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Abstract

Introduction: Mammography screening results in a significant number of false-positives. The use of pretest breast
cancer risk factors to guide follow-up of abnormal mammograms could improve the positive predictive value of
screening. We evaluated the use of the Gail model, body mass index (BMI), and genetic markers to predict cancer
diagnosis among women with abnormal mammograms. We also examined the extent to which pretest risk factors
could reclassify women without cancer below the biopsy threshold.

Methods: We recruited a prospective cohort of women referred for biopsy with abnormal (BI-RADS 4) mammograms
according to the American College of Radiology’s Breast Imaging-Reporting and Data System (BI-RADS). Breast cancer
risk factors were assessed prior to biopsy. A validated panel of 12 single-nucleotide polymorphisms (SNPs) associated
with breast cancer were measured. Logistic regression was used to assess the association of Gail risk factors, BMI and
SNPs with cancer diagnosis (invasive or ductal carcinoma in situ). Model discrimination was assessed using the
area under the receiver operating characteristic curve, and calibration was assessed using the Hosmer-Lemeshow
goodness-of-fit test. The distribution of predicted probabilities of a cancer diagnosis were compared for women
with or without breast cancer.

Results: In the multivariate model, age (odds ratio (OR) = 1.05; 95% confidence interval (CI), 1.03 to 1.08; P < 0.001), SNP
panel relative risk (OR = 2.30; 95% CI, 1.06 to 4.99, P = 0.035) and BMI (≥30 kg/m2 versus <25 kg/m2; OR = 2.20; 95% CI,
1.05 to 4.58; P = 0.036) were significantly associated with breast cancer diagnosis. Older women were more likely than
younger women to be diagnosed with breast cancer. The SNP panel relative risk remained strongly associated with
breast cancer diagnosis after multivariable adjustment. Higher BMI was also strongly associated with increased odds of
a breast cancer diagnosis. Obese women (OR = 2.20; 95% CI, 1.05 to 4.58; P = 0.036) had more than twice the odds of
cancer diagnosis compared to women with a BMI <25 kg/m2. The SNP panel appeared to have predictive ability
among both white and black women.

Conclusions: Breast cancer risk factors, including BMI and genetic markers, are predictive of cancer diagnosis among
women with BI-RADS 4 mammograms. Using pretest risk factors to guide follow-up of abnormal mammograms could
reduce the burden of false-positive mammograms.
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Introduction
Though mammography screening reduces breast cancer
mortality, it is imperfect like all screening tests. The high
burden of false-positive tests relative to the number of
cancers detected has contributed to controversy about the
routine use of mammography screening among women
ages 40 to 50, as well as about biennial rather than annual
screening [1]. After 10 years of annual mammography
screening beginning at age 40, over 60% of women will
have a false-positive result and 7% to 9% will have a biopsy
[2]. False-positive mammograms can result in inconveni-
ence, pain and anxiety for patients, as well as increased
costs [3,4].
Using pretest probability of disease can improve the

positive predictive value of a screening test. However,
this approach requires the ability to accurately deter-
mine an individual’s risk of disease. The Breast Cancer
Risk Assessment Tool (BCRAT), or Gail model, uses
age, family history of breast cancer, reproductive history
and history of breast biopsy or atypical hyperplasia to
estimate a woman’s 5-year or lifetime risk of breast
cancer [5]. Although the model is well calibrated, its
discriminatory accuracy is modest [6]. Additional risk
factors, such as genetic markers [7-14] and body mass
index (BMI) [15-19], have been shown to moderately
improve breast cancer risk prediction.
Although many studies have focused on predicting can-

cer risk in the general population, few have employed risk
prediction models to improve decisions about follow-up of
abnormal mammograms. Current standards in the United
States recommend biopsy of a mammographic abnormality
if the radiologist deems the probability of cancer diagnosis
to be at least 2% [20-22]. Mammogram results are reported
using the American College of Radiology (ACR) Breast
Imaging-Reporting and Data System (BI-RADS), which
includes six result categories, each tied to follow-up
recommendations [20]. The BI-RADS 4 category indi-
cates the presence of a suspicious abnormality that should
be followed up with a biopsy. However, the 1-year prob-
ability of breast cancer for women with a BI-RADS 4
mammogram is 15% to 30% on average [20,22-29]; there-
fore, the majority of biopsies of BI-RADS 4 abnormalities
are benign. Furthermore, the likelihood of cancer diagnosis
varies widely within the BI-RADS 4 category, leading to
the subdivision of the category into BI-RADS 4A (2% to
9% risk of malignancy), BI-RADS 4B (10% to 49% risk of
malignancy) and BI-RADS 4C (50% to 94% risk of malig-
nancy) [22]. A small pilot study suggested that an experi-
enced radiologist using this substratification scheme could
increase the threshold for the biopsy decision without
missing invasive cancers [30]. In addition, a recent model-
ing study suggested that the addition of pretest breast can-
cer risk factors, including genetic markers, could change
biopsy decisions for a small proportion of women with
abnormal mammograms [31]. Greater ability to predict
cancer outcomes in women with BI-RADS 4 mammo-
grams could reduce the burden of false-positive tests
from mammography.
In this study, we assessed the usefulness of the Gail

model, BMI and a panel of 12 single-nucleotide polymor-
phisms (SNPs) to predict cancer diagnosis among women
with BI-RADS 4 mammograms. We then evaluated the
extent to which these factors could improve decisions
about biopsy among this group by reclassifying women
without cancer below the biopsy threshold.
Methods
Participants
Women referred for breast biopsies at the Hospital of
the University of Pennsylvania following a BI-RADS 4
mammogram between January 2010 and April 2012
were invited to participate in the study. Women were ex-
cluded if they were younger than 20 years old, had a per-
sonal history of breast or ovarian cancer, mantle radiation
or known BRCA1/2 mutation. Women who consented
provided a buccal swab for DNA testing prior to their
biopsy appointment. Three hundred sixty-three women
were enrolled. An additional 119 women with a BI-RADS
4 mammograms from a previous study in which breast
imaging modalities were compared at the same institution
were also included (2002 to 2006; National Institutes of
Health grant P01 CA85484; Principal Investigator: M
Schnall). Participants in the breast imaging study were
enrolled between July 2003 and August 2007. A blood
sample from each patient was collected and stored, which
was used for genetic analysis. Of the total sample, five pa-
tients were missing follow-up information, eleven had data
on fewer than nine SNP markers and two had nonbreast
malignancies (tubular adenoma, B-cell lymphoma in the
breast). These participants were excluded, resulting in a
total population of 464 for analysis. Both studies were
approved by the University of Pennsylvania Institutional
Review Board, and written informed consent was obtained
from each study participant.
Risk factors
Participants completed a health history questionnaire,
including information on race, age at menarche, age at
first live birth, number of biopsies, presence of atypical
hyperplasia and family history of breast and ovarian
cancer. Using the BCRAT, we estimated the 5-year
absolute risk and relative risk (RRs) of breast cancer
using source code version 3.0 from the National Cancer
Institute website [32]. BMI was calculated by using the
patient’s self-reported weight and height at the time of
recruitment, or it was extracted from medical record
data prior to recruitment.



McCarthy et al. Breast Cancer Research  (2015) 17:1 Page 3 of 10
Single-nucleotide polymorphism panel
Buccal swabs (N = 347) or blood samples (N = 117) were
sent to deCODE genetics (Reykjavik, Iceland) for analysis
using Illumina Infinium II whole-genome genotyping
(Illumina, San Diego, CA, USA). The deCODE genetics
SNP assay included 12 loci that have consistently been
associated with breast cancer risk: 2q35 (rs13387042),
MRPS30 (rs4415084), FGFR2 (rs1219648), TNRC9/TOX3
(rs3803662), 8q24 (rs13281615), LSP1 (rs3817198), 5q11
(rs889312), NEK10 (rs4973768), 1p11 (rs11249433),
RAD51L1 (rs999737), COX11 (rs6504950) and CASP8
(rs1045485) [33-40]. The call rate was 99.8%. The de-
CODE BreastCancer™ test uses individual allele effect sizes
for the 12 SNPs to create a RR estimate for each genotype.
For each participant, a combined RR estimate for the
12-SNP panel was calculated by multiplying the RR esti-
mates for all SNPs as described previously [11]. Expected
and observed allele frequencies and homozygote odds
ratios (ORs) for risk alleles are included in Additional file 1.
The combined SNP panel RR estimate has been shown to
be independent of BCRAT factors [11].

Statistical analysis
The results of the BIRADS 4 biopsies were obtained from
pathology records. Logistic regression was used to assess
the association of Gail risk factors, BMI and SNP panel
RR with cancer diagnosis (invasive or ductal carcinoma in
situ (DCIS)). First, each predictor was tested in an age-
adjusted model. SNP panel RRs were examined as a log-
transformed continuous variables and as categorized RRs
<1.00, 1.01 to 1.49 and ≥1.50. The Gail RR was tested as a
log-transformed continuous variable. Gail absolute 5-year
risk estimate was categorized as <1.67% and ≥1.67%, as
these cutoffs have been widely used to denote high risk of
breast cancer, as well as for the use of chemopreventive
drugs [41,42]. BMI data were missing in 17% of partici-
pants, and therefore BMI was entered into models, includ-
ing a category for missing data, as follows: <25 kg/m2, 25
to 29.9 kg/m2, ≥30 kg/m2 and missing. The multivariate
logistic regression model included log-transformed SNP
panel RR, all Gail risk factors (age, race/ethnicity, age at
menarche, age at first live birth, first-degree family history
of breast cancer, breast biopsy, atypical hyperplasia) and
BMI. We also examined the predictive ability of the vari-
ous risk factors. Model calibration was assessed using the
Hosmer-Lemeshow goodness-of-fit test to compare ob-
served and predicted outcomes within deciles of predicted
risk for each model [43]. Discriminatory accuracy was
assessed by calculating area under the receiver operating
characteristic curve (AUC). DeLong’s test was used to
compare AUCs for various models. In our analysis, the
model incorporating age and the Gail RR had poor calibra-
tion. The original Gail model incorporated 5-year intervals
of age, but we entered age as a continuous predictor to
minimize the number of predictors in our models. Because
of the poor calibration of the age plus Gail RR model, we
also examined a model that entered all Gail risk factors
individually, and this model was better calibrated to our
data. In addition, we performed tenfold cross-validation of
the prediction models in the total study population. Finally,
we estimated the predicted probability of cancer using the
multivariate model and assessed reclassification below
several risk thresholds (2%, 3%, 5% and 10%) for cancer
cases and noncancer cases. Statistical analyses were per-
formed using SAS 9.3 (SAS Institute, Cary, NC, USA) and
Stata/IC 12 (College Station, TX, USA) software.

Results
The mean age of study participants was 48.7 years (SD,
13.2), and approximately one-half of the study popula-
tion was over age 50 (Table 1). Over 30% of participants
were black or African American. The mean 5-year breast
cancer risk estimate derived by using the BCRAT was
1.54, and 33% of participants had a 5-year risk estimate
of 1.67% or greater. The mean SNP panel RR was 1.22
(SD, 0.44). Over one-fourth of participants had a SNP
panel RR estimate of 1.50 or greater, indicating their risk
of breast cancer was 50% greater than that of the general
population. Of the 464 participants, 74 women (16%)
were diagnosed with cancer, 33 (7%) with DCIS and 41
(9%) with invasive cancer.
Table 2 displays the results of age-adjusted and multi-

variate logistic regression models used to estimate the OR
for cancer diagnosis. The SNP panel RR was significantly
associated with cancer diagnosis (OR, 2.15; 95% CI, 1.04
to 2.43; P = 0.038). The ORs estimated in our model for
the categorized SNP panel RRs were comparable to the
predefined RR estimates obtained from deCODE genetics.
The Gail RR estimate was not significantly associated
with cancer diagnosis, nor was Gail absolute 5-year
risk ≥1.67%. Among the Gail factors, only age was signifi-
cantly associated with breast cancer diagnosis, though the
ORs for race/ethnicity, age at menarche, age at first live
birth and family history of breast cancer were consistent
with expected associations. Prior breast biopsy and atypical
hyperplasia were inversely associated with breast cancer,
though these data were not statistically significant. Few
participants (4.3%) reported prior atypical hyperplasia.
In the multivariate model, age, SNP panel RR and BMI

were significantly associated with breast cancer diagnosis.
Older women were more likely than younger women to
be diagnosed with breast cancer (OR = 1.05; 95% CI, 1.03
to 1.08; P < 0.001). The SNP panel RR remained strongly
associated with breast cancer diagnosis after multivariable
adjustment (OR = 2.30; 95% CI, 1.06 to 4.99; P = 0.035).
Higher BMI was also strongly associated with increased
odds of breast cancer diagnosis. Obese women (OR = 2.20;
95% CI, 1.05 to 4.58; P = 0.036) had more than twice the



Table 1 Characteristics of BIRADS 4 cohort, all ages,
N = 464a

Characteristics Data

Age, yr, mean ± SD (range) 48.7 ± 13.2 (20 to 86)

Age, yr, categories

<35 73 15.7

35 to 40 41 8.8

40 to 49 114 24.6

50 to 59 146 31.5

60+ 90 19.4

Race/ethnicity

White 277 59.7

African American/black 145 31.3

Hispanic 9 1.9

Asian 16 3.5

Other 17 3.7

Age at menarche, yr

<11 90 19.4

12 to 13 200 43.1

≥14 107 23.1

Unknown 67 14.4

Age at first live birth, yr

<20 69 14.9

20 to 24 94 20.3

25 to 29 76 16.4

≥30 80 17.2

Nulliparous 139 30

Missing data 6 1.3

First-degree relatives with breast or ovarian cancer, n

0 350 75.4

1 101 21.8

>1 13 2.8

Prior breast biopsy, n

0 266 57.3

1 123 26.5

>1 75 16.2

Prior AH

Yes 20 4.3

No 444 95.7

Gail 5-yr risk estimate, mean ± SD 1.54 ± 1.43

Gail 5-yr risk estimate, %

<1.67 309 66.6

≥1.67 155 33.4

Body mass index, kg/m2

<25 182 39.2

25 to 29.9 95 20.5

Table 1 Characteristics of BIRADS 4 cohort, all ages,
N = 464a (Continued)

≥30 108 23.3

Missing data 79 17.0

deCODE genetics panel RR, mean ± SD 1.22 ± 0.44

<1.00 163 35.1

1.01 to 1.49 182 39.2

≥1.50 119 25.7

Outcome of biopsy

Benign 366 78.9

AH/LCIS 24 5.2

DCIS 33 7.1

Invasive carcinoma 41 8.8
aAH, Atypical hyperplasia; BI-RADS, Breast Imaging-Reporting and Data System;
DCIS, Ductal carcinoma in situ; LCIS, Lobular carcinoma in situ; RR, Relative risk;
SD, Standard deviation. Data are number and percent unless otherwise stated.
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odds of cancer diagnosis compared to women with a
BMI <25 kg/m2.
Next, we evaluated the association of the SNP panel

separately for white (N = 277) and black (N = 145) women
(Table 3). Among white women, the SNP panel RR was
associated with twofold elevated odds of receiving a
cancer diagnosis in both age-adjusted (OR = 2.43; 95% CI,
0.99 to 5.98; P = 0.053) and multivariate (OR = 1.97; 95%
CI, 0.76 to 5.10; P = 0.161) models, and OR estimates were
similar for the SNP panel RR categories and predefined
values. There was evidence that the SNP panel RR was
associated with breast cancer diagnosis among black
women. Among black women, the OR estimate was 4.50
in the age-adjusted model (OR = 4.50; 95% CI, 0.87 to
23.2; P = 0.073) and 4.21 in the multivariate model
adjusted for age, Gail factors and BMI (OR = 4.21; 95% CI,
0.79 to 22.6; P = 0.093), though these estimates did not
reach statistical significance. In addition, the OR esti-
mates for the SNP panel RR categories were similar to the
predefined RR values. There was no significant interaction
between race and the SNP panel RR (P = 0.880).
We compared the predictive accuracy of the Gail

factors, BMI and SNP panel RR (Table 4). First, Gail RR,
SNP panel RR and BMI were tested separately in models
including age. The model with age and Gail RR had the
lowest predictive ability (AUC= 0.6646), and the Hosmer-
Lemeshow goodness-of-fit test indicated poor model fit
(P = 0.0019). All other models exhibited acceptable model
fit (P > 0.05). The predictive accuracy was similar for age
and the SNP panel RR (0.6848) and age and BMI (0.6845).
Age, BMI and the SNP panel RR together yielded an AUC
of 0.7007, which was of borderline significance compared
to age alone (P = 0.061).
Predictive accuracy was greater in the model including

the individual Gail risk factors (0.7144) compared to a
model with age alone (P = 0.044). Adding BMI to the



Table 2 Logistic regression, odds of cancer among women with BIRADS 4 mammograms, N = 464a

Age-adjusted Multivariateb

OR 95% CI P-value OR 95% CI P-value

SNP panel RR, log continuous scale 2.15 1.04 to 2.43 0.038 2.30 1.06 to 4.99 0.035

SNP panel RR, categories

<1.00 1.00 Reference

1.01 to 1.49 1.09 0.59 to 2.02 0.788

≥1.50 1.60 0.84 to 3.04 0.149

Gail RR, log continuous scale 1.11 0.69 to 1.78 0.660

Gail absolute 5-yr risk, %

<1.67 1.00 Reference

≥1.67 1.09 0.60 to 1.98 0.778

Age, log continuous scale 1.05 1.03 to 1.07 <0.001 1.05 1.03 to 1.08 <0.001

Race/ethnicity

White 1.00 Reference 1.00 Reference

African American/black 0.66 0.37 to 1.19 0.170 0.53 0.26 to 1.06 0.071

Other 0.86 0.33 to 2.20 0.748 0.81 0.30 to 2.23 0.689

Age at menarche, yr

<11 1.44 0.65 to 3.21 0.368 1.33 0.57 to 3.09 0.510

12 to 13 1.67 0.85 to 3.30 0.139 1.50 0.73 to 3.06 0.266

≥14 1.00 Reference 1.00 Reference

Unknown 0.77 0.29 to 2.07 0.608 0.83 0.28 to 2.41 0.729

Age at first live birth, yr

<30 1.00 Reference 1.00 Reference

≥30 1.58 0.81 to 3.08 0.183 1.37 0.66 to 2.87 0.400

Nulliparous 1.09 0.58 to 2.06 0.780 1.06 0.54 to 2.08 0.867

Missing data 1.60 0.17 to 15.0 0.680 2.26 0.22 to 23.6 0.497

First-degree relatives with breast cancer, n 1.48 0.86 to 2.57 0.160 1.62 0.90 to 2.90 0.106

Prior breast biopsy 0.73 0.43 to 1.24 0.242 0.82 0.47 to 1.46 0.508

Prior atypical hyperplasia 0.41 0.09 to 1.86 0.247 0.51 0.10 to 2.54 0.410

BMI, kg/m2, mean ± SD

<25 1.00 Reference 1.00 Reference

25 to 29.9 1.68 0.81 to 3.47 0.161 1.86 0.86 to 4.05 0.116

≥30 1.94 0.99 to 3.81 0.054 2.20 1.05 to 4.58 0.036

Missing data 1.85 0.87 to 3.93 0.111 1.80 0.81 to 3.99 0.147
aBI-RADS, Breast Imaging-Reporting and Data System; BMI, Body mass index; CI, Confidence interval; OR, Odds ratio; RR, Relative risk; SD, Standard deviation; SNP,
Single-nucleotide polymorphism. bMultivariate model includes log SNP RR, age, BMI, race/ethnicity, age at menarche, age of first birth, family history of breast
cancer, breast biopsy and atypical hyperplasia.
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Gail risk factor model increased the AUC (0.7279), but
the difference was not statistically significant (P = 0.341).
Subsequently adding the SNP panel RR to the model
further increased the AUC (0.7377; P = 0.212). We re-
peated analyses stratified by age (35 to 49 years and
≥50 years) and found that the addition of BMI and SNP
panel RR improved predictive accuracy compared to the
Gail factors alone in both age groups, though the AUC
values were greater for women ages 50 and older. The
addition of the SNP panel had a greater impact on the
AUC in the 35 to 49 age group than in women ages 50 and
older. When stratified by race, the AUC values were com-
parable for black women and white women. For the model
including Gail factors, BMI and SNP panel RR, the AUC
was 0.7518 for white women and 0.7710 for black women.
We repeated our analyses excluding women younger than
40, and the results were similar. We performed tenfold
cross-validation on the prediction models in the total study
population (Table 5). AUC values were slightly attenuated
after cross-validation and were not statically significant.



Table 3 Logistic regression, odds of cancer among women with BIRADS 4 mammograms, by racea

White (N = 277) Black (N = 145)

Age-adjusted Multivariateb Age-adjusted Multivariateb

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value

SNP panel RR, log continuous
scale

2.43 (0.99 to 5.98) 0.053 1.97 (0.76 to 5.10) 0.161 4.50 (0.87 to 23.2) 0.073 4.21 (0.79 to 22.6) 0.093

SNP panel RR, categories

<1.00 1.00 (reference) 1.00 (reference)

1.01 to 1.49 1.34 (0.64 to 2.82) 0.437 1.56 (0.90 to 8.18) 0.599

≥1.50 1.84 (0.83 to 4.11) 0.135 1.77 (0.33 to 9.52) 0.505
aBI-RADS, Breast Imaging-Reporting and Data System; BMI, Body mass index; CI, Confidence interval; OR, Odds ratio; RR, Relative risk; SNP, Single-nucleotide polymorphism.
bMultivariate model includes BMI, age, race/ethnicity, age at menarche, age of first birth, family history of breast cancer, breast biopsy, atypical hyperplasia.
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The highest cross-validated AUC was observed for the
model including age, BMI and the SNP panel (AUC=
0.6753).
The predicted probabilities of breast cancer diagnosis

for each individual were estimated using the model in-
cluding age, Gail factors, BMI and the SNP panel RR.
Figure 1 displays the distribution of predicted probabilities
by breast cancer status. Women diagnosed with cancer
(true-positives) had a mean predicted probability of cancer
diagnosis of 22.6%, compared to 12.2% for women not
diagnosed with cancer (false-positives), though the 95% CIs
significantly overlapped (Table 6). However, no women
diagnosed with cancer had a predicted probability below
5%. On the basis of our model, nine women (3.4%) with
BI-RADS 4 mammograms were reclassified below the <2%
threshold, none of whom were diagnosed with cancer.
Furthermore, 69 women (14.9%) had a predicted prob-
ability of cancer less than 5%, and none of these women
were subsequently diagnosed with cancer. The positive
predictive value of the BIRADS 4 categorization alone
was 15.9%, compared to 18.7% using the BIRADS 4
categorization along with the prediction model with a
5% predicted probability.
Table 4 Predictive accuracy of models using Gail risk factors,
panel among women with BIRADS 4 mammogramsa

Total study population (N = 464) Age
(N =

AUC GOFb P-valuec P-valued AUC

Age, log Gail RR 0.6646 0.0019 0.839 0.547

Age, BMI 0.6845 0.3649 0.210 0.577

Age, log SNP RR 0.6848 0.3134 0.197 0.606

Age, BMI, log SNP RR 0.7007 0.9297 0.061 0.625

Gail factorse 0.7144 0.3586 0.044 Reference 0.548

Gail factors, BMI 0.7279 0.7646 0.014 0.341 0.696

Gail factors, BMI, log SNP RR 0.7377 0.1924 0.007 0.212 0.724
aAUC, Area under the receiver operating characteristic curve; BI-RADS, Breast Imagin
Single-nucleotide polymorphism. bP-value derived from Hosmer-Lemeshow goodne
with age only. dP-value derived from DeLong test compared to reference model. eG
first-degree family history of breast cancer, breast biopsy and atypical hyperplasia.
Discussion
Our results suggest that breast cancer risk factors can be
used to predict cancer diagnosis among women with
BI-RADS 4 mammograms. Age, BMI and the 12-SNP panel
were strongly associated with cancer diagnosis. Addition of
BMI and the 12-SNP panel to Gail risk factors improved
model discrimination. Furthermore, using a predicted prob-
ability cutoff of 5% for biopsy would reclassify 15% of
women below the biopsy threshold while retaining 100%
sensitivity in cancer detection in this sample. Though our
results need to be prospectively validated, our work provides
proof of concept that the use of pretest risk factors to guide
follow-up of BI-RADS 4 mammograms could potentially
improve mammography screening outcomes by reducing
the number of biopsies among women who do not have
cancer.
To our knowledge, our present study is the first in

which a panel of genetic markers has been tested in
women with abnormal mammograms. The SNP panel
RR estimates observed were similar to the RR estimates
stated by deCODE genetics in our population of women
with BI-RADS 4 mammograms, and the SNP panel RR es-
timate remained strongly associated with cancer diagnosis
body mass index and single-nucleotide polymorphism

35 to 49 yr
155)

Age ≥50 yr
(N = 236)

White
(N = 277)

Black
(N = 145)

P-valuec AUC P-valuec AUC P-valuec AUC P-valuec

5 0.966 0.6748 0.470 0.6654 0.373 0.7243 0.495

5 0.619 0.6914 0.613 0.6826 0.317 0.7456 0.653

8 0.445 0.6917 0.508 0.6890 0.153 0.7385 0.836

8 0.337 0.7086 0.276 0.7078 0.060 0.7527 0.661

8 0.123 0.7115 0.267 0.7390 0.019 0.7256 0.925

4 0.072 0.7272 0.167 0.7463 0.011 0.7485 0.602

2 0.026 0.7356 0.116 0.7518 0.007 0.7719 0.442

g-Reporting and Data System; BMI, Body mass index; RR, Relative risk; SNP,
ss-of-fit (GOF) test. cP-value derived from DeLong test compared to a model
ail factors include age, race/ethnicity, age at menarche, age at first live birth,



Table 5 Cross-validation of prediction modelsa

Total study population (N = 464) Tenfold cross-validation

AUC 95% CI P-valueb AUC 95% CI P-valueb

Age, log Gail RR 0.6646 0.5970 to 0.7321 0.839 0.6482 0.5797 to 0.7167 0.159

Age, BMI 0.6845 0.6188 to 0.7501 0.210 0.6583 0.5911 to 0.7255 0.764

Age, log SNP RR 0.6848 0.6195 to 0.7501 0.197 0.6735 0.6077 to 0.7393 0.188

Age, BMI, log SNP RR 0.7007 0.6370 to 0.7645 0.061 0.6753 0.6099 to 0.7407 0.258

Gail factors 0.7144 0.6532 to 0.7755 0.044 0.6522 0.5855 to 0.7188 0.955

Gail factors, BMI 0.7279 0.6705 to 0.7854 0.014 0.6561 0.5919 to 0.7203 0.924

Gail factors, BMI, log SNP RR 0.7377 0.6808 to 0.7946 0.007 0.6727 0.6099 to 0.7356 0.493
aAUC, Area under the receiver operating characteristic curve; BMI, Body mass index; CI, Confidence interval; RR, Relative risk; SNP, Single-nucleotide polymorphism.
bP-values derived from DeLong test compared to model with age only.
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after adjusting for other breast cancer risk factors. Similar
to what has been reported in prior studies [7,8,10-14,44,45],
the SNP panel in the present study moderately improved
predictive accuracy. However, this small improvement may
prove to be more clinically valuable for decisions about
biopsies among women with abnormal mammograms than
for risk stratification in the general population.
It was not entirely surprising that the Gail risk estimate

was not significantly associated with cancer diagnosis in
our study, because the Gail model was developed to esti-
mate 5-year or lifetime risk of invasive breast cancer in the
general population. In our present study, we attempted to
predict the risk of diagnosis of either DCIS or invasive
cancer in women with abnormal mammograms. The mag-
nitudes of the exposure–disease relationships are likely
different for short-term cancer outcomes in the higher-risk
BI-RADS 4 population. In our analysis, the model using
age and the Gail RR had poor calibration, and therefore the
AUC estimates are not meaningful. The poor calibration of
this model could have been due to differences in the study
population and outcome used in our study, or it could have
been a result of our inclusion of age as a continuous pre-
dictor to provide a more parsimonious model, whereas the
original Gail model used 5-year age categories. Because of
Figure 1 Distribution of the predicted probability of cancer
using Gail factors, body mass index and single-nucleotide
polymorphism panel.
this, we also examined a model that entered all Gail risk
factors individually, and this model was better calibrated
to our data. We observed an AUC of 0.738 for the model
with Gail factors, BMI and the SNP panel, which is higher
than the AUC observed in the general population for the
Gail model alone (0.596) or the Gail model including
breast density (0.634) [46]. Researchers in two prior stud-
ies evaluated prediction models in women with BI-RADS 4
mammograms. A prediction model trained on 170 French
patients with BI-RADS 4 mammograms using Gail risk,
age, presence of a palpable lesion, lesion size, hormone
replacement therapy and menopause status demonstrated
predictive accuracy similar to our model, with an AUC of
0.716 in the training set and AUC of 0.660 when validated
in 188 BI-RADS 4 patients from Texas [47]. Similar to our
results, age was the strongest predictor of cancer among
approximately 4,000 women with BI-RADS 4 mammo-
grams referred for biopsy between 1997 and 2001 in the
Vermont Breast Cancer Surveillance System [48]. The pres-
ence of a palpable lump, previous breast biopsy, menopause
status and use of postmenopausal hormone therapy were
also associated with cancer diagnosis. Genetic risk factors
and BMI were not included in these prediction models.
Obese women had more than twice the odds of receiving

a cancer diagnosis compared to women of normal weight.
One possible explanation for this association is that obese
women tend to have less-dense breasts and therefore
Table 6 Predicted probability of cancer using Gail factors,
body mass index and single-nucleotide polymorphism
panel (N = 464)

Cancer Noncancer

Median % (95%
confidence interval)

22.6% (7.0% to 46.6%) 12.2% (2.6% to 38.8%)

Predicted probability, n (%)

<2% 0 (0%) 9 (1.9%)

<3% 0 (0%) 35 (7.5%)

<5% 0 (0%) 69 (14.9%)

<10% 10 (2.2%) 162 (34.9%)
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potentially easier-to-read mammograms, which facilitates a
more accurate interpretation of their mammograms by
radiologists, such that obese women with a BI-RADS 4
mammogram are more likely to actually have cancer (and
less likely to have a false-positive test) than nonobese
women. The association of BMI with cancer diagnosis may
also reflect disease etiology, as BMI is associated with
increased risk of postmenopausal breast cancer [49].
Although BMI data were missing for 17% of participants,
we do not believe the missing data biased the observed
association. The distribution of risk factors (except for age
at first birth) and percentage diagnosed with cancer did
not differ for women with missing BMI data and women
with complete BMI data. Additional studies are needed to
verify this association and to tease apart the effects of BMI
and breast density in women with abnormal mammograms.
This study was a first attempt to validate the 12-SNP

panel among black women. The SNP panel variants were
identified and validated primarily in white/European popu-
lations. Several genome-wide association studies and can-
didate gene studies [50-60], and authors of meta-analyses
[61-66] have assessed the association of these 12 SNPs
individually with breast cancer risk among black/African
American populations, with mixed results. Six of the twelve
SNPs in the panel have been replicated in at least one study
of black/African American populations: rs1045485 (CASP8)
[59], rs1219648 (FGFR2) [54,58,59], rs13387042 (2q35)
[52,58,59], rs3817198 (LSP1) [60], rs4415084 (FGF10) [56]
and rs999737 (14q24.1, RAD51B) [59]. Validating breast
cancer–associated SNPs among black women is challenging,
given the large sample sizes needed to detect small
associations, differing linkage disequilibrium patterns among
different ancestral groups, and disease heterogeneity. Despite
the fact that only half of these SNP associations have been
replicated, the 12-SNP panel appeared to have predictive
value among black women, though our results need to be
validated in larger studies. In addition, in future studies,
researchers should assess whether race-specific and tumor
subtype–specific SNP panels can further improve breast
cancer risk prediction.
Several limitations should be considered when interpret-

ing our results. Because we recruited women referred for
biopsy at one academic hospital, our study sample may not
be representative of all women with abnormal mammo-
grams referred for biopsy. Our sample size was modest,
and therefore our results, particularly those of subgroup
analyses, should be interpreted cautiously. We performed
cross-validation of our prediction models for the entire
study sample; however, prospective validation of our results
is needed. Given the limited number of cancers (N = 75),
our study did not have statistical power to fit separate
models for DCIS and invasive cancer or to assess interac-
tions between risk factors. We utilized a validated panel of
12 breast cancer–associated SNPs. To date, nearly 70 SNPs
have been identified that are associated with breast cancer
risk [67]. Therefore, our results using 12 SNPs may under-
estimate the utility of genetic markers, and including a
larger number of genetic markers may further improve risk
prediction. In future studies, researchers should evaluate
the use of genetic markers in women with abnormal mam-
mograms. Also, breast density was not controlled for, and
this may partly explain the observed association of BMI
with cancer diagnosis.
This study has several strengths. Ours is one of the

first studies to develop a cancer prediction model for
women with abnormal mammograms. We had rich data
on recognized breast cancer risk factors ascertained
prior to biopsy. We employed a validated panel of genetic
markers associated with breast cancer incidence, with RR
estimates independent of traditional breast cancer risk
factors. Our study population was diverse in terms of age
and race/ethnicity, suggesting that our model could be
applied broadly.

Conclusions
Our results suggest that pretest breast cancer risk factors
could be utilized to individualize biopsy decisions following
abnormal mammograms. We found that age, BMI and a
12-SNP panel were significantly associated with breast can-
cer diagnosis in women with BI-RADS 4 mammograms.
The association of obesity with cancer diagnosis was par-
ticularly novel and warrants additional investigation. On the
basis of results derived from the model using Gail risk fac-
tors, BMI and genetic markers, we were able to identify a
predicted probability threshold that could be used to identify
women who would not benefit from immediate biopsy. Our
study, though preliminary, highlights that improved risk
modeling for women with abnormal mammograms could
reduce the burden of false-positive tests and therefore
increase the benefits of mammography. Future studies are
needed to validate these results in larger patient populations.
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