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A B S T R A C T   

Background and purpose: Contouring oropharyngeal primary tumors in radiotherapy is currently done manually 
which is time-consuming. Autocontouring techniques based on deep learning methods are a desirable alternative, 
but these methods can render suboptimal results when the structure to segment is considerably smaller than the 
rest of the image. The purpose of this work was to investigate different strategies to tackle the class imbalance 
problem in this tumor site. 
Materials and methods: A cohort of 230 oropharyngeal cancer patients treated between 2010 and 2018 was 
retrospectively collected. The following magnetic resonance imaging (MRI) sequences were available: T1- 
weighted, T2-weighted, 3D T1-weighted after gadolinium injection. Two strategies to tackle the class imbal-
ance problem were studied: training with different loss functions (namely: Dice loss, Generalized Dice loss, Focal 
Tversky loss and Unified Focal loss) and implementing a two-stage approach (i.e. splitting the task in detection 
and segmentation). Segmentation performance was measured with Sørensen–Dice coefficient (Dice), 95th 
Hausdorff distance (HD) and Mean Surface Distance (MSD). 
Results: The network trained with the Generalized Dice Loss yielded a median Dice of 0.54, median 95th HD of 
10.6 mm and median MSD of 2.4 mm but no significant differences were observed among the different loss 
functions (p-value > 0.7). The two-stage approach resulted in a median Dice of 0.64, median HD of 8.7 mm and 
median MSD of 2.1 mm, significantly outperforming the end-to-end 3D U-Net (p-value < 0.05). 
Conclusion: No significant differences were observed when training with different loss functions. The two-stage 
approach outperformed the end-to-end 3D U-Net.   

1. Introduction 

Radiotherapy is one of the common treatment options for head and 
neck cancer patients [1,2]. One key step of the radiotherapy workflow is 
tumor contouring. While contouring of organs at risk is increasingly 
being automated in clinical practice, tumor contouring is still done 
manually. This is time consuming and suffers from high interobserver 
variability [3]. 

Deep learning methods, particularly Convolutional Neural Networks 
(CNNs), are the current state of the art for automatic segmentation of 
medical images. Several review papers have been published on deep 
learning applied to radiotherapy and automatic segmentation is often 
discussed as one of the main applications [4–7]. For the particular case 

of head and neck cancer, various works have focused on the automatic 
segmentation of organs at risk with deep learning [8], some of them 
achieving clinically acceptable performance and being commercially 
available [9]. For the case of tumor contouring, the literature is more 
scarce and those algorithms are still not implemented in the clinic. 

In our previous work [10], we segmented the oropharyngeal primary 
tumor on magnetic resonance imaging (MRI) and showed that 
combining multiple anatomical MRI sequences improved the segmen-
tation performance compared to single-sequence. We also proposed a 
semi-automatic approach that improved the segmentation performance 
by splitting the segmentation task in manual detection and segmenta-
tion. To the best of our knowledge, there is only one other work where 
the authors segmented the oropharyngeal primary tumor on MRI [11]. 
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The authors studied the impact of combining different anatomical (T1 
weighted and T2 weighted) and quantitative images (ADC, Ktrans and ve) 
as input channels to a CNN and showed that combining anatomical se-
quences significantly improved the performance. 

A known issue in the field of deep learning for medical image seg-
mentation is class imbalance, meaning that the structure to be 
segmented is present in a smaller amount of voxels compared to the rest 
of the image. Class imbalance can result in suboptimal solutions because 
the network is exposed to proportionally less relevant information 
during the training process. Several works in the field of medical image 
segmentation have focused on this problem, either by modifying the 
input data to the network [12,13] or by defining different loss functions 
[14–16]. This problem is even more critical in the case of tumor seg-
mentation, given that tumors tend to be smaller than other structures 
and they are heterogeneous in their location, shape and size. This is also 
the case for the oropharyngeal primary tumor. 

Several loss functions have been designed with the aim of tackling 
class imbalance, such as the Generalized Dice loss [17], the Focal loss 
[14], the (focal) Tversky loss [15,18] and the Unified Focal loss [16]. 
Although the choice of the loss function can be critical for the training of 
a CNN, comprehensive loss function comparisons for specific tumor sites 
or anatomies are not commonly performed. Ma et al. [19] showed that 
the influence in performance of the loss function varies greatly 
depending on the segmentation task. To the best of our knowledge, this 
has not been studied yet in the particular case of oropharyngeal cancer 
segmentation. 

Other works have implemented two-stage approaches (i.e. detection 
and segmentation) that resulted in more accurate segmentations than 
their one-stage counterparts [20–22]. By locating the tumor first, the 
context around the tumor is reduced. Consequently, two-stage ap-
proaches are a possible way of tackling class imbalance. The semi- 
automatic approach from our previous work [10] consisted of having 
human observers outlining a box around the tumor to provide a first 
approximation of the tumor location and consequently ease the seg-
mentation task. However, the semi-automatic approach still needed 
manual intervention. The implementation of a two-stage approach will 
also allow us to fully automate the semi-automatic approach proposed in 
our previous work [10]. 

The aim of this study was to investigate two different strategies for 
tackling the class imbalance problem for oropharyngeal primary tumor 
segmentation: training with different loss functions and implementing a 
fully automatic two-stage approach. 

2. Materials and methods 

2.1. Data 

A cohort of 230 patients treated at our institute between January 
2010 and May 2018 was used for this project. The mean age of the pa-
tients was 61 years (standard deviation ± 7 years) and 66% of the pa-
tients were male. Further details on tumor stage and HPV status can be 
found in the Supplemental Material (Table S.1). All patients had histo-
logically proven primary oropharyngeal squamous cell carcinoma and 
received a pre-treatment MRI for primary staging. The institutional re-
view board approved the study (IRBd18047). Informed consent was 
waived by the institutional review board considering the retrospective 
design. The cohort was extended from our previous work [10]. A total of 
59 new patients were included. 

The scans were acquired on 1.5 T (n = 108) or 3.0 T (n = 122) MRI 
scanners (Philips Medical System, Best, The Netherlands). The imaging 
protocol included: 2D T1-weighted fast spin-echo, 2D T2-weighted fast 
spin-echo with fat suppression, 3D T1-weighted high-resolution 
isotropic volume excitation after gadolinium injection with fat sup-
pression. Further details on the MRI protocols are given in the Supple-
mental Material (Table S.2). The primary tumors were manually 
contoured in 3D Slicer (version 4.8.0, https://www.slicer.org/) by one 

observer with 1 year of experience (P.B. or H.H.). Afterwards, they were 
reviewed and adjusted, if needed, by a radiologist with 7 years of 
experience (B.J.). All tumor volumes were delineated on the 3D 
sequence but the observers were allowed to consult the other sequences. 

For the experimental set-up, the data set was split in three subsets: a 
training set (n = 190), a validation set (n = 20) and a test set (n = 20). 
The test set was not used for training or hyper-parameter tuning. We 
stratified the three subsets for tumor volume, subsite, and aspect ratio 
since these features are likely relevant for segmentation. Subsites were 
defined as tonsillar tissue, soft palate, base of tongue and posterior wall. 
The aspect ratio was defined as the ratio between the shortest and the 
longest axis of the tumor. All images were resampled to a voxel size of 
0.8 mm × 0.8 mm × 0.8 mm. 

2.2. Baseline model architecture 

The 3D U-Net architecture [23,24] was used as the basis for our 
experiments. The Adam optimizer [25] and early stopping were used for 
training. Dropout and data augmentation were used for regularization. 
Further details on the training procedure can be found in Table S.4 and 
in the code which is publicly available in: https://github.com/ 
RoqueRouteiral/oroph_segm_ts. 

2.3. Training with different loss functions 

We trained the 3D U-Net with four different loss functions: Dice loss 
[26], Generalized Dice loss [17], Focal Tversky loss [18] and Unified 
Focal loss [16]. For the particular case of the Unified Focal loss, Yeung 
et al. [16] showed that the choice of the γ hyperparameter can affect the 
performance. Consequently, we trained four networks with the Unified 
Focal loss for different values of its hyperparameter γ (γ = [0.2, 0.4, 0.6, 
0.8]). We compared the segmentation performance of all the networks 
among each other. 

2.4. Two-stage approach 

In our previous work, we demonstrated that the segmentation of the 
oropharyngeal primary tumor was more accurate when the input image 
was manually cropped with a clipbox around the tumor before being fed 
to a segmentation network. 

In this work, we fully automated this two-stage approach (Fig. 1). 
The first stage consisted of roughly detecting the tumor by automatically 
selecting a clipbox around it. In the second stage, this clipbox was used 
to crop the image which was then used as input to a segmentation 
network. The loss function chosen for both stages was the Generalized 
Dice loss function. The loss was backpropagated through each network 
separately. 

For the detection stage, a 3D U-Net was trained using the bounding 
box of the tumor as ground truth. At inference time, the output of the 
detection was computed as the bounding box of the output. 

For the segmentation stage, the same architecture as in our previous 
work was used [10]. This segmentation network was trained with only 
the information contained inside the clipboxes. In every training itera-
tion, the clipboxes were randomly shifted by an amount of up to 25 mm 
in different directions to make the network robust to possible displace-
ments in the detection. At inference time the input images were cropped 
by the clipboxes defined by the detection network. Similarly to our 
previous work, the clipboxes were dilated by 5 mm. 

2.5. Statistics 

To confirm that the three subsets were balanced in subsite, volume 
and aspect ratio, a Kruskal-Wallis test was used for continuous variables 
(volume and aspect ratio) and a chi-square test for independence for the 
categorical data (subsite). 

Predicted segmentations and the segmentations from the human 
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observers were compared for the patients on the unseen test set. Com-
mon segmentation metrics were used: Sørensen–Dice coefficient (Dice), 
95th Hausdorff Distance (HD) and Mean surface distance (MSD). The 
metrics were implemented using the Python package from DeepMind 
(https://github.com/deepmind/surface-distance). For the two-stage 
approach, the detection was evaluated by measuring the absolute 
mean shift in all 6 directions between the tumor bounding box and the 
detected clipbox for the patients on the unseen test set. The average shift 
of the boxes for the observers from our previous work was used for 
comparison [10]. Differences among the loss function experiments were 
assessed by the Friedman test whereas the two-stage approach experi-
ments were assessed by the Wilcoxon signed-ranked test. P-values below 
0.05 were considered statistically significant. 

All networks were retrained four times. Reported results are the 

mean of the results of the four versions of each network. We opted for 
this approach over N-fold cross-validation to account for the random 
initialization of the network while ensuring proper stratification in the 
three sets for all the folds. 

3. Results 

3.1. Summary of tumor characteristics 

Table S.3 shows the tumor characteristics (location, volume and 
aspect ratio) of our cohort. No significant differences were found in the 
distributions of subsite, volume and aspect ratio among the training, 
validation and test sets. 

Fig. 1. Overview of the two-stage approach.  

Fig. 2. Segmentation performance of the 3D U-Net trained with different loss functions: Dice Loss (DL), Generalized Dice Loss (GDL), Tversky Loss (TVL) and Unified 
Focal Loss (UFL). 
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3.2. Training with different loss functions 

When comparing the performance of the networks trained with 
different loss functions no significant differences were found (p-value >
0.25 for the three metrics). Lower variance in the MSD and Dice can be 
observed for the network trained with the Generalized Dice loss (Fig. 2). 
The network achieved a median Dice of 0.54, median 95th HD of 10.6 
mm and median MSD of 2.4 mm. Non-significant differences were 
observed when training the network with different γ values for the 
Unified Focal loss (Fig. S.1). 

3.3. Two-stage approach 

The mean shift for the detection network was of 8.9 mm (Table 1) 
and no significant differences were found when comparing to the 
detection of observer 2 from our previous work (p-value = 0.40). Sig-
nificant differences were found when comparing the detection of this 
work to the detection of the observer 1 from out previous work (p-value 
< 0.001). When separating the mean shift per direction, we observed a 
mean shift of 10.0 mm in the cranial-caudal direction, 8.4 mm in the 
medial–lateral direction and 7.7 mm in the dorsal–ventral direction. 

The segmentation results of the two-stage approach were signifi-
cantly better for Dice (p-value = 0.03) and MSD (p-value = 0.02) than 
the results of the end-to-end 3D UNet (Table 1). The fully automated 
two-stage approach yielded a median Dice of 0.64, median HD of 8.7 
mm and median MSD of 2.1 mm. One patient was missed in the detec-
tion of the two-stage approach for one of the folds, and thus removed 
from that fold for the analysis. 

3.4. Qualitative results 

Examples of segmentations obtained by the end-to-end 3D U-Net, the 
two-stage approach and ground truth segmentation are shown in Fig. 3. 
The end-to-end 3D U-Net approach oversegmented (Fig. 3a–c) the 
tumor, where the two-stage approach showed better segmentation 
comparison to the ground truth. Fig. 3b shows cases where the seg-
mentation end-to-end 3D U-Net rendered additional false positive 
structures on the image. 

4. Discussion 

This work investigated two different strategies to tackle the class 
imbalance problem for the task of oropharyngeal primary tumor seg-
mentation: training with the different loss functions and implementing a 
two-stage approach. Additionally, the proposed two-stage approach 
fully automated the semi-automatic approach described in our previous 
work [10]. 

When training the networks with different loss functions, no signif-
icant improvements were observed in the segmentation metrics. 
Hyperparameter tuning for the γ hyperparameter of the Unified Focal 

loss did not yield significantly better results either. This result is 
consistent with the work of Ma et al. [19], where they concluded that 
Dice-related losses are often optimal for medical image segmentation 
tasks. Additionally, it is also in line with the conclusions described by 
Isensee et al. and their proposed “no new Net” (nnU-Net) [27]. They 
showed that a tailored-to-task method configuration is more relevant 
than specific setup choices when designing a segmentation deep 
learning pipeline. 

The two-stage approach achieved significantly better results 
compared to the conventional end-to-end approach. The high 
complexity of the task may make the end-to-end training of the network 
suboptimal, while focusing on two simpler tasks can render better re-
sults. In our previous work [10], a semi-automatic approach in which an 
observer selected a clipbox around the tumor was implemented. When 
comparing the current detection results to the semi-automatic approach 
of our previous work, we noted that one of the observers (Obs. 1) 
selected a tighter box (although all the tumors were included inside the 
clipboxes) compared to that of our two-stage approach which resulted in 
significantly different detection performance. However, we did not 
observe significant differences with the detection performance of the 
semi-automatic approach for the other observer (Obs. 2), showing that a 
fully automatic two-stage approach can be a feasible alternative to a 
semi-automatic approach. Also, the time spent on delineating in the 
clinical practice is aimed to be as low as possible. We reported in our 
previous work that the time spent on drawing the boxes was lower for 
observer 2 than for observer 1, making the delineations of observer 2 a 
more realistic representation of what is expected in the clinic. In the 
present work, the whole pipeline is automated, which can save time in 
the clinic. That said, further efforts in improving the detection are of 
interest to improve the segmentation performance of the two-stage 
approach. 

The literature on automatic segmentation for the oropharyngeal 
tumor on MRI is scarce and its aims are heterogeneous. Besides our 
previous work [10], only Wahid et al. [11] have focused on the seg-
mentation of this tumor site on MRI. Their work focused on studying the 
value of multiparametric MRI on the segmentation performance, both 
for qualitative and quantitative imaging. Other works focused on the 
automatic segmentation on multiparametric MRI of the head and neck 
cancer in general, rather than on the particular subset of oropharyngeal 
cancer: Bielak et al. [28] used diffusion weighted imaging while 
Schouten et al. [29] proposed a multiview CNN architecture. To the best 
of our knowledge, only our work is focused on tackling the class 
imbalance problem for head and neck cancer segmentation on MRI, and 
particularly for the oropharyngeal subsite. 

In 2020, the first head and neck tumor segmentation challenge, 
known as HECKTOR challenge, was launched [30]. The main subsite of 
the challenge was the oropharyngeal tumor and the winner of the 
challenge achieved a mean Dice of 0.76, but the image modalities used 
were PET/CT. Additionally, Ren et al. [31] compared the use of PET/ 
CT/MRI as different input image combinations for the automatic seg-
mentation of head and neck GTV and observed that, when including 
PET, the segmentation performance improved. Considering all the 
above, it is possible that PET is a useful modality for the task of head and 
neck tumor segmentation. However, the differences in resolution be-
tween imaging modalities may be reflected in the detail of the manual 
ground truth delineations used for training and evaluation. Potentially, 
this can also explain the difference in performance of the MRI-based 
task. That said, we argue that the strategies to tackle class imbalance 
in this work can be useful in the development of autocontouring tools for 
the case of oropharyngeal cancer. 

This study has limitations. Firstly, there is a high interobserver 
variability on this tumor subsite, especially in case of tonsillar fossa and 
base of tongue tumor which are rich in lymphatic tissue, so it is possible 
that the ground truth delineations used in this work are partially biased. 
However, one observer corrected the other’s delineation, reducing this 
observer variation. Secondly, validation of our results is still needed 

Table 1 
Detection and segmentation performance of the two stage approach and com-
parison to results of the previous work [10].   

Detection Segmentation  

Avg. shift (mm) – 
[SD] 

Dice HD 
(mm) 

MSD 
(mm) 

This work 
3D end-to-end UNet –  0.54  10.6  2.4 
Two stage approach 8.7 [8.2]  0.64  8.7  2.1  

Previous work  
Semi-automatic approach 

(Obs. 1) 
3.0 [3.9]  0.74  4.6  1.2 

Semi-automatic approach 
(Obs. 2) 

8.9 [6.9]  0.67  7.2  1.7  
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with an independent cohort in a multi-center study. Thirdly, the per-
formance could also be improved by making different decisions on the 
training setup, such as using larger batch sizes or non downsampled 
data, but other strategies to mitigate memory limitations would be 
needed. Finally, there is a certain variability in the scan protocols. 
However, variability in the training set can be desirable as it makes the 
network robust to protocol differences. 

In conclusion, the loss functions designed to tackle class imbalance 
performed comparably among each other. The approach of splitting the 
problem into localization and segmentation outperformed the end-to- 
end network, proving an effective strategy to mitigate the class imbal-
ance problem in oropharyngeal cancer segmentation. 
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