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FOCuS: EDuCATiNG YOuRSELF iN BiOiNFORmATiCS

Systematic deciphering of cancer Genome
networks

Bernard Fendler and Gurinder Atwal

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

When growth regulatory genes are damaged in a cell, it may become cancerous. Current
technological advances in the last decade have allowed the characterization of the whole
genome of these cells by directly or indirectly measuring DNA changes. Complementary
analyses were developed to make sense of the massive amounts of data generated. A large
majority of these analyses were developed to construct interaction networks between genes
from, primarily, expression array data. We review the current technologies and analyses
that have developed in the last decade. We further argue that as cancer genomics evolves
from single gene validations to gene network inferences, new analyses must be developed
for the different technological platforms.

introduction

Cancer is uncontrolled accelerated cel-

lular growth and is responsible for approx-

imately 13 percent of deaths worldwide [1].

Over the last half century, our understand-

ing of cancer development has evolved

from environmental to genetic causes [2,3].

While it is likely a combination of the two

[4,5], much research in the last three

decades have focused on genetic predispo-

sitions with the prevailing common dis-

ease/common variant hypothesis [6,7].

Namely, the disease (cancer) is driven by a

common set of alleles, possibly spanning
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across multiple loci, in the population.

While predisposition from certain alleles

confer susceptibility to cancer [8], random

somatic mutations throughout the lifetime of

the organism without predisposition may

also lead to similar results. In either case, ge-

nomic instability, a signature feature of can-

cer [6], leads to somatic mutations including

single nucleotide polymorphisms (SNPs†),

insertions and deletions of large or small

segments of DNA, chromosomal transloca-

tions, inversions, and other structural re-

arrangements due to broken and rejoined

DNA, epigenetic modifications (usually

chromatin modifications), and DNA acqui-

sition from other sources such as infections

from HPV [9], which all may lead to aber-

rant expression profiles or altered protein

function due to amino acid substitution.

Most acquired mutations throughout the

lifetime of an individual are likely benign;

however, when a mutation alters a gene or

the expression of a gene that confers growth,

malignant neoplasms arise. The cells within

the growing tumor are progeny of the origi-

nal cell, whose driver or set of driver genes

initiated expansive growth. A malignant

tumor mirrors the selective process origi-

nally described by Darwin through a selec-

tive process, rewarding those that grow and

expand unchecked. In the last decade, an at-

tempt to understand how these mutations

lead to cancer was initiated through the de-

velopment of many “micro”-techniques.

These include the use of the microscope,

biochemical and cell biological techniques,

as well as advanced genomic-based tools,

with significant focus in the last decade on

the latter [10].

Since genes regulate the growth of

cells, a natural approach to understanding

cancer is to identify “what genes have gone

awry?” At the time this question was posed,

the technologies to answer these questions

were not well developed. Thus, genomic-

based tools grew out of this need. Southern

blotting, which identifies DNA sequences

using oligonucleotide probe hybridization,

along with the development of the microar-

ray chip, a chip with thousands of embed-

ded probes corresponding to a specific gene,

led to a massive increase in the number of

genes one could simultaneously investigate.

In the last decade, two types of array tech-

nologies played a significant role in our un-

derstanding of how cancer cells differ from

normal cells — one measuring gene expres-

sion and the other gene copy number. Ex-

pression analysis of cancer cells focus on

gene regulation by measuring under/overex-

pressed mRNA in a sample tumor, while the

second focuses on genomic structural

changes via copied and deleted regions of

DNA. Both technologies have their respec-

tive successes and difficulties. For example,

array comparative genomic hybridization

(aCGH) data, or copy number data, explic-

itly informs which regions of the genome

have been altered. However, it is still uncer-

tain which specific genes within the altered

region are aberrantly expressed. Further, ex-

pression analysis can specify the genes that

are under/overexpressed, but do not inform

about the causal molecular mechanisms un-

derlying the gene expression change.

In 2005, building upon the concepts of

Sanger sequencing, rather than microarray

hybridization, sequencing DNA of interest

became the next-generation in genomic dis-

covery technologies [11-15]. Next-genera-

tion sequencing (NGS) is the ability to

sequence DNA samples using a reference li-

brary in a massive parallel capacity, revolu-

tionizing sample resolution and the time

necessary to sequence those samples [12].

While cost initially prohibited this technol-

ogy for widespread use, now NGS is mod-

erately more expensive than microarrays

and in the next 5 months will likely be sim-

ilarly priced [16]. NGS technologies are an

improvement over microarrays for multiple

reasons [17]. First, microarray technology

requires a priori knowledge of the genes of

interest, introducing probe bias, whereas

NGS technologies do not. Second, microar-

ray segments may cross-hybridize to incor-

rect probes introducing noise in the signal,

while NGS technologies rely on sequencing,

which counts single nucleotides. As a con-

sequence of this single base-pair resolution,

NGS technologies can identify point muta-

tions in cancers [18,19]. Finally, nanograms
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of material is needed for NGS, while mi-

croarrays rely on orders of magnitude more,

increasing the reliance on PCR, and thus,

PCR biases have a larger impact on results.

Most microarray technologies now have ap-

propriate analogues to NGS, e.g., expression

arrays to RNA-seq [20] and aCGH to CNV-

seq [21] are among a few. It should be noted,

however, that while NGS will likely replace

array-based technologies, the amount of

samples currently available is still insuffi-

cient for many types of investigations. Thus,

until sufficient NGS samples are collected,

microarrays will still be needed.

Before microarrays or NGS technolo-

gies, researchers focused on single gene hy-

potheses (Figure 1A). While this is a

thorough systematic scientific approach to

cancer biology, it is time consuming since

few genes are investigated

at a time, it is biased, and

the cancer is often simu-

lated with a biological

model. Other steps have

been made to improve this

type of interrogation

through the use of RNA in-

terference that “knocks-

down” mRNA transcripts

[22]. While these scans

allow for many genes to be

interrogated at once, it is

still necessary to define the

set of genes to investigate

and in what type of tissue

and under what conditions.

From one perspective,

it seems that these ap-

proaches could be supple-

mented by suggesting

multiple gene candidates

for validation by starting

with genomic cancer data

(Figure 1B), i.e., let the pat-

tern of expression or copy

number tell us what genes

are interacting. Indeed, cur-

rent technologies inform on

the order of tens-of-thou-

sands of genes, and thus, it

is necessary to amplify the

genes that convey abnormal expression or

copy number resulting from causative mu-

tations. However, even NGS technology has

variability due to random fluctuations in the

cell, and thus, large sample sizes must be

used to investigate these genes. Since col-

lective samples are used, probabilistic meth-

ods must be employed to identify genes of

interest. However, simply identifying genes

of interest does not convey a pathway or

necessarily generate an informative cancer

model. It is the major goal of cancer biology

to map DNA alterations to the causative

function of the genes altered. One way to

understand causation is to look at networks

of interacting genes, i.e., genes whose ex-

pression affects other genes. How to dis-

cover collectively active genes in an

unbiased way, however, is not obvious.
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Figure 1. A shows the typical process of investigating hypo-

thetical gene interactions. A hypothesis is made, experi-

ments are performed, and then a result is obtained. B shows

a typical process in which a microarray informs about hypo-

thetical networks. After many whole genome-wide arrays

have been created, the data is collected together in some al-

gorithmic way (discussed in text) and (a) network(s) of inter-

actions are inferred. Those networks can then be suggested

for biological validation. Networks of gene relations were

generated from a curated protein database with p53 as the

center of the network [43].



Thus, we must also, in a systematic, well-

defined, mathematical way, amplify net-

works of interest using appropriate models.

Luckily, probabilistic network models are

optimized for specifically these tasks. The

derived networks from modeling and ge-

nomic data may then improve understand-

ing of gene interactions in cancer

progression and help link causative muta-

tions to disease.

topicS

The Statistical Tools: Are All Network
Identification Tools Created Equal?

Armed with a massive amount of

probes on a single array or a complete ge-

nomic library from NGS technologies, the

whole genome can now be investigated in

one experiment. While creating a revolution

in cancer, genomic technologies still suffer

from difficulties in data analysis [23-25].

Core issues include noise and testing too

many hypotheses. Since most genes are not

aberrantly expressed in a cell, gene expres-

sion fluctuates about its healthy homeosta-

tic mean. Thus, each gene has a variable

range of expression values that may be any

random value. If we are not careful, we can

mistakenly associate a large deviation from

expression as significant, even though the

expression was just a fluctuation in the can-

cer sample. Biologists attempt to mitigate

this difficulty by increasing the number of

technical replicates, limiting technical er-

rors, as well as increasing biological repli-

cates reducing the impact of “passenger”

genes — genes that are altered, but non-dri-

vers in the cancer.

Despite these efforts, it is still difficult

to distinguish between a significant change

and a normal statistical fluctuation. For ex-

ample, suppose a gene is suspected to be up-

regulated. The expression mean is found

from biological replicates of our cancer and

healthy replicates. These means can be com-

pared using a t-test, which makes the as-

sumption that the t-statistic follows the

t-distribution. If our measurement is signif-

icantly differentially expressed, then the t-

statistic will be in the far tails of the t-distri-

bution, returning a small p-value — a meas-

ure of how extreme an observation is [26].

This problem is further compounded when

we test tens-of-thousands of genes where

there is a greater chance of seeing a large

statistical fluctuation. We need to be even

stricter in what we call a significant expres-

sion change as opposed to a normal statisti-

cal fluctuation. Typically, the p-value is

corrected using, for example, a Bonferonni

correction. This then boils down to filtering

out what gene is important, what gene is not,

and what genes your analysis suggests are

important but really are not. The last of these

three are called “false positives.” These in-

vestigations can be further improved upon

through the use of the false discovery rate

that determines how likely the “positive”

finding is a true positive (a real result)

[27,28].

Often, identification of gene candidates

in cancer samples is insufficient to build a

cancer model, thus sometimes we must at-

tempt to characterize the samples in some

general way based on the genomic alter-

ations measured. One way to accomplish

this task is through cluster analyses, such as

hierarchical clustering, employed by group-

ing genes with similar expression [29],

which often leads to discovery of tumor sub-

types. These types of investigations define

“distances” representing similarity between

gene expression profiles and grouping those

similar ones together. The question here is,

what patterns of gene expression emerge

and are they consistent across samples?

These types of clustering analyses, referred

to as unsupervised learning, often do not in-

form why genes cluster; however, it can

offer inferences into why. Other times, mak-

ing predictions with expression data is used;

supervised learning, for example, utilizes

large sets of data to “train” a model, such as

Random Forest models [30], artificial neural

networks [31], and support vector machines

[32], and then make predictions.

While these analyses help identify in-

teresting genes, aggregate information, and

make predictions, they do not construct net-

works of interacting genes. In this context,
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“interacting” encompasses chemical, syn-

tenic, and indirect regulation of one gene on

another via proteins and other factors such as

non-coding RNAs. Underlying these analy-

ses sits the hope that one could start from

genome-wide experiments and let the aggre-

gated results inform which genes are inter-

acting in a network, not just correlated in a

network. The important distinction here is in-

teracting versus correlations. Correlations

describe only a statistical relationship be-

tween genes, returning a statistic that only in-

forms from sampling the model distribution,

whereas interactions return the model distri-

bution itself (Note: we explicitly define in-

teractions in the next section). Probabilistic

models have thus been designed to build

gene networks using, e.g., Bayesian Net-

works [33], information-theoretic models

[34], deterministic models [35], and sparse-

network methods [36,37]. All of these mod-

els are, in some way, attempting to construct

or help construct a graph, i.e., an abstract

construct that connects vertices (often genes)

with edges (an interaction between those

genes). Each method has its own set of ad-

vantages and disadvantages in terms of ac-

curacy and computational time, and each

method invokes its own set of assumptions

about the nature of the interactions [38]. For

example, deterministic models commonly

referred to as ODEs (ordinary differential

equations) explicitly model the interactions

in terms of relatively simple equations, with-

out noise, but must be fit to a large number of

biological parameters that are often un-

known. Information-theoretic models, while

successful in identifying transcription factors

in cancer [39], cannot handle loops in net-

works and suffer from noise from indirect in-

teractions, which effectively removes

information from the system. Bayesian net-

works while successful are typically compu-

tationally expensive.

A Physics Approach … Going Backward

Physicists traditionally make sense of

natural phenomena by concocting a mathe-

matical model while ensuring experimental

agreement. For example, magnetic forces

may be represented by a mathematical

model constructed between particles and can

generally be written in terms of energies or

interactions between those particles. When

dealing with statistical quantities, those in-

teractions are put into the framework of the

probabilistic model, which defines the prob-

ability of being in a particular state. For ex-

ample, the probability of being in the state

with particle-1 up and particle-2 down, is a

function of the interactions between the two

particles. Recently, physicists have taken an

interest in the inverse-problem, i.e., using

experimental data to reverse-engineer the in-

teractions typically a priori defined. Thus,

back to the geneticist, rather than defining

interactions and examining the resultant sta-

tistical dynamics of altered gene states, we

use the experimental probabilities of being

in a particular expression or copy number

state, for example, gene-1 deleted and gene-

2 amplified, to determine the interactions

between the genes.

As shown by Lezon et al. [40], one can

take this approach and determine the explicit

relationship between gene interactions and

statistically measured quantities, such as a

Pearson correlation. Fortuitously, the proba-

bilistic model parallels the common Spin-

Glass or Ising system physicists have

investigated for decades. With the analogy

that genes are interacting particles, Lezon et

al. successfully showed that the gene inter-

actions are not equal to the expression co-

variance matrix as typically calculated from

expression technologies, but equal to the in-

verse of the covariance matrix. At first

glance, this may be surprising, but these re-

sults exemplify the fact that algorithms that

supplement statistical correlations for gene

interactions are incomplete, otherwise, the

gene interactions would be equal to the co-

variance matrix.

Fortunately, this approach does not suf-

fer from indirect correlations as some of the

other approaches do, delivers the explicit

forces one would typically a priori define

between genes from measured data, may

infer large interactions between genes even

when those genes have low correlations

[41], and it can be vastly improved upon

through the use of dimension reduction al-
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gorithms such as the James-Stein shrinkage

estimator and graphical lasso [36,37]. One

difficulty, however, from this approach is

that directed graphs are not generated (who

causes who is unknown), as modified

Bayesian networks can, such as BANJO

[33]. Ultimately, however, any underlying

network discovered with strong interactions

can only be validated through further exper-

imentation (Figure 1), use of protein-protein

interaction databases, pathway interroga-

tions, and utilizing other genomic based

technologies.

concluSionS

Building gene networks from existing

data is a bottom-up approach attempting to fill

in the gaps and understand gene relations.

While many network algorithms calculate sta-

tistical correlations between genes, they often

do not describe direct causal gene interactions,

which are the explicit biological model we

hope to capture. Improving these computa-

tional methods is likely to be the future of re-

verse-engineering gene networks, and here we

have highlighted some promising approaches

that have borrowed concepts from statistical

physics. In addition, since fundamentally dif-

ferent biochemical genomic technologies rep-

resent different observables, for example,

ChIP-seq [42], combining them with other

measurables will likely lead to dimension re-

duction, improving both gene candidate false

positives as well as reduce noise in gene inter-

action networks. Finally, other non-genomic-

based technologies, such as protein-protein

interaction [43] and pathway [44] databases,

have been curated, which may be used to sup-

plement these investigations as well as validate

discovered networks. It is the hope of cancer

biology that this data may be integrated into a

complete model defining the cancer genome.
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