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Abstract

International lineages, such as Salmonella Typhimurium sequence type (ST) 19, are most

often associated with foodborne diseases and deaths in humans. In this study, we com-

pared the whole-genome sequences of five S. Typhimurium strains belonging to ST19

recovered from clinical human stool samples in North Carolina, United States. Overall, S.

Typhimurium strains displayed multidrug-resistant profile, being resistance to critically and

highly important antimicrobials including ampicillin, ticarcillin/clavulanic acid, streptomycin

and sulfisoxazole, chloramphenicol, tetracycline, respectively. Interestingly, all S. Typhimur-

ium strains carried class 1 integron (intl1) and we were able to describe two genomic regions

surrounding blaCARB-2 gene, size 4,062 bp and 4,422 bp for S. Typhimurium strains

(HS5344, HS5437, and HS5478) and (HS5302 and HS5368), respectively. Genomic analy-

sis for antimicrobial resistome confirmed the presence of clinically important genes, includ-

ing blaCARB-2, aac(6’)-Iaa, aadA2b, sul1, tetG, floR, and biocide resistance genes (qacEΔ1).

S. Typhimurium strains harbored IncFIB plasmid containing spvRABCD operon, as well as

rck and pef virulence genes, which constitute an important apparatus for spreading the viru-

lence plasmid. In addition, we identified several virulence genes, chromosomally located,

while the phylogenetic analysis revealed clonal relatedness among these strains with S.

enterica isolated from human and non-human sources obtained in European and Asian

countries. Our results provide new insights into this unusual class 1 integron in virulent S.

Typhimurium strains that harbors a pool of genes acting as potential hotspots for horizontal

gene transfer providing readily adaptation to new surrounds, as well as being crucially
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required for virulence in vivo. Therefore, continuous genomic surveillance is an important

tool for safeguarding human health.

Introduction

Non-typhoidal Salmonella (NTS) is one of the most important foodborne pathogens with

unprecedented impact on global health [1]. Among NTS, Salmonella enterica subsp. enterica
serovar Typhimurium represents a major threat, since its worldwide spread has been associ-

ated with a broad host range, which includes mostly humans and food-related sources [1, 2].

Besides that, the emergence of multidrug-resistant (MDR) S. enterica is another crucial aspect

for food-related outbreaks globally, limiting our therapeutic options [3].

In addition to the high global burden of salmonellosis, extended-spectrum β-lactamase

(ESBL)-producing S. enterica strains have been recognized as high-priority bacteria causing

serious public health issue (https://www.who.int/news-room/detail/27-02-2017-who-

publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed). Aside from this,

the emergence of mobile genetic elements (MGEs), for instance, class 1 integrons play an

essential role in the global spread of antimicrobial resistance [4, 5]. Another aspect to be con-

sidered is the wide range of virulence package that is typically associated with Salmonella Path-

ogenicity Islands (SPI), contributing to the infection process among diverse hosts [6–8]. In

this context, while the surveys with genomic approach have helped in the development of miti-

gation strategies and clinical management, continuous active surveillance is urgently required.

Here, we describe the genomic characteristics of five MDR and virulent S. Typhimurium

strains carrying the blaCARB-2 gene recovered from clinical human stool samples in North

Carolina, United States.

Materials and methods

Ethics approval and consent to participate

The human patients from whom Salmonella were recovered were completely anonymous and

even after all the analysis and tests, the human sample remained anonymous. As such, the NC

State IRB (FWA: 00003429) indicated the study research did not need IRB approval because it

does not meet the definition for human subjects research.

Bacterial strains and antimicrobial susceptibility testing

We conducted a genomic investigation on five clinical S. Typhimurium strains collected in

2014 in North Carolina, United States. The strains were subjected to phenotypic characteriza-

tion using the microdilution panel susceptibility approach on Gram-negative Sensititre plates

(CMV3AGNF and GNX2F, Trek Diagnostic Systems, OH, USA) following the interpretative

criteria of Clinical and Laboratory Standards Institute [9, 10]. The MDR profile was defined as

resistant to three or more classes of antimicrobials [11]. All S. Typhimurium strains underwent

molecular screening for class 1 integron by PCR [12, 13] and were subsequently characterized

by whole-genome sequencing (WGS) according to Pornsukarom et al. [14].

Whole-genome sequencing and phylogenetic analysis

Libraries were prepared using the Nextera XT DNA sample preparation kit (Illumina, San

Diego, CA), which were multiplexed and sequenced on MiSeq platform (Illumina, San Diego,
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CA, USA) at a paired-end read (300 bp). Resulted raw sequence reads underwent a strict qual-

ity control, as well as we obtained the draft genomes by using default settings in CLC work-

bench 10.1.1 (Qiagen) as per Monte et al. [15]. The sequencing data were deposited in NCBI

(PRJNA613764). For each strain, we uploaded the sequences into Center for Genomic Epide-

miology (http://genomicepidemiology.org/) to detect multilocus sequence typing (MLST),

resistome, plasmid incompatibility groups and Salmonella Pathogenicity Islands.

Virulome analyzes were performed by using default settings available in VFanalyzer [16].

Additionally, the genetic context of blaCARB-2 and presence of virulence genes were investi-

gated using BLASTn analysis against the non-redundant (NR) database and manually curated

using Geneious v. 11.1.5 (Biomatters Ltd., Auckland, New Zealand).

For phylogenetic purpose, we reconstructed a maximum likelihood phylogenetic tree based

on single nucleotide polymorphism (SNP) using default settings of CSI Phylogeny version 1.4

[17]. SNP tree was reconstructed with five genomes of S. Typhimurium from this study in

addition to thirteen genomes retrieved from GenBank database. Additional genomes of S.

enterica strains were chosen from different sources (human, camel, food, poultry, ovine, river,

and dog) and countries, including USA (SAMN10863500 and SAMEA6514930), France

(SAMN07734943), Scotland (SAMEA773504 and SAMEA773551), Denmark

(SAMEA4349586), Ireland (SAMEA4825483), Switzerland (SAMN08936646), Germany

(SAMEA6058372), Chile (SAMN14336901), China (SAMN09759463 and SAMN02844307),

and Ethiopia (SAMN03577126).

Results

Antimicrobial susceptibility testing and class 1 integron detection

All the five strains were classified as MDR, displaying resistance to critically important antimi-

crobials including ampicillin (100%), ticarcillin/clavulanic acid (100%), and streptomycin

(60%), as well as to highly important antimicrobials comprising sulfisoxazole (100%), chloram-

phenicol (100%), and tetracycline (60%) (Table 1). Moreover, intermediate resistance to doxy-

cycline was detected in three strains (HS5344, HS5437 and HS5478), and in a single strain

(HS5437) to ceftazidime. In addition, we confirmed the presence of class 1 integron in all S.

Typhimurium strains.

Table 1. Phenotypic and genomic features of Salmonella Typhimurium ST19 strains isolated from clinical human samples in United States.

Strain

ID

Serotype Source R-type (MIC)� Resistance genotype Plasmids ST Accession number

HS5302 Typhimurium

(O5-)

Stool FIS-AMP-TIM2 blaCARB-2, aac(6’)-Iaa, sul1 IncFIB(S),

IncFII(S)

19 JAATJP000000000

HS5344 Typhimurium

(O5-)

Stool CHL-TET-FIS-AMP-STR-TIM2 blaCARB-2, aac(6’)-Iaa, aadA2b, sul1, tet(G),
floR

IncFIB(S),

IncFII(S)

19 JAATGY000000000

HS5368 Typhimurium

(O5-)

Stool FIS-AMP-TIM2 blaCARB-2, aac(6’)-Iaa, sul1 IncFIB(S),

IncFII(S)

19 JAATJO000000000

HS5437 Typhimurium

(O5-)

Stool CHL-TET-FIS-AMP-STR-TIM2 blaCARB-2, aac(6’)-Iaa, aadA2b, sul1, tet(G),
floR

IncFIB(S),

IncFII(S)

19 JAATGZ000000000

HS5478 Typhimurium Stool CHL-TET-FIS-AMP-STR-TIM2 blaCARB-2, aac(6’)-Iaa, aadA2b, aph(3’)-Ia,

sul1, tet(G), floR
IncFIB(S),

IncFII(S)

19 JAATHA000000000

�FIS, sulfisoxazole; AMP, ampicillin; TIM2, ticarcillin/clavulanic acid constant 2; CHL, chloramphenicol; TET, tetracycline; STR, streptomycin.

https://doi.org/10.1371/journal.pone.0240978.t001
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Whole-genome sequencing and phylogenetic analysis

Genomic analysis revealed that all five S. Typhimurium strains belonged to the international

sequence type (ST) ST19, while antimicrobial resistome confirmed the presence of critically

important genes, such as carbenicillinase [blaCARB-2], aminoglycosides [aac(6’)-Iaa and

aadA2b], sulfonamide [sul1], tetracycline [tetG], and florfenicol [floR]. The IncFIB(S) and

IncFII(S) plasmid incompatibility groups were detected in all strains. We were also able to

describe two schematic representations of the genetic context surrounding blaCARB-2 gene.

First, three S. Typhimurium strains (HS5344, HS5437, and HS5478) analyzed in this study,

shared a genomic environment with 4,062 bp in size composed by groEL/intI1-blaCARB-2-

qacEΔ1-sul1-orf5 (acetyltransferase)-orf6 (hypothetical protein). Second, the remaining S.

Typhimurium strains (HS5302 and HS5368) presented a genomic content slightly different

with a 4,422 bp region composed by intI1-blaCARB-2-qacEΔ1-sul1-orf5 (acetyltransferase)-orf6
(hypothetical protein) (Fig 1). Additionally, the sul1, blaCARB-2, tetG, floR, and aadA2b resis-

tance genes were harbored by a partial sequence of a complex class 1 integron (In104) from

HS5344, HS5437, and HS5478. This sequence included duplications of parts of the integron

conserved segments (CS), specifically, part of the intI1 gene from the 5’-CS and part of the 3’-

CS (qacEΔ1 and partial sul1 genes). Consequently, the structure had two attI1 sites, into which

the aadA2b gene cassette was inserted in one and the blaCARB-2 cassette in the other. The floR
and tetG genes were identified between the two integron-derived regions. In HS5302 and

HS5368, only the region containing the intI1-blaCARB-2-qacEΔ1-sul1-orf5-orf6 array was

detected. Furthermore, while aac(6’)-Iaa was found at a site distant from the other resistance

genes on the chromosome of all S. Typhimurium strains in this study, aph(3’)-Ia was identified

in a partial transposon sequence from HS5478.

Virulome analysis revealed presence of several Salmonella Pathogenicity Island (SPI-1, SPI-

2, SPI-3, SPI-4, SPI-5, SPI-13, SPI-14, and Centisome 63 Pathogenicity Island) as shown in

Table 2. Upon encountering these SPI, we also identified important virulence genes involved

in fimbrial adherence (fimA, C, D, F, H, I, W, Y, Z), non-fimbrial adherence (misL), invasion

(InvA, B, C, E, F, G, H, I, J), secretion system (ssa, ssc, sse, and ssr), magnesium uptake (mgtB
and mgtC), regulation (phoP, phoQ, and pipB), and translocated effector (sopB/sigD and sopE2)

(Table 2).

Interestingly, these strains possess a highly conserved spv operon composed by spvR, spvA,

spvB, spvC, and spvD genes which are located upstream of the genes pefA (plasmid-encoded

fimbriae) and rck (resistance to complement killing) in a virulence plasmid as shown in Fig 2.

In addition, in silico analyses confirmed that these virulence genes were located on IncFIB

plasmid.

To achieve a better understanding of the clonal spread of these MDR strains, we recon-

structed a phylogenetic tree based on SNPs. Indeed, these strains were found to be genetically

related. The phylogenetic tree framed a major cluster composed by five S. Typhimurium

strains from this study (HS5478, HS5344, HS5437, HS5302, and HS5368), which nested

Fig 1. Schematic representation of the genetic context surrounding blaCARB-2 genes in Salmonella Typhimurium

ST19 strains isolated from clinical human samples in United States.

https://doi.org/10.1371/journal.pone.0240978.g001
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together with S. enterica strains from different sources (Human, poultry, ovine) and countries,

including Denmark (SAMEA4349586), Scotland (SAMEA773504 and SAMEA773551), France

(SAMN07734943), and China (SAMN09759463) as shown in Fig 3. Interestingly, S. Typhi-

murium strains within same cluster shared the same resistance phenotype and genotype

profile.

Discussion

The continuous dispersal of MDR S. enterica strains frequently deserves attention of the public

health authorities, particularly the international lineages as S. Typhimurium ST19 that most

often causes diseases and deaths [18, 19]. Owing to their importance, the ST19 members have

been globally identified in a variety of sources, such as human clinical samples, animals, food

products, and environmental samples [20–22]. Moreover, S. Typhimurium ST19 has shown

broad resistance to a variety of critically important antimicrobials [23], including colistin (an

antibiotic of last resort for some MDR infections) [24, 25]. Besides that, the occurrence of

intermediate resistance reported here implies in possible treatment failure that should be

noted by public health authorities.

It is important to note that these strains can easily acquire such genes through mobile

genetic elements such as plasmids, integrons, and genomic islands from other MDR clones,

resulting in their rapid dissemination. The presence of class 1 integron in all S. Typhimurium

ST19 strains constitutes a risk factor to the rapid spread of antimicrobial resistance (AMR)

genes. Indeed, class 1 integron coding various resistance profiles has been widely reported in

S. Typhimurium as well as in multiple serovars [5, 21, 26–30]. This genetic frame is crucial for

the spread resistance markers, since they are able to capture AMR genes through chromosomal

cassettes incorporating them by site-specific recombination [4, 12, 31]. Additionally, resistance

genes located in class 1 integrons are often within Salmonella genomic islands (SGI), such as

the conjugative Salmonella genomic island 1 (SGI1) (~43-kb) and its variants [32, 33].

The detection of quaternary ammonium compounds (QACs) raises a particular concern,

since this qac-containing integrons typically harbors a pool of genes that are hotspots for

Table 2. Genomic features of virulence factors of Salmonella Typhimurium ST19 strains isolated from clinical human samples in United States.

Strain

ID

SPI-1 encode

genes

SPI-2 encode genes� SPI-3

encode

genes

SPI-5 encode

genes

Virulence

plasmid�
Fimbrial adherence

determinants

SPI�

HS5302 inv (A, B, C, E, F,

G, H, I, J); sopE2
ssa (C, D, E, G, H, I, J, K, L, M, N, O,

P, Q, R, T, U, V); ssc (A, B); sse (B, C,

D, E); ssr (A, B)

mgtB, mgtC,

misL
phoP, phoQ,

pipB, sopB/
sigD

spv (A, B, D,

R)
fim (A, C, D, F, H, I,
W, Y, Z)

SPI-1, SPI-2, SPI-3, SPI-

5, SPI-13, SPI-14, C63PI

HS5344 inv (A, B, C, E, F,

G, H, I, J); sopE2
ssa (C, D, E, G, H, J, K, L, M, N, O, P,

Q, R, T, U, V); ssc (A, B); sse (B, C, D,

E); ssr (A, B)

mgtB, mgtC,

misL
phoP, phoQ,

pipB, sopB/
sigD

spv (A, B, D,

R)
fim (A, C, D, F, H, I,
W, Y, Z)

SPI-1, SPI-2, SPI-3, SPI-

4, SPI-5, SPI-13, SPI-14,

C63PI

HS5368 inv (A, B, C, E, F,

G, H, I, J); sopE2
ssa (C, D, E, G, H, I, J, K, L, M, N, O,

P, Q, R, T, U, V); ssc (A, B); sse (B, C,

D, E); ssr (A, B)

mgtB, mgtC,

misL
phoP, phoQ,

pipB, sopB/
sigD

spv (A, B, D,

R)
fim (A, C, D, F, H, I,
W, Y, Z)

SPI-1, SPI-2, SPI-3, SPI-

4, SPI-5, SPI-13, SPI-14,

C63PI

HS5437 inv (A, B, C, E, F,

G, H, I, J); sopE2
ssa (C, D, E, G, H, I, J, K, L, M, N, O,

P, Q, R, T, U, V); ssc (A, B); sse (B, C,

D, E); ssr (A, B)

mgtB, mgtC,

misL
phoP, phoQ,

pipB, sopB/
sigD

spv (A, B, D,

R)
fim (A, C, D, F, H, I,
W, Y, Z)

SPI-1, SPI-2, SPI-3, SPI-

4, SPI-5, SPI-13, SPI-14,

C63PI

HS5478 inv (A, B, C, E, F,

G, H, I, J); sopE2
ssa (C, D, E, G, H, J, K, L, M, N, O, P,

Q, R, T, U, V); ssc (A, B); sse (B, C, D,

E); ssr (A, B)

mgtB, mgtC,

misL
phoP, phoQ,

pipB, sopB/
sigD

spv (A, B, D,

R)
fim (A, C, D, F, H, I,
W, Y, Z)

SPI-1, SPI-2, SPI-3, SPI-

5, SPI-13, SPI-14, C63PI

�Letters highlighted in bold represents differences among strains.

https://doi.org/10.1371/journal.pone.0240978.t002
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Fig 2. Genomic comparison between genetic contexts of virulence plasmids carried by Salmonella Typhimurium strains from this study

(A) and S. enterica strains B (CP000858), C (NC_002638), and D (AY517905) as out-group. Genes and shotgun sequences were retrieved

from the GenBank database. Arrows indicate the positions and directions of the genes; Regions with>99% identity are indicated with gray

shading.

https://doi.org/10.1371/journal.pone.0240978.g002
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horizontal gene transfer providing readily adaptation to new surrounds [34, 35]. The co-resis-

tance of critically important antimicrobials and disinfectants QACs reinforces the evidence of

the overuse of biocides in clinical settings [34], and their spread have been also described in

Salmonella serotypes isolated from livestock [36].

The blaCARB-2 gene, earlier identified as blaPSE-1, is most often a part of the chromosomal

cassette [37, 38]. To date, the occurrence of this carbenicillinase gene has been limited to a few

reports in different bacteria species and countries, including Acinetobacter pittii and Salmo-
nella serovars in Australia [38, 39], Salmonella Typhimurium from England and Wales [40],

Salmonella Senftenberg in Mexico [41], S. Typhimurium in Canada [42], Pseudomonas aerugi-
nosa in Netherlands [43], and Escherichia coli in Pakistan [44]. It is noteworthy that such

genetic element has the ability to move among different lineages of S. enterica serovars on a

global scale, contributing to AMR spread [28]. Indeed, the genetic contexts surrounding bla-

CARB-2 gene in this study are typically found in SGI1 and its variant SGI1-B.

Drug-resistant variants of SGI1 have been identified in numerous S. enterica serovars, and

strains harboring them may be more virulent and have a tendency to rapidly disseminate [33,

39]. In fact, S. Typhimurium strains within this survey demonstrate to possess several virulence

factors, which have been reported earlier [45–48]. Furthermore, we confirmed the presence of

several plasmid-borne virulence genes (spvR, spvA, spvB, spvC, spvD, rck, and pefA) that

denotes an important genomic apparatus for the spreading of this plasmid, and may provide

fitness benefit as previously reported [28, 49, 50]. Increasing evidences have demonstrated that

the spv operon affects the formation of autophagosomes, as well as highlight its association in

killing of macrophages and neutrophils [6], being crucially required for virulence in vivo [8],

including aggravated damage in zebrafish infection model [7]. Furthermore, the PhoP-regu-

lated gene mig-14 that is required for virulence and resistance to antimicrobial peptides was

detected in these strains. Yet, mig-14 contributes to Salmonella persistence in hosts, being also

associated with resistance against polymyxin B and cathelin-related antimicrobial peptide

Fig 3. SNP-based phylogenetic tree composed by five Salmonella Typhimurium and additional 14 Salmonella enterica strains. This figure was

generated with iTOL v.5.5 (https://itol.embl.de).

https://doi.org/10.1371/journal.pone.0240978.g003
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(CRAMP) [51–54]. Thus, the clonal dissemination of MDR S. Typhimurium (mostly the inva-

sive clones) constitutes an important issue to public health [55], especially S. Typhimurium

ST19, which have been circulating worldwide (http://enterobase.warwick.ac.uk/) as demon-

strated in this study, since our S. Typhimurium strains nested with international lineages from

at least four countries (Fig 2).

In summary, we report the genomic features of virulent and MDR S. Typhimurium ST19

strains carrying the blaCARB-2 gene recovered from clinical human samples in United States.

Our results provide new insights into this genetic environment that besides blaCARB-2, contains

genes, coding resistance to quaternary ammonium compounds (qacEΔ1) and sulfonamides

(sul1). Furthermore, our findings could aid in understanding the epidemiology of S. Typhi-

murium ST19, which are of great value to initiate preventive measures to safeguard human

health. Given the high spread of this international lineage, especially among the young and the

elderly or immunocompromised people, public health authorities and regulatory food agencies

need to be aware of the potential impact in public health and in economy caused by such pan-

demic MDR S. Typhimurium ST19 lineage, with particular attention in high-burden areas.
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Formal analysis: Daniel F. M. Monte, Ralf Lopes.

Funding acquisition: Mariza Landgraf, Paula J. Fedorka-Cray, Siddhartha Thakur.

Investigation: Daniel F. M. Monte, Shermalyn Greene, Siddhartha Thakur.

Methodology: Daniel F. M. Monte, Shivaramu Keelara, Shermalyn Greene, Siddhartha

Thakur.

Supervision: Siddhartha Thakur.

Validation: Daniel F. M. Monte.

Visualization: Daniel F. M. Monte.

Writing – original draft: Daniel F. M. Monte.

Writing – review & editing: Daniel F. M. Monte, Fábio P. Sellera, Ralf Lopes, Mariza Land-
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