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Contrast reversal of the iris and
sclera increases the face
sensitive N170
Kelly J. Jantzen*, Nicole McNamara, Adam Harris,
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Previous research has demonstrated that reversing the contrast of the eye

region, which includes the eyebrows, affects the N170 ERP. To selectively

assess the impact of just the eyes, the present study evaluated the N170 in

response to reversing contrast polarity of just the iris and sclera in upright and

inverted face stimuli. Contrast reversal of the eyes increased the amplitude

of the N170 for upright faces, but not for inverted faces, suggesting that the

contrast of eyes is an important contributor to the N170 ERP.
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Introduction

Faces arguably represent a distinct class of stimuli that are processed by
specialized distributed neural circuits (e.g., McKone and Robbins, 2011). Inverting
face stimuli by 180 degrees disrupts their encoding and discriminability (Freire
et al., 2000), more than other objects (Yovel and Kanwisher, 2005). Reversing the
contrast of face stimuli (Nederhouser et al., 2007) has similar effects and both
inversion and contrast reversal effects are often cited as evidence for the specialized
processing of faces. Both face inversion (Bentin et al., 1996; Eimer, 2000; Rossion
et al., 2000; Taylor et al., 2001; de Haan et al., 2002; Itier and Taylor, 2002,
2004a,b; Itier et al., 2006a) and contrast reversal (Itier and Taylor, 2002, 2004b)
increase the latency and amplitude of the face sensitive N170 component of the
electroencephalograph (EEG) and its magnetic counterpart (magnetoencephalograph)
(Itier et al., 2006a,b), both of which are signatures of early cortical processing
that likely represent structural encoding of faces (Rossion et al., 1999; Eimer,
2000).

The eyes play a crucial role in face processing, which suggests that the eyes undergo
neural processing distinct from more general face processing (Nemrodov and Itier,
2011; Zheng et al., 2011). For example, observing eyes alone elicits an N170 greater
in amplitude than observing a whole face (Bentin et al., 1996). To specifically test the
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importance of the eyes in the configural processing of faces, Itier
et al. (2007) recorded the N170 in response to viewing faces,
faces without eyes, and eyes without faces. They found that, for
inverted face stimuli, eyes alone produced a similar N170 to
faces with eyes, both of which were larger than for faces without
eyes. Further, inversion and contrast reversal of the faces affected
the N170 only in the presence of eyes leading to the conclusion
that configural disruption of a face is driven largely by the eyes.

The hypothesized importance of the eyes is in keeping
with behavioral data demonstrating that eyes are at the core
of facial recognition, emotion evaluation, and directing shared
attention (reviewed by Itier and Batty, 2009). For instance,
an observer’s attention is directed by their perceived direction
of gaze, which is determined, in part, by the brightness
of the sclera on each side of the iris (Ando, 2004). The
direction of perceived gaze also affects the N170, which is
increased when gaze is directed at the viewer (e.g., Conty
et al., 2007; Burra et al., 2017) and when it is dynamically
averted (Latinus et al., 2015; Rossi et al., 2015). Reversing
contrast of just the eyes disrupts the ability to determine
gaze direction (Ricciardelli et al., 2000; Olk et al., 2008) and
may account for previous findings. However, the contrast
reversed stimuli of Itier et al. (2007) included a region
beyond the eyes alone including, for example, the forehead,
the bridge of the nose and the eyebrows. Watt et al. (2007)
found that the eyebrows could interfere with the perception
of gaze, and Sadr et al. (2003) demonstrated that eyebrows
were equally influential as eyes for recognizing faces. This
highlights the potential importance of other localized features
or combinations of features in driving the effects of contrast
reversal and inversion.

We tested the specific hypothesis that the critical importance
of the eyes in face processing comes, at least partly, from
the information gleaned from the contrast between the sclera
and pupil. We measured the N170 from participants while
presenting upright and inverted faces and cars with eyes
(or headlights) that were either normal or contrast reversed.
Importantly, contrast reversal was restricted to the sclera and
pupil of the eye so that any changes in N170 amplitude
would be attributable specifically to the eye itself, not other
local features. We also assessed the interaction of inversion
of face images with contrast reversal of the eye region.
A disruption of configural processing by contrast reversal of
the eye region should result in a larger N170 for contrast
reversed eye stimuli than normal eye stimuli only when upright
since configural processing is disrupted in face stimuli during
inversion (Freire et al., 2000; however, see Schwaninger et al.,
2005). It was predicted there would be no effects of inversion
or contrast reversal on the N170 for the control car stimuli
(Kloth et al., 2013).

Methods

Participants

Data were collected from 18 participants with normal to
corrected vision. Data from two participants was removed
due to excessive eye artifact and poor behavioral performance
(<85% correct) leaving 16 participants (8 females) with a mean
age of 23.5 (SD = 8.1). All participants were provided informed
consent for this research which was authorized by the internal
review board of Western Washington University.

Stimuli

Fifty standardized White faces (25 female) were selected
from the Chicago Face Database 2.0 (Ma et al., 2015). Faces
were all full color, front facing adults with a neutral expression.
Using WebMorph (DeBruine and Tiddeman, 2016), all face
images were standardized in size, scale, and position. Faces were
individually delineated by manually placing specific coordinates
over each image’s facial landmarks (i.e., hairline, jawline, eyes)
to standardize pupil level and face size. The outline of the
face, defined by the jawline and hairline, was used to mask
the ears, hair, and neck so that only the face of each image
was visible against a white background. Images were scaled so
that the face was approximately 800 × 1,200 pixels (9.1 × 13.6
visual angle) and converted to grayscale by eliminating hue
and saturation information while maintaining luminance. To
account for differences in contrast among images, pixel values
were adjusted such that the mean and standard deviation of all
non-background pixels was equivalent across images.

Control stimuli were 50 white/silver cars collected online
from manufacturer websites. They were standardized in
appearance so that the car was centered in the image, and
turned slightly to the right, displayed on a white background,
and sized 600 × 800 pixels. Contrast was adjusted in a manner
similar to the faces.

Contrast reversed versions of all images were created
in Adobe Photoshop using the “Invert” function. For faces,
contrast reversal was applied to pixels making up the sclera,
iris, and pupil of the eyes. For cars, contrast reversal was
applied to pixels making up the headlights. Inverted versions
of the normal and contrast reversed stimuli were created by
rotating the images 180 degrees around the image center.
The procedures resulted in the generation of 50 stimuli in
each of 8 experimental conditions defined by the factors
of Stimulus (Faces/Cars), Orientation (Upright/Inverted), and
Contrast (Normal/Reversed). Sample face and car images are in
Figure 1.

Frontiers in Human Neuroscience 02 frontiersin.org

https://doi.org/10.3389/fnhum.2022.987217
https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org/


fnhum-16-987217 September 1, 2022 Time: 15:7 # 3

Jantzen et al. 10.3389/fnhum.2022.987217

FIGURE 1

Sample Stimuli showing the upright (top) and inverted (bottom) versions of the faces and cars The second column shows faces with eye
contrast reversed and the fourth column shows the car with the headlights reversed.

Task

The stimuli were presented on a 19-inch Dell LCD monitor
using Inquisit 5.0. On each trial, participants were presented
with a fixation cross, followed by a stimulus from one of the eight
experimental conditions for 250 ms. To reduce the possible,
confound of gaze fixation (e.g., Nemrodov et al., 2014; Fisher
et al., 2016) participants gaze was directed to the eyes using
a fixation cross that appeared in the horizontal midpoint of
the image and was vertically aligned with the middle of the
pupils. For cars, the fixation cross was in the center of the image.
Participants used their dominant hand to press a key to indicate
whether the stimulus presented was a face or a car. A trial ended
when the participant responded or after 1,500 ms. Trials were
separated by a random interval ranging from 1,000 to 1,300 ms.
A block of trials was completed when all the 400 stimuli had
been presented. Participants completed 2 blocks for a total of
100 trials per condition.

Electroencephalograph recording and
processing

A BioSemi ActiveTwo (Biosemi, Amsterdam, Netherlands)
was used to continuously sample EEG (512 Hz) from 64
scalp electrodes placed according to the 10-5 electrode system
(Oostenveld and Praamstra, 2001). EEG signals were processed
in Matlab 9.8 (Mathworks Inc., Natick, MA, United States) using
a combination of in-house routines and the EEGlab toolbox
(Delorme and Makeig, 2004). Signals were pass filtered above
0.1 Hz. Bad channels were replaced by spherical interpolation
of the remaining channels before average referencing. Line
noise was reduced using the EEGLab plugin CleanLine, which
adaptively estimated and removed sinusoidal noise at 60 Hz.
Individual EEG epochs from −100 to 500 ms around the onset
of the stimulus were extracted for each trial on which the

participant correctly identified the stimulus as either a face or
car (95 ± 3% of trials).

Data analysis

After rejecting trials in which peak-to-peak voltage exceeded
400 uV (see Supplementary Table 2 for the mean number
of trials in each condition), we decomposed signals into a set
of independent components (Jung et al., 2001) and classified
the source of each component using the ICLabel plugin for
EEGLab. To remove artifacts from the data (Jung et al., 2001),
we subtracted components confidently identified (>60%) as eye-
blinks, muscle artifacts, heartbeat, line-noise or channel-noise.
The cleaned trials were then low pass filtered below 50 Hz
before averaging.

ERP amplitudes were defined as the average within a
time window and across channels selected based on scalp
topographies described in the literature and after confirmation
that the selected channels demonstrated the largest amplitudes
in each hemisphere (see Figure 2). The N170 was defined
between 150 and 180 ms in P7/P9 (left) and P8/P10 (right).
To determine if N170 effects may have resulted from changes
in the low-level stimulus features evaluated earlier in cortical
processing, we also analyzed stimulus related changes in P100
amplitude. The P100 was evaluated between 90 and 130 ms in at
electrodes PO7/O1 (left)and PO8/O2 (right) (see Figure 2). ERP
amplitudes were subjected to separate within subject ANOVAs.

Results

P100

P100 amplitude (Figure 3) was evaluated using a within-
subject ANOVA with factors Contrast (Normal/Reversed),
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FIGURE 2

Averages across the channel montages used to define the P100 (top traces) and N170 (bottom traces) are shown for each condition The
colored regions highlight the timepoints used to calculate ERP amplitude. The mean activity across the time windows is shown in the
topographic maps to the right.

Orientation (Upright/Inverted), Stimulus (Face/Car), and
Hemisphere (Left/Right). There were no significant effects
of Contrast, Orientation, Stimulus or Hemisphere and no
significant interaction, indicating that our manipulations did
not affect early stage of visual processing. See full ANOVA
results in Supplementary Table 1.

N170

A 4-way ANOVA on N170 amplitude (Figure 3) found a
main effect of Contrast, F(1,15) = 5.81, p = 0.029, Orientation,
F(1,15) = 12.7, p = 0.003, Stimulus, F(1,15) = 38.1, p < 0.001,
and Hemisphere, F(1,15) = 13.9, p = 0.002. There was also
a two-way interaction between Orientation and Stimulus,
F(1,15) = 10.3, p = 0.006, and three way interaction between
Contrast, Orientation, and Stimulus F(1,15) = 5.49, p = 0.033
as well as Orientation, Stimulus, and Channel, F(1,15) = 8.72,
p = 0.010. Separate three-way ANOVA’s on the Cars and Faces
showed that the interactions with Stimulus occurred because
the N170 was unaffected by Inversion or Contrast Reversal of
the cars. Although the N170 in response to Cars was larger

in the right than left hemisphere, F(1,15) = 11.6, p = 0.004, it
was unaffected by Inversion or Contrast reversal. For Faces, the
N170 was also larger in the right hemisphere, F(1,15) = 13.1,
p = 0.002. Unlike the response to cars, however, the N170
to faces was significantly larger when faces were inverted,
F(1,15) = 23.4, p < 0.001, and when the eyes were contrast
reversed, F(1,15) = 6.45, p = 0.023. Critical to our predictions,
there was also a significant interaction between Contrast and
Orientation, F(1,15) = 4.62, p = 0.048, such that the N170 was
larger for reversed eyes than normal eyes when faces were
upright [F(1,15) = 8.82, p = 0.009], but not inverted [F(1,15) = 0.45
p = 0.51].

Discussion

Consistent with studies in which a broader eye region,
including eyebrows, parts of the forehead, and the bridge
of the nose, was manipulated (Itier et al., 2007; Fisher
et al., 2016), contrast reversal of the eyes alone increased
the amplitude of the early face-sensitive N170—a difference
that was eliminated under face inversion. Enhancement of
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FIGURE 3

Mean amplitude from left and right hemisphere channel groups for the P100 (top) and N170 (bottom) time windows Black dots: individual
subject data. Box shows the mean and first and third quartile. The whiskers show the 2nd to 9th quantile.

the N170 component to faces with contrast-reversed eyes
has been interpreted as a marker for impaired structural
encoding of a face processing mechanism that is tuned or
biased toward the eye region (Fisher et al., 2016) and is
cited as support for the existence of eye specific processing
in humans (e.g., Itier and Batty, 2009). Our results further
suggest that previous findings may be accounted for, at least
partly, by a disruption of the white/dark contrast of the
eye itself. The finding that face inversion eliminated N170
amplitude differences corroborates the conclusion that the
seemingly “within feature” contrast reversal of the eye alone
is sufficient to disrupt structural encoding of a face since the
same effects were not observed when face configuration was
disrupted by inversion.

The white sclera in human eyes facilitates the perception
of gaze direction (Kobayashi and Kohshima, 1997, 2001; Ando,

2004), which supports social interaction by indicating shared
attention and enabling inferences of others’ mental state (e.g.,
Stephenson et al., 2021). Although the specific impact of eye
gaze direction on the N170 is inconsistent and may be task and
context dependent (Hadders-Algra, 2022), evidence supports
the general conclusion that information about gaze direction
is extracted early in face processing. Burra et al. (2017) and
others (see Hadders-Algra, 2022 for a recent review) reported
an increase in N170 amplitude in response to briefly presented
faces depicting direct compared to averted gaze suggesting that
face processing is sensitive to gaze direction. Rossi et al. (2015)
further showed a larger N170 in response to dynamic shifts of
gaze away from compared to toward the viewer, for real but
not line-drawn faces, suggesting that the N170 is sensitive to
the low-level light-dark contrast. Our current findings provide
support for this general hypothesis and suggest that due to
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its important social value, the ability to decode gaze direction
from the sclera/iris contrast may be a central component in face
processing and in categorizing an object as a face.

Although our results show the impact of altering eye
contrast on early cortical processing, recent findings suggest
that this effect may be context dependent. For instance, Latinus
et al. (2015) found that social context may enhance the salience
of gaze processing via top-down effects of the brain operating
in a “socially aware” mode. More recent work points to the
importance of the N170 in the establishment of shared attention.
Indeed, Stephenson et al. (2020) found an enhanced N170
when changes in eye gaze of a stimulus face were in the same
direction as the participant, indicating the establishment of
shared attention. In both these studies, N170 responses were
measured in response to gaze shifts, highlighting that an N170
can be elicited not only by eyes alone, but by a change in the
relative contrast between sclera and iris.

The present work suggests that the effects reported by Itier
et al. (2007) are driven exclusively by the eyes, and that eyebrows
are less important than would be predicted based on behavioral
findings (Watt et al., 2007). Nonetheless, eyebrows are a high
contrast feature effective in communicating emotion and non-
verbal context cues, which raises questions concerning their
ability to influence early face processing measured by the N170.
A better understanding of the relative and additive contribution
of eyes and eyebrows may be gained by manipulating both
features independently within the same experimental context.

In summary, this study demonstrated that faces with
contrast-reversed sclera/iris generate a larger N170 when
presented upright but not inverted—a signature of disrupted
structural encoding. Beyond further crystallizing the privileged
position of the eyes in face processing, this work shows that
the local contrast between the light sclera and dark iris and
pupil may be the central component of what makes the eyes
so important for face processing. Although a relatively localized
feature, our results indicate that contrast reversed eyes disrupt
early face processing suggesting that the natural contrast present
in human eyes aids in characterizing an object as a face.
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