unsupervised method for deciding the optimal number
of virtual patients. Our penalty function is bounded in (0,
1) facilitating weighing in silico information regardless of the
underlying distributions or sample sizes. This penalty could also
be based on alternative measures of discrepancy between the
two endpoint distributions, e.g., Kullback-Leibler, Chernoff, Lm-
norm (35), but would require scaling on case-by-case basis.
Exploring alternative specifications for the penalty function
and comparing relative performances are active part of our
research plans.

By incorporating new virtual patients sequentially and re-
evaluating their contribution to the augmented trial, the method

enables sharing information efficiently without overwhelming

the information from in vivo trial and thus improving the
precision in the evaluation of the clinical endpoint without
biassing the clinical decision. We hypothesise there are large
gains to be obtained by using this kind of technology on well-
explored diseases, where computer simulations are ripe for use
and clinical trials common. For uncommon or rare diseases,
this approach offers the possibility to improve on exploratory
analyses where costs of recruitment and follow-up are large or
even prohibitive.
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